Introduction Mathe	ematical models N	iumerical strategy	Parallel computing	Conclusion
00 000	o c	000000000	000	0

Relaxation method based solvers for multifluid flows

B.Braconnier, B. Nkonga, J. Claudel, B. Berthon Projet SCALAPPLIX

LMAAB – INRIA Futurs Université Bordeaux I

DFG-CNRS WORKSHOP - January, 12th 07

Introduction	Mathematical models	Numerical strategy	Parallel computing	Conclusion
00	0000	000000000	000	
Headlines				

2 Mathematical models

O Numerical strategy

Parallel computing

Introduction	Mathematical models	Numerical strategy	Parallel computing	Conclusion
•0	0000	000000000	000	
Physical c	ontext			

- Two fluids liquid or gas different physical properties (EOS) non-miscible fluids, separated by interfaces surface tension force viscous fluids
- Compressibility acoustic wave propagation (interface deformation) fluid volume variation
- Low Mach flows low fluid velocities pressure fluctuations almost negligible

00	0000	000000000	000	0
00	0000	0000000000	000	0
Introduction	Mathematical models	Numerical strategy	Parallel computing	Conclusion

Numerical context : FLUIDBOX

- 2D-3D
- unstructured meshes
- moving meshes
- finite volume and finite different element methods
- cell vertex, cell centered formulation
- explicit and implicit formulation
- high order MUSCL technique
- Runge Kutta schemes
- upwind downwind triangles
- parallel computing

Introduction	Mathematical models	Numerical strategy	Parallel computing	Conclusion
00	0000	000000000	000	
Headlines				

2 Mathematical models

O Numerical strategy

Parallel computing

	Mathematical models	Numerical strategy	Parallel computing	Conclusion
00	0000	000000000	000	
Fluids unknow	ns			

• volume fraction
$$\alpha_k = \frac{V_k}{V} \in [0, 1]$$

• mass fraction
$$y_k = \frac{m_k}{m} \in [0, 1]$$

• density $\rho_k = \frac{m_k}{V_k}$

• internal energy ϵ_k

• energy
$$E_k = \rho_k \left(\epsilon_k + \frac{1}{2}|u_k|^2\right) > 0$$

• enthalpy $H_k = \frac{E_k + p_k}{\rho_k}$

- temperature T_k
- entropy S_k
- sound speed c_k

	Mathematical models	Numerical strategy	Parallel computing	Conclusion
00	0000	000000000	000	
Reduced	model : Kapila(2000)			

- Baer Nunziato model : u_k , p_k , velocity and pressure relaxation procedure
- asymptotic expansion : $u_k = u + \epsilon u_k^{'}$, $p_k = p + \epsilon p_k^{'}$

$$\begin{cases} \partial_t(\alpha_k) + u\partial_x(\alpha_k) + \beta_k\partial_x(u) = 0\\ \\ \partial_t(\mathbf{w}) + \partial_x(\mathbf{f}) = 0 \end{cases}$$
$$\mathbf{w} = \begin{pmatrix} \alpha_k\rho_k\\ \rho u\\ E \end{pmatrix}, \quad \mathbf{f} = \begin{pmatrix} \alpha_k\rho_k u\\ \rho u^2 + p\\ (E + p)u \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} \rho_k\\ u\\ p \end{pmatrix}$$

• mixture density
$$\rho = \sum_{k} \alpha_{k} \rho_{k}$$

• compaction term $\beta_{k} = \alpha_{k} \alpha_{k'} \frac{\rho_{k} c_{k}^{2} - \rho_{k'} c_{k'}^{2}}{\alpha_{k'} \rho_{k} c_{k}^{2} + \alpha_{k'} \rho_{k} c_{k}^{2}}$
• sound speed $\frac{1}{\rho c^{2}} = \sum_{k} \frac{\alpha_{k}}{\rho_{k} c_{k}^{2}}$
• entropy $S = \sum y_{k} S_{k}$

	Mathematical models	Numerical strategy	Parallel computing	Conclusion
	0000			
'Stiffened gas'	equation of states			

• pressure :
$$p + \gamma P^{\infty} = (\gamma - 1)
ho(\epsilon - \epsilon^{\infty})$$

$$\frac{1}{\gamma-1} = \sum_{k} \frac{\alpha_{k}}{\gamma-1}, \quad \frac{\gamma p^{\infty}}{\gamma-1} = \sum_{k} \frac{\alpha_{k} \gamma_{k} p_{k}^{\infty}}{\gamma_{k}-1}, \quad \epsilon^{\infty} = \sum_{k} y_{k} \left(\epsilon_{k0} - \frac{p_{k0} + \gamma_{k} p_{k}^{\infty}}{\rho_{k0}(\gamma_{k}-1)} \right)$$

• temperature :
$$p + p_k^{\infty} = (\gamma_k - 1) \rho_k^{\gamma_k} C_{vk} \left(\frac{T_k}{\rho_k^{\gamma_k - 1}} - \frac{T_k^{\infty}}{\rho_{k0}^{\gamma_k - 1}} \right)$$

$$T_k^\infty = T_{k0} - rac{
ho_{k0} +
ho_k^\infty}{
ho_{k0}(\gamma_k - 1) C_{vk}}$$

• sound speed : $\rho_k c_k^2 = \gamma_k (p + p_k^\infty)$, entropy : $S_k = (p + p_k^\infty)/(\rho_k^{\gamma_k})$

Π		γ	P^{∞}	$ ho_0$	P_0	ϵ_0	T_0	Cv
Π	air	1.4	0	50	1.0 10 ⁵	2.0 10 ⁵	300	1.0 10 ³
	water	4.4	6.0 10 ⁸	1.0 10 ³	1.0 10 ⁵	6.17 10 ⁵	220	4.18 10 ³

	Mathematical models	Numerical strategy	Parallel computing	Conclusion
00	0000	000000000	000	
Capillary effect	ts			

Continuum Surface Force (CSF, Brackbill 1992)

- ϕ_k phase field α_k , y_k
- $n = \nabla \phi_k$ normal at the interface
- $\kappa = \nabla \cdot \left(\frac{n}{|n|} \right)$ curvature
- σ surface tension coefficient
- $F_S = -\sigma \kappa n$ surface tension force

Introduction	Mathematical models	Numerical strategy	Parallel computing	Conclusion
00	0000	000000000	000	
Headlines				

2 Mathematical models

3 Numerical strategy

Parallel computing

	Mathematical models	Numerical strategy	Parallel computing	Conclusion
		000000000		
'hyper-con	sistent' schemes			

Proposition

• when α_k is constant, the system becomes conservative :

$$\partial_t(\mathbf{w}) + \nabla \cdot (\mathbf{f}) = 0$$

 \rightarrow the discretisation of the numerical flux f must be in a conservative form.

 when the solution w̄ is such that (ρ_k, ū, p̄) are constant, the volume fraction and masses equations are redundant. This criterion leads to an 'hyper-consistent' dicretisation of the non-conservative operator.

'hyper consistent' numerical schemes rewrite formally as :

$$\begin{cases} \frac{(\alpha_k)_i^{n+1} - (\alpha_k)_i^n}{\Delta t} + (\mathbf{u} \cdot \nabla)_i^h \alpha_k + (\beta_k \cdot \nabla)_i^h \mathbf{u} = 0\\ \frac{\mathbf{w}_i^{n+1} - \mathbf{w}_i^n}{\Delta t} + \frac{\phi_{i+1/2}^n - \phi_{i-1/2}^n}{\Delta x} = 0\\ \rightarrow \phi_{i+1/2}^n = \frac{1}{2} \left[\mathbf{f}_{i+1}^n + \mathbf{f}_i^n - \mathbf{P} |\Lambda| \mathbf{P}^{-1} (\mathbf{w}_{i+1}^n - \mathbf{w}_i^n) \right]\\ \rightarrow (\mathbf{u} \cdot \nabla)_i^h \alpha_k = \frac{\phi_{i+1/2}^{\alpha_k \rho_k} (\alpha_k^n, \overline{\mathbf{w}}^n) - \phi_{i-1/2}^{\alpha_k \rho_k} (\alpha_k^n, \overline{\mathbf{w}}^n)}{\Delta x} \end{cases}$$

	Mathematical models	Numerical strategy	Parallel computing	Conclusion
00	0000	000000000	000	
Pressure r	elaxation solver			

$$\begin{pmatrix} \epsilon \\ \epsilon \\ \pi \end{pmatrix}, \quad \begin{pmatrix} 0 \\ p-\pi \end{pmatrix} \quad \bullet \text{ relation parameter } a \neq pc$$

$$\bullet \text{ approximate compaction } \tilde{\beta}^k = \alpha_k - \frac{y_k a_k^2}{a^2}$$

wave	Riemann invariants					
λ_u	и		π			
$\lambda_{u\pm a/\rho}$	$u \pm a \rho$	$\pi \mp au$	$\pi^2 - 2a^2\epsilon$	Уk	$(lpha_k - y_k a^2/a_k^2)/ ho$	а

exact solution :

$$\mathcal{V}_{i-1/2}(x) = \mathcal{V}\left(\frac{x - x_{i-1/2}}{\Delta t}, \mathbf{W}_{i-1}^n, \mathbf{W}_i^n\right)$$

Godunov method :

$$\Delta x \mathbf{W}_{i}^{n+1} = \int_{x_{i-1/2}}^{x_{i}} \mathcal{V}_{i-1/2}(x) dx + \int_{x_{i}}^{x_{i+1/2}} \mathcal{V}_{i+1/2}(x) dx$$

wave propagation form :

$$\mathbf{W}_{i}^{n+1} = \mathbf{W}_{i}^{n} - \frac{\Delta t}{\Delta x} \left[\left(\overline{\mathbf{A}}^{-} \Delta \mathbf{W} \right)_{i+1/2}^{n} + \left(\overline{\mathbf{A}}^{+} \Delta \mathbf{W} \right)_{i-1/2}^{n} \right]$$
$$\left(\overline{\mathbf{A}}^{-} \Delta \mathbf{W} \right)_{i+1/2}^{n} = -\frac{1}{\Delta t} \int_{x_{i}}^{x_{i+1/2}} \left(\mathcal{V}_{i+1/2}(x) - \mathbf{W}_{i}^{n} \right) dx$$
$$\left(\overline{\mathbf{A}}^{+} \Delta \mathbf{W} \right)_{i-1/2}^{n} = -\frac{1}{\Delta t} \int_{x_{i-1/2}}^{x_{i}} \left(\mathcal{V}_{i-1/2}(x) - \mathbf{W}_{i}^{n} \right) dx$$

Introduction	Mathematical models	Numerical strategy	Parallel computing	Conclusion		
00	0000	000000000	000			
'hyper-consistent' schemes properties						

update solution :

$$\mathbf{W}_i^{n+1} = \mathbf{W}_i^n - \frac{\Delta t}{\Delta x} (\boldsymbol{\psi}_{i+1/2} - \boldsymbol{\psi}_{i-1/2})$$

'hyper consistency' formulation :

$$\boldsymbol{\psi}_{i+1/2} = \boldsymbol{\phi}_{i+1/2} + \left(\overline{\mathbf{B}}^{-} \Delta \mathbf{V}\right)_{i+1/2}^{n}, \quad \boldsymbol{\psi}_{i-1/2} = \boldsymbol{\phi}_{i-1/2} - \left(\overline{\mathbf{B}}^{+} \Delta \mathbf{V}\right)_{i-1/2}^{n}$$

dissipative formulation :

$$\begin{split} \boldsymbol{\psi}_{i+1/2} &= \frac{1}{2} \left[\mathbf{F}_{i}^{n} + \mathbf{F}_{i+1}^{n} - \left(|\overline{\mathbf{A}}| \Delta \mathbf{W} \right)_{i+1/2}^{n} - \left(|\overline{\mathbf{B}}| \Delta \mathbf{V} \right)_{i+1/2}^{n} \right] + \frac{1}{2} \left(\overline{\mathbf{B}} \Delta \mathbf{V} \right)_{i+1/2}^{n} \\ \boldsymbol{\psi}_{i-1/2} &= \frac{1}{2} \left[\mathbf{F}_{i-1}^{n} + \mathbf{F}_{i}^{n} - \left(|\overline{\mathbf{A}}| \Delta \mathbf{W} \right)_{i-1/2}^{n} - \left(|\overline{\mathbf{B}}| \Delta \mathbf{V} \right)_{i-1/2}^{n} \right] - \frac{1}{2} \left(\overline{\mathbf{B}} \Delta \mathbf{V} \right)_{i-1/2}^{n} \end{split}$$

Proposition

There exists a matrix $\overline{\mathbf{B}}$ such that approximate solvers associated to 'hyper consistent' numerical schemes satisfy :

$$\sum_{k} (\delta \mathcal{V})_{k} = \Delta \mathbf{F} + \overline{\mathbf{B}} \Delta \mathbf{V}$$

$$egin{array}{c|c} \mathbf{W}_{i}^{n} & \ \mathbf{W}_{i,L}^{n} & \mathbf{W}_{i,*}^{n} & \mathbf{W}_{i,R}^{n} \end{array}$$

gradients construction :

$$\nabla \mathbf{W}_{i,R}^{n} = Lim\left(\frac{\mathbf{W}_{i+1} - \mathbf{W}_{i-1}}{2\Delta x}, \frac{(\Delta \mathbf{W})_{i+1/2}}{x}\right), \quad \nabla \mathbf{W}_{i,L}^{n} = Lim\left(\frac{\mathbf{W}_{i+1} - \mathbf{W}_{i-1}}{2\Delta x}, \frac{(\Delta \mathbf{W})_{i-1/2}}{\Delta x}\right)$$

states reconstruction :

$$\mathbf{W}_{i,R}^{n} = \mathbf{W}_{i}^{n} + \frac{\Delta x}{2} \nabla \mathbf{W}_{i,R}^{n}, \quad \mathbf{W}_{i,L}^{n} = \mathbf{W}_{i}^{n} - \frac{\Delta x}{2} \nabla \mathbf{W}_{i,L}^{n}$$

conservation property : $\mathbf{W}_i^n = rac{1}{3}(\mathbf{W}_{i,L}^n + \mathbf{W}_{i,*}^n + \mathbf{W}_{i,R}^n)$

	Mathematical models	Numerical strategy	Parallel computing	Conclusion
00	0000	000000000	000	
2 nd order imp	lementation			

$$\begin{array}{|c|c|c|c|} \hline & \mathbf{W}_{i,L}^n \\ \hline & \mathbf{W}_{i,L}^n \\ \hline & \mathbf{W}_{i,k}^n \\ \hline & \mathbf{W}_{i,R}^n \\ \hline & \end{array} \end{array}$$

$$\mathbf{W}_{i}^{n+1} = \mathbf{W}_{i}^{n} - \frac{\Delta t}{\Delta x} \left[H_{i+1/2} - H_{i_{1}/2} \right]$$

second order flux formulation :

$$H_{i-1/2}^{n} = \mathbf{F}_{i,L}^{n} + \mathbf{B}_{i}^{n} \mathbf{W}_{i,L}^{n} + \frac{1}{\Delta t} \int_{x_{i-1/3}}^{x_{i-1/2}} \left[\mathcal{V}\left(\frac{x - x_{i-1/2}}{\Delta t}, \mathbf{W}_{i-1,R}^{n}, \mathbf{W}_{i,L}^{n}\right) - \mathbf{W}_{i,L}^{n} \right] dx$$

$$H_{i+1/2}^{n} = \mathbf{F}_{i,R}^{n} + \mathbf{B}_{i}^{n} \mathbf{W}_{i,R}^{n} - \frac{1}{\Delta t} \int_{x_{i+1/3}}^{x_{i+1/2}} \left[\mathcal{V}\left(\frac{x - x_{i+1/2}}{\Delta t}, \mathbf{W}_{i,R}^{n}, \mathbf{W}_{i+1,L}^{n}\right) - \mathbf{W}_{i,R}^{n} \right] dx$$

	Mathematical models	Numerical strategy	Parallel computing	Conclusion
		0000000000		
Second order				

• second order time accuracy : default correction :

prediction :
$$\mathbf{W}_{i}^{n+1/2} = \mathbf{W}_{i}^{n} - \frac{\Delta t}{a_{i}} \sum_{j \in \nu(i)} \phi_{ij,ji}^{n}$$

correction : $\mathbf{W}_{i}^{n+1} = \frac{1}{2} \left(\mathbf{W}_{i}^{n+1/2} + \mathbf{W}_{i}^{n} - \frac{\Delta t}{a_{i}} \sum_{j \in \nu(i)} \phi_{ij,ji}^{n+1/2} \right)$

• 2D second order space accuracy : MUSCL technique :

$$\nabla \mathbf{W}_{ij} = \frac{1}{2} \left(\nabla \mathbf{W}_{ij}^{cent} + \nabla \mathbf{W}_{ij}^{up} \right) \cdot \boldsymbol{\eta}_{ij}$$

Van Albada Van Leer limiter :

$$\mathbf{W}_{ij} = \mathbf{W}_i + \frac{1}{2} Lim(\nabla \mathbf{W}_{ij}, \nabla \mathbf{W}_{ij}^{cent} \cdot \boldsymbol{\eta}_{ij})$$

	Mathematical models	Numerical strategy	Parallel computing	Conclusion
00	0000	0000000000	000	
Source terms				

• splitting technique

$$\begin{cases} \partial_t(\alpha_k) = 0\\ \\\partial_t(\alpha_k \rho_k) = 0\\ \\\partial_t(\rho \mathbf{u}) = \rho \mathbf{g} + F_S + \nabla \cdot \tau\\ \\\partial_t(E) = (\rho \mathbf{g} + F_S) \cdot \mathbf{u} + \nabla \cdot (\tau \mathbf{u}) \end{cases}$$

• g gravity

•
$$\tau = \frac{1}{2} \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T \right)$$
 viscosity stress tensor
• $\frac{1}{\mu} = \sum_k \frac{\alpha_k}{\mu_k}$ mixture viscosity coefficient

	Mathematical models	Numerical strategy	Parallel computing	Conclusion
		0000000000		
Low Mach preconditioning				

• Low Mach number : $Ma = \frac{|\mathbf{u}|}{c} << 1$

• solutions spoiled by rounded errors coming from acoustic wave resolution

• Turkel pressure preconditioning method (rounded errors filter) :

$$\frac{1}{Ma^2}\partial_t(p) + \mathbf{u}\cdot\nabla(p) + \rho c^2\nabla\cdot(\mathbf{u}) = 0$$

• preconditioned relaxation system :

• L.D., waves :
$$\lambda^{\pm} \approx \frac{(M^2 + 1)u \pm \sqrt{(M^2 - 1)^2u^2 + 4M^2c^2}}{2}$$

	Mathematical models	Numerical strategy	Parallel computing	Conclusion
00	0000	000000000	000	
Implicit formu	lation			

• implicit formulation

$$\left(1+\frac{\Delta t}{a_i}\sum_{j\in\nu(i)}\mathsf{A}^+_{ij}\cdot\boldsymbol{\eta}_{ij}\right)(\mathsf{W}^{n+1}_i-\mathsf{W}^n_i)+\sum_{j\in\nu(i)}\mathsf{A}^+_{ji}\cdot\boldsymbol{\eta}_{ji}(\mathsf{W}^{n+1}_j-\mathsf{W}^n_j)=-\frac{\Delta t}{a_i}\psi^n_{ij}$$

• Acoustic scheme (Guillard, Murrone)

$$\mathbf{A}_{ij}^{+} = \left(\frac{\partial \mathbf{F}_{ij}^{*}}{\partial \mathbf{W}_{ij}^{*}} + \mathbf{B}(\mathbf{W}_{i}^{n})\right) \left(\frac{\partial \mathbf{W}_{ij}^{*}}{\partial \mathbf{W}_{i}^{*}}\right)$$

- Resolution based on iterative methods :
 - Jacobi Gauss-Seidel Gmres

Introduction	Mathematical models	Numerical strategy	Parallel computing	Conclusion
00	0000	000000000	000	
Headlines				

2 Mathematical models

O Numerical strategy

Parallel computing

Introduction	Mathematical models	Numerical strategy	Parallel computing	Conclusion
			000	
Fluidbox para	allelisation			

- parallelisation based on mesh partitioning
- block Gauss Seidel or block Jacobi preconditioners
- dedicated parallel assembly implementation
- partitioning step is performed by Metis
- overlap the frontiers of domain decomposition

Introduction	Mathematical models	Numerical strategy	Parallel computing	Conclusion O
PASTIX : d	lirect solver and gr	aph partitioner		
 PAS robu unsy PAS mat 	iTIX : parallel direct solv ust factorisation (ill cond /mmetric matrix with syn iTIX features rix ordering techniques b incomplete Nested Diss approximate Minimum penefits :	ver based on LU method litioned matrix) mmetric pattern pased on graph partition ection Degree method	d ning :	

minimising the fill-in in the factorized matrix and the number of operations maximising the independence of computations

block symbolic factorisation :

compute the block pattern of the factorized matrix(liner time complexities) block data structure allow to use dense linear algebra subroutine (BLAS3)

	Mathematical models	Numerical strategy	Parallel computing	Conclusion
00	0000	000000000	000	
PASTIX ef	fficiency			

Mesh	101 imes 201	201×401	401 imes 801		
Unknows	121806	483606	1927206		
4 processors					
PASTIX	$1.41 \ 10^3$	$1.59 \ 10^4$			
Gauss-Seidel 10 ⁻³	4.77 10 ⁴	4.05 10 ⁵	3.38 10 ⁶		
Gauss-Seidel 10 ⁻⁵	7.13 10 ⁴	$5.57 \ 10^5$			
Gmres 10 ⁻³	5.95 10 ³	4.78 10 ⁴	4.18 10 ⁵		
Gmres 10 ⁻⁵	5.22 10 ⁴	4.23 10 ⁵			
16 processors					
PASTIX	6.10 10 ²	5.65 10 ³	$6.17 \ 10^4$		
Gauss-Seidel 10 ⁻³	$1.63 \ 10^4$	$1.55 \ 10^5$	1.32 10 ⁶		
Gauss-Seidel 10 ⁻⁵	2.46 10 ⁴	2.12 10 ⁵	1.53 10 ⁷		
Gmres 10 ⁻³	2.07 10 ³	1.82 10 ⁴	1.32 10 ⁵		
Gmres 10 ⁻⁵	$1.80 \ 10^4$	$1.65 \ 10^5$	1.84 10 ⁶		
32 processors					
PASTIX	6.30 10 ²	5.71 10 ³	6.31 10 ⁴		
Gauss-Seidel 10 ⁻³	8.15 10 ³	9.14 10 ⁴	1.46 10 ⁵		
Gauss-Seidel 10 ⁻⁵	1.23 10 ⁴	1.26 10 ⁵	9.74 10 ⁵		
Gmres 10 ⁻³	1.04 10 ³	1.07 10 ⁴	7.76 10 ⁴		
Gmres 10 ⁻⁵	8.83 10 ³	9.67 10 ⁴	$1.12 \ 10^5$		

Introduction	Mathematical models	Numerical strategy	Parallel computing	Conclusion
00	0000	000000000	000	
Headlines				

2 Mathematical models

O Numerical strategy

Parallel computing

Introduction	Mathematical models	Numerical strategy	Parallel computing	Conclusion
00	0000	000000000	000	•
Conclusion				

Done

'hyper consistent' numerical schemes (relaxation scheme) second order extension low Mach preconditioning implicit formulation parallel computing : Pastix

In progress

3D comparison with experiments