Nonconservative Discontinuous Galerkin Discretization and Application to the Navier-Stokes-Korteweg System

Dennis Diehl

Mathematisches Institut Albert-Ludwigs-Universität Freiburg

2nd Workshop: "Micro-Macro Modelling and Simulation of Liquid-Vapour Flows", Bordeuax, 2007

Outline

- The isothermal Navier-Stokes-Korteweg System as a model for a compressible flow with phase transition
- The Local Discontinuous Galerkin Method, a general Framework
 - First order conservative systems
 - Higher order derivatives
 - Nonconservative terms
- Well-balanced higher order DG-discretization of the Navier-Stokes-Korteweg system
- Identification of physical parameters and validation of the model

Isothermal Navier-Stokes-Korteweg Model

$$\rho_t + \nabla \cdot (\rho \mathbf{u}) = 0$$

$$(\rho \mathbf{u})_t + \nabla \cdot (\rho \mathbf{u} \mathbf{u}^T) + \nabla p(\rho) = \nabla \cdot \tau + \nabla \cdot \mathbf{K}$$

$$\begin{aligned} & \text{in } \Omega \times (0,T), \quad \varepsilon, \lambda > 0 \\ \tau &= \varepsilon \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T \right) - \frac{2}{3} \varepsilon (\nabla \cdot \mathbf{u}) \mathbf{I} \\ \mathbf{K} &= \lambda \left[\left(\rho \Delta \rho + \frac{1}{2} |\nabla \rho|^2 \right) \mathbf{I} - \nabla \rho \nabla \rho^T \right] \end{aligned}$$

Initial data: $\rho(\cdot, 0) = \rho_0$, $\mathbf{u}(\cdot, 0) = \mathbf{u}_0$ in Ω Bnd. cond.: $\nabla \rho \cdot \mathbf{n} = 0$, $\mathbf{u} = \mathbf{0}$ on $\partial \Omega \times (0, T)$

Isothermal Navier-Stokes-Korteweg Model

$$\rho_t + \nabla \cdot (\rho \mathbf{u}) = 0$$

$$(\rho \mathbf{u})_t + \nabla \cdot (\rho \mathbf{u} \mathbf{u}^T) + \nabla p(\rho) = \nabla \cdot \tau + \nabla \cdot \mathbf{K}$$

Van der Waals eq. of state

R, a, b > 0,

 θ_{ref} : reference temperature below the critical temperature,

$$p(\rho) = R \frac{\rho \theta_{ref}}{b - \rho} - a \rho^2.$$

Isothermal Navier-Stokes-Korteweg Model

$$\rho_t + \nabla \cdot (\rho \mathbf{u}) = 0$$

$$(\rho \mathbf{u})_t + \nabla \cdot (\rho \mathbf{u} \mathbf{u}^T) + \nabla p(\rho) = \nabla \cdot \tau + \nabla \cdot \mathbf{K}$$

Equivalent nonconservative form:

$$\rho_t + \nabla \cdot (\rho \mathbf{u}) = 0$$
$$(\rho \mathbf{u})_t + \nabla \cdot (\rho \mathbf{u} \mathbf{u}^T) + \rho \nabla \kappa (\rho, \Delta \rho) = \nabla \cdot \tau$$

$$\kappa = \mu(\rho) - \lambda \Delta \rho, \quad \mu(\rho) = \int_{0}^{\rho} \frac{p'(s)}{s} ds$$

First order conservative systems (Cockburn, Shu)

$$\mathbf{u}_t + \mathcal{L}[\mathbf{u}] = \mathbf{0} \text{ in } \Omega \subset \mathbb{R}^n, \ t \in (0, \infty),$$
$$\mathcal{L}[\mathbf{u}](x) = \sum_{i=1}^n \frac{\partial}{\partial x_i} \mathbf{f}_i(\mathbf{u}(\mathbf{x})),$$

with initial condition and suitable boundary conditions, $\mathbf{u}(\mathbf{x},t) \in \mathbb{R}^d$.

Discretization

Space:
$$\mathbf{u}_h(\cdot, t) \in V_h^d = \left\{ \varphi : \Omega \to \mathbb{R} \mid \varphi|_{\Delta_j} \in \mathbb{P}_k, \ \Delta_j \in \mathcal{T}_h \right\}^d$$
,
 \mathcal{T}_h mesh, partition of Ω .

Time: explicit / implicit Runge-Kutta methods.

Nonconservative products (Dal Maso, LeFloch, Murat) Definition of the expression $\sum_{i=1}^{n} f_i(u) \cdot \frac{\partial}{\partial x_i} v$ as a measure μ for discontinuous functions $u, v \in V_h^d$.

$$\mu(\Omega) = \int_{\Omega} d \left[\sum_{i=1}^{n} f_{i}(u) \cdot \frac{\partial}{\partial x_{i}} v \right]_{\phi}(x)$$

$$= \sum_{j} \int_{\Delta_{j}} \sum_{i=1}^{n} f_{i}(u(x)) \cdot \frac{\partial}{\partial x_{i}} v(x) dx$$

$$+ \sum_{j} \int_{\partial \Delta_{j} \setminus \partial \Omega} \left\{ \sum_{i=1}^{n} n_{i} f_{i}(u) \right\} \cdot [v] d\sigma(x).$$

 $\{\cdot\}$ average in some sense, $[v] = (v^+ - v^-)$ jump.

First order conservative systems (Cockburn, Shu)

$$\mathbf{u}_t + \mathcal{L}[\mathbf{u}] = \mathbf{0} \text{ in } \Omega \subset \mathbb{R}^n, \ t \in (0, \infty),$$
$$\mathcal{L}[\mathbf{u}](x) = \sum_{i=1}^n \frac{\partial}{\partial x_i} \mathbf{f}_i(\mathbf{u}(\mathbf{x})),$$

Idea: For $\mathbf{u}_h \in V_h^d$ construct a *discrete differential* operator $\mathcal{L}_h : V_h^d \to V_h^d$ by $(L^2$ -)projecting $\mathcal{L}[u]$ to V_h^d in some sense. For smooth functions \mathbf{u}, φ we have by partial integration

$$\begin{aligned} (\mathcal{L}[\mathbf{u}],\varphi)_{\Omega} &= \int\limits_{\partial\Omega} \sum_{i=1}^n n_i \mathbf{f}_i(\mathbf{u}(\mathbf{x})) \cdot \varphi(\mathbf{x}) \ d\sigma(\mathbf{x}) \\ &- \int\limits_{\Omega} \sum_{i=1}^n \mathbf{f}_i(\mathbf{u}(\mathbf{x})) \cdot \frac{\partial}{\partial x_i} \varphi(\mathbf{x}) \ d\mathbf{x}, \end{aligned}$$

First order conservative systems (Cockburn, Shu)

$$\mathbf{u}_t + \mathcal{L}[\mathbf{u}] = \mathbf{0} \text{ in } \Omega \subset \mathbb{R}^n, \ t \in (0, \infty),$$
$$\mathcal{L}[\mathbf{u}](x) = \sum_{i=1}^n \frac{\partial}{\partial x_i} \mathbf{f}_i(\mathbf{u}(\mathbf{x})),$$

For $\mathbf{u}_h \in V_h^d$ define $\mathcal{L}_h : V_h^d \to V_h^d$ by: $\forall \varphi \in V_h^d$

$$(\mathcal{L}_h[\mathbf{u}_h], \varphi)_{\Omega} = \int_{\partial\Omega} \sum_{i=1}^n n_i \mathbf{f}_i(\mathbf{u}_h(\mathbf{x})) \cdot \varphi(\mathbf{x}) \, d\sigma(\mathbf{x})$$

$$-\sum_{j} \int_{\Delta_{j}} \sum_{i=1}^{n} \mathbf{f}_{i}(\mathbf{u}_{h}(\mathbf{x})) \cdot \frac{\partial}{\partial x_{i}} \varphi(\mathbf{x}) \, d\mathbf{x}$$
$$-\sum_{j} \int_{\partial \Delta_{j} \setminus \partial \Omega} \mathbf{g}(\mathbf{u}_{h}|_{\Delta_{j}}, \mathbf{u}_{h}|_{\Delta_{j'}}, \mathbf{n}) \cdot [\varphi] \, d\sigma(\mathbf{x}) \quad \mathbf{Q}_{\mathbf{M}}$$

First order conservative systems (Cockburn, Shu)

$$\mathbf{u}_t + \mathcal{L}[\mathbf{u}] = \mathbf{0} \text{ in } \Omega \subset \mathbb{R}^n, \ t \in (0, \infty),$$
$$\mathcal{L}[\mathbf{u}](x) = \sum_{i=1}^n \frac{\partial}{\partial x_i} \mathbf{f}_i(\mathbf{u}(\mathbf{x})),$$

Semi-discrete formulation:

$$\left(\frac{\partial}{\partial t}\mathbf{u}_{h}(\cdot,t),\varphi\right)_{\Omega}+\left(\mathcal{L}_{h}[\mathbf{u}(\cdot,t)],\varphi\right)_{\Omega}=0\quad\forall\varphi\in V_{h}^{d},\ t\in(0,\infty).$$

Initial values have to be projected to V_h^d .

Higher order derivatives (Bassi, Rebay, C., S.)

 $\mathbf{u}_t + \mathcal{L}^m[\mathbf{u}] = \mathbf{0} \text{ in } \Omega \subset \mathbb{R}^n, \ t \in (0,\infty),$

where \mathcal{L}^m is a differential operator of order m in divergence form.

Idea: express \mathcal{L}^m as a combination of m first order (conservative) differential operators \mathcal{L}_i^1 . Treat them as in the previous section.

Higher order derivatives (Bassi, Rebay, C., S.)

 $\mathbf{u}_t + \mathcal{L}^m[\mathbf{u}] = \mathbf{0} \text{ in } \Omega \subset \mathbb{R}^n, \ t \in (0,\infty),$

where \mathcal{L}^m is a differential operator of order m in divergence form.

Example:

$$\begin{aligned} \mathcal{L}^2[u] &= -\nabla \cdot (\mu(u) \nabla u \\ \mathcal{L}^1_1[u] &= \nabla u \\ \mathcal{L}^1_2[u, \mathbf{v}] &= \nabla \cdot (\mu(u) \mathbf{v}) \\ \mathcal{L}^2[u] &= \mathcal{L}^1_2[u, \mathcal{L}^1_1[u]] \end{aligned}$$

Non-conservative systems (Hulsen) Consider the non-conservative differential operator

$$\mathcal{L}[\mathbf{u}](x) = \sum_{i=1}^{n} \mathbf{A}_{i}(\mathbf{u}(\mathbf{x})) \frac{\partial}{\partial x_{i}} \mathbf{u}(\mathbf{x})$$

Idea: Construct a discrete operator $\mathcal{L}_h : V_h^d \to V_h^d$ For smooth functions we have

$$(\mathcal{L}[\mathbf{u}],\varphi)_{\Omega} = \int_{\Omega} \sum_{i=1}^{n} \varphi(x)^{T} \mathbf{A}_{i}(\mathbf{u}(\mathbf{x})) \frac{\partial}{\partial x_{i}} \mathbf{u}(\mathbf{x}) \, d\mathbf{x}$$

Non-conservative systems (Hulsen)

Consider the non-conservative differential operator

$$\mathcal{L}[\mathbf{u}](x) = \sum_{i=1}^{n} \mathbf{A}_{i}(\mathbf{u}(\mathbf{x})) \frac{\partial}{\partial x_{i}} \mathbf{u}(\mathbf{x})$$

For $\mathbf{u}_h \in V_h^d$ define $\mathcal{L}_h[\mathbf{u}_h] \in V_h^d$ such that for all $\varphi \in V_h^d$ we have

$$(\mathcal{L}_{h}[\mathbf{u}_{h}], \varphi)_{\Omega} = \sum_{j} \int_{\Delta_{j}} \sum_{i=1}^{n} \varphi(x)^{T} \mathbf{A}_{i}(\mathbf{u}_{h}(\mathbf{x})) \frac{\partial}{\partial x_{i}} \mathbf{u}_{h}(\mathbf{x}) d\mathbf{x}$$

$$+ \sum_{j} \int_{\partial \Delta_{j} \setminus \partial \Omega} \left\{ \sum_{i=1}^{n} n_{i} \varphi^{T} \mathbf{A}_{i}(\mathbf{u}_{h}) \right\} [\mathbf{u}_{h}] d\sigma$$

1d NSK system (non-conservative form)

$$\rho_t + (\rho u)_x = 0,$$

$$(\rho u)_t + (\rho u^2)_x + \rho \kappa_x = \varepsilon u_{xx},$$

$$\kappa = \mu(\rho) - \lambda \rho_{xx}.$$

1st step

$$\begin{pmatrix} \rho_x \\ u_x \end{pmatrix} = \mathcal{L}_1^1[\rho, \rho u],$$

$$\mathbf{f}(\rho, \rho u) = \begin{pmatrix} \rho \\ \frac{\rho u}{\rho} \end{pmatrix} \quad \mathbf{g}(\rho^-, \rho u^-, \rho^+, \rho u^+, n) = n \begin{pmatrix} \{\rho\} \\ \left\{\frac{\rho u}{\rho}\right\} \end{pmatrix}$$

$$\{\varphi\} = \frac{1}{2}(\rho^+ + \rho^-), \quad [\varphi] = (\varphi^+ - \varphi^-)$$

1d NSK system (non-conservative form)

$$\rho_t + (\rho u)_x = 0,$$

$$(\rho u)_t + (\rho u^2)_x + \rho \kappa_x = \varepsilon u_{xx},$$

$$\kappa = \mu(\rho) - \lambda \rho_{xx}.$$

2nd step

$$\kappa = \mathcal{L}_2^1[
ho,
ho_x] = \mu(
ho) - (\lambda
ho_x)_x$$

- treatment of $(\lambda \rho_x)_x$ as in step 1
- treatment of $\mu(\rho)$ as a source term

1d NSK system (non-conservative form)

$$\rho_t + (\rho u)_x = 0,$$

$$(\rho u)_t + (\rho u^2)_x + \rho \kappa_x = \varepsilon u_{xx},$$

$$\kappa = \mu(\rho) - \lambda \rho_{xx}.$$

3rd step

$$\mathcal{L}_{3}^{1}[\rho,\rho u, u_{x},\kappa] = \begin{pmatrix} \rho u \\ \rho u^{2} - \varepsilon u_{x} \end{pmatrix}_{x} + \begin{pmatrix} 0 \\ \rho \kappa_{x} \end{pmatrix}$$
$$\mathbf{g}(\rho^{\pm},\rho u^{\pm}, u_{x}^{\pm},\kappa^{\pm},n) = \begin{pmatrix} \{\rho u\}n - \alpha[\kappa] \\ \{\rho u^{2} - \varepsilon u_{x}\}n - \alpha[\rho u] + \{\rho\}[\kappa]n \end{pmatrix}$$

 α []: *numerical viscosity* similar to Lax-Friedrichs flux.

- The higher order schemes are well balanced
- Total physical energy decreases monotonically with time for smooth solutions of NSK. Numerical experiments indicate that the discrete total energy decreases (mostly) monotonically
- Test case traveling wave solution in 1d, 2d, 3d, test case static bubble 2d, 3d, triangular / tetrahedral mesh:

k-th order scheme => k-th order convergence k=1,2,3,4,5

• Higher order schemes are more efficient schemes

Numerical Experiment: Bubble Ensemble

- fourth order Discontinuous Galerkin scheme
- second order implicit Runge-Kutta method
- adaptive refined nonconform triangular mesh
- parallel (MPI), 16 Processors
- load-balanced (ParMETIS)

movie: Bubble Ensemble.avi

Physical Parameters

Temperature Range

Left figure: $\theta_{ref} = 0.85 \cdot \theta_{crit}$, right figure: $\theta_{ref} = 0.95 \cdot \theta_{crit}$. Elliptic region must not be too large, i.e., $\theta_{ref} > 0.7 \cdot \theta_{crit}$. Water for example $\theta_{ref} > 180$ degree Celsius.

Physical Parameters

Viscosity

The viscosity parameter ε is fixed to some constant between the viscosity in the liquid and the vapour phase.

Capillarity

The capillarity parameter λ is related (at least at static equilibrium) to surface tension (Kraus, Dreyer) by the formula

$$\sigma(\theta_{ref}) = c_0(\theta_{ref})\sqrt{\lambda}.$$

- interface width also proportional to $\sqrt{\lambda}$
- correct surface tension implies interface width $\approx 1 nm$
- maximal diameter of computational domain $pprox 1 \mu m$

Numerical Experiment: Oscillating Bubble

movie: Oscillating Bubble.avi

- Almost no compression in the vapour phase
- All mass is transferred over the interface
- No free parameter in the model to control this behaviour

Summary

Numerics:

- Efficient Discontinuous Galerkin Schemes in 1d/2d/3d (adaptive, parallel, load-balanced)
- Higher order time integration by means of implicit, explicit, semi-implicit Runge-Kutta methods

Model:

- Applicable only in the *high* temperature regime $(> 0.7 \cdot \theta_{crit})$
- Applicable only to very small domains (micro meter regime)
- No control on the mass transfer over the interface

