Comparison of several numerical methods for the computation of a liquid-bubble interaction

P. Helluy ^a, S. Müller ^b

^a ULP/IRMA Strasbourg, ^b RWTH Aachen

January 11, 2007

Bubble collapse

 $R_{bubble} = 1 \text{ mm}$ $d_{wall} = 1.5 \text{ mm}$

$$p_{Water} = 5 \times 10^7 \text{ Pa}$$

 $p_{Bubble} = 2118 \text{ Pa}$
(1)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A simple isothermal two-fluid model

Front capturing model "Linear" pressure law Isobaric pressure law Notes on conservative schemes Non-conservative scheme Isobaric scheme Numerical illustrations

A simple two-energy model

Conservation laws Linear pressure laws Isobaric pressure law Non-conservative scheme Isobaric scheme Precision issue

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2D Numerical applications Bubble collapse Wave breaking

Conclusion

A simple isothermal two-fluid model

We first study a simple barotrope isothermal two-fluid model, which is not realistic, but simpler than a model with energy.

(ロ)、(型)、(E)、(E)、 E) の(の)

Front capturing model

- We are interested in the flow of a compressible medium made of two fluids: a gas (1)="Air"=(A) and a liquid (2)="Water"=(W).
- The fluids are located thanks to the gas fraction φ(x, t), depending on the space variable x and the time variable t.
- The fraction $\varphi = 0$ in the fluid (2) and $\varphi = 1$ in the fluid (1).

The isothermal model reads, in 1D

$$\rho_t + (\rho u)_x = 0,$$

$$(\rho u)_t + (\rho u^2 + p)_x = 0,$$

$$(\rho \varphi)_t + (\rho \varphi u)_x = 0,$$

$$p = p(\rho, \varphi),$$

(2)

with the density ρ , the velocity u and the pressure p. The last conservation law is equivalent to

$$\varphi_t + u\varphi_x = 0 \tag{3}$$

because φ jumps only in contacts.

"Linear" pressure law

A possible pressure law is

$$p = p_0 + c^2 (\rho - (\varphi \rho_A + (1 - \varphi) \rho_W)).$$
(4)

where p_0 is a reference pressure, *c* the sound speed (the same for the two fluids) and ρ_A and ρ_W reference densities for the Air and the Water respectively.

$$\varphi = 0 \Rightarrow p = p_2 = p_0 + c^2 (\rho - \rho_W),$$

$$\varphi = 1 \Rightarrow p = p_1 = p_0 + c^2 (\rho - \rho_A).$$
(5)

- If $\varphi \in \{0,1\}$ at the initial time, it remains true later.
- ► Thus the pressure law can be modified in the mixture zone 0 < φ < 1 without modifying the solution.</p>
- However a modification has a crucial importance for the numerics.
- The isobaric modification plays a particular role: it permits to build conservative schemes that preserve constant velocity-pressure states.

Isobaric pressure law

We define the volume fraction α and the partial densities ρ_i by

$$\rho = \alpha \rho_1 + (1 - \alpha) \rho_2. \tag{6}$$

The fraction is now the mass fraction is

$$\varphi = \frac{\alpha \rho_1}{\rho}.\tag{7}$$

The pressure law of each pure fluid (i) is noted p_i . We then eliminate the volume fraction by setting

$$p = p_1(\rho_1) = p_2(\rho_2),$$

or $p = p_1(\frac{\rho\varphi}{\alpha}) = p_2\left(\frac{\rho(1-\varphi)}{1-\alpha}\right).$ (8)

The isobaric pressure is

$$p = p_1 = p_2 = \alpha p_1 + (1 - \alpha) p_2.$$
(9)

We have here

$$p_{1}(\rho_{1}) = p_{0} + c^{2}(\rho_{1} - \rho_{A}),$$

$$p_{2}(\rho_{2}) = p_{0} + c^{2}(\rho_{2} - \rho_{W}),$$

$$p(\rho) = \alpha p_{1}(\frac{\varphi\rho}{\alpha}) + (1 - \alpha)p_{2}(\frac{(1 - \varphi)\rho}{1 - \alpha}),$$
(10)
with α such that $p_{1}(\frac{\varphi\rho}{\alpha}) = p_{2}(\frac{(1 - \varphi)\rho}{1 - \alpha}).$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

If ρ is fixed, $\alpha = \alpha(\varphi)$. We define

$$\theta = \frac{\rho_W - \rho_A}{\rho} > 0 \tag{11}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

and we find

$$\alpha(\varphi) = \frac{\theta - 1 + \sqrt{(\theta - 1)^2 + 4\theta\varphi}}{2\theta}.$$
 (12)

We can check that

$$0 \leq \alpha(\varphi) \leq 1 \text{ if } 0 \leq \varphi \leq 1,$$

$$\alpha(1) = 1,$$

$$\alpha(0) = \begin{cases} 0 & \text{if } \theta < 1, \\ \frac{\theta - 1}{\theta} & \text{if } \theta \geq 1. \end{cases}$$
(13)

Thus, when the gas mass fraction is $\varphi = 0$, we have

$$p = \alpha(0)p_1(0) + (1 - \alpha(0))p_2(\rho/(1 - \alpha(0)))$$
(14)

- If ρ > ρ_W − ρ_A (equivalent to θ < 1), the linear and isobaric models are equivalents.</p>
- In strong rarefaction waves, the pressure law of the liquid is modified: the gas is present, with no mass !
- Very rough model for cavitation.
- It is possible to have different sound speeds in the pure fluids.

Notes on conservative schemes

- Any standard conservative scheme is inaccurate with the linear pressure law ¹.
- lt does not preserve constant (u, p) states ².
- When it does not crash, the scheme does converge ! but the precision is very bad on standard meshes ³.

¹S. Karni. Multicomponent flow calculations by a consistent primitive algorithm. Journal of Computational Physics, 112(1):31-43, 1994.

 $^{^{2}}$ R. Abgrall. Generalisation of the Roe scheme for the computation of mixture of perfect gases. Recherche Aérospatiale, 6:31-43, 1988.

³Thierry Gallouët, Jean-Marc Hérard, and Nicolas Seguin. A hybrid scheme to compute contact discontinuities in one-dimensional Euler systems. M2AN. Mathematical Modelling and Numerical Analysis, 36(6):1133-1159 (2003), 2002. - ロ ト - 4 回 ト - 4 □ - 4

Non-conservative scheme

- For the linear pressure law, we need a non-conservative approach.
- The conserved variables are w = (ρ, ρu) and the non-conservative variable is φ that satisfies

$$\varphi_t + u\varphi_x = 0. \tag{15}$$

The conservative flux is

$$f(w,\varphi) = (\rho u, \rho u^2 + p).$$
(16)

A non-conservative version of the Rusanov scheme is

$$\frac{w_{i}^{n+1} - w_{i}^{n}}{\Delta t} + \frac{f_{i+1/2}^{n} - f_{i-1/2}^{n}}{\Delta x} = 0,$$

$$f_{i+1/2}^{n} = \frac{f_{i}^{n} + f_{i+1}^{n}}{2} - \frac{s_{i+1/2}^{n}}{2} (w_{i+1}^{n} - w_{i}^{n}),$$

$$s_{i+1/2}: \text{ maximal wave speed at } i + 1/2,$$

$$\frac{\varphi_{i}^{n+1} - \varphi_{i}^{n}}{\Delta t} + \frac{g_{i+1/2,-}^{n} - g_{i-1/2,+}^{n}}{\Delta x} = 0,$$

$$g_{i+1/2,-}^{n} = \frac{u_{i}^{n}}{2} (\varphi_{i+1}^{n} - \varphi_{i}^{n}) - \frac{s_{i+1/2}^{n}}{2} (\varphi_{i+1}^{n} - \varphi_{i}^{n}),$$

$$g_{i-1/2,+}^{n} = \frac{u_{i}^{n}}{2} (\varphi_{i-1}^{n} - \varphi_{i}^{n}) - \frac{s_{i-1/2}^{n}}{2} (\varphi_{i}^{n} - \varphi_{i-1}^{n}).$$
(17)

Adapted from 4 and 5 .

⁴R. Saurel and R. Abgrall. A simple method for compressible multifluid flows. *SIAM Journal on Scientific Computing*, 21(3):1115–1145, 1999.

⁵F. Golay and P. Helluy. Numerical schemes for low mach wave breaking. Submitted, 2007.

- This scheme preserves constant (u, p) states and is much more accurate that a standard conservative scheme.
- A Godunov version, which is more precise, can also be written.
- Extension to second order is possible with a standard MUSCL method: the reconstructed variables may be (ρ, u, p) (in order to preserve constant (u, p) states).
- Because the last equation is non-conservative, an additional source term is needed in the second order numerical scheme.

Isobaric scheme

- A conservative approach can be employed with the isobaric pressure law (see ⁶, ⁷).
- The conserved variables are here w = (ρ, ρu, ρφ) and the flux is f(w) = (ρu, ρu² + p, ρφu).
- We can use the numerical flux of Rusanov for instance

$$f_{i+1/2}^{n} = \frac{f_{i}^{n} + f_{i+1}^{n}}{2} - \frac{s_{i+1/2}^{n}}{2} (w_{i+1}^{n} - w_{i}^{n})$$
(18)

⁶Grégoire Allaire, Sébastien Clerc, and Samuel Kokh. A five-equation model for the simulation of interfaces between compressible fluids. *Journal of Computational Physics*, 181(2):577–616, 2002.

- ▶ The scheme preserves constant (*u*, *p*) states.
- ► The second order MUSCL extension is immediate.
- The Godunov scheme is not employed (because the exact Riemann solver is too much complicated).
- But relaxation schemes based on exact Riemann solvers give more accurate results.

The main concern is that, in some regimes, the original pressure laws are modified.

Numerical illustrations

Riemann problem with

$$\varphi_L = 0 \quad p_L = 500 \times 10^5 \text{ Pa} \quad u_L = 0$$

 $\varphi_R = 1 \quad p_R = 2118 \text{ Pa} \quad u_R = 0$
(19)

500 cells, $x \in [-2, 2]$, t = 0.001 s.

$$p_0 = 10^5 \text{ Pa}$$

 $\rho_A = 1 \text{ kg.m}^{-3}$
 $\rho_W = 1000 \text{ kg.m}^{-3}$
 $c = 1000 \text{ m.s}^{-1}$
(20)

Comparison between: Rusanov with Linear or Isobaric EOS and Godunov (relaxation) with Isobaric EOS.

Density

◆□> ◆□> ◆三> ◆三> ● ○ ○ ○

Velocity

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 圖 のQ

Pressure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Strong rarefaction

Riemann problem with

$$\varphi_L = 0 \quad p_L = 10^5 \text{ Pa} \quad u_L = -10 \text{ m/s}$$

 $\varphi_R = 0 \quad p_R = 10^5 \text{ Pa} \quad u_R = 10 \text{ m/s}$
(21)

500 cells, $x \in [-2, 2]$, t = 0.001 s.

$$p_0 = 10^5 \text{ Pa}$$

 $\rho_A = 1 \text{ kg.m}^{-3}$
 $\rho_W = 1000 \text{ kg.m}^{-3}$
 $c = 1000 \text{ m.s}^{-1}$
(22)

Comparison between: Exact Riemann solver with Linear pressure law and "Godunov" (relaxation) with Isobaric EOS.

Density

・ロト ・西ト ・ヨト ・ヨー うらぐ

A simple two-energy model

We try now to extend the previous remarks to a two-fluid model with an energy conservation law.

Conservation laws

The energy model reads

$$\rho_{t} + (\rho u)_{x} = 0,$$

$$(\rho u)_{t} + (\rho u^{2} + p)_{x} = 0,$$

$$(\rho E)_{t} + ((\rho E + p)u)_{x} = 0,$$

$$(\rho \varphi)_{t} + (\rho \varphi u)_{x} = 0,$$

$$p = p(\rho, \rho \varepsilon, \varphi),$$

$$E = \varepsilon + \frac{1}{2}u^{2}.$$
(23)

Linear pressure law

The pressure law may be

$$\boldsymbol{\rho} = (\gamma(\varphi) - 1)\rho\varepsilon - \gamma(\varphi)\pi(\varphi), \tag{24}$$

with

$$\frac{1}{\gamma(\varphi)-1} = \varphi \frac{1}{\gamma_{A}-1} + (1-\varphi) \frac{1}{\gamma_{W}-1},$$

$$\frac{\gamma(\varphi)\pi(\varphi)}{\gamma(\varphi)-1} = \varphi \frac{\gamma_{A}\pi_{A}}{\gamma_{A}-1} + (1-\varphi) \frac{\gamma_{W}\pi_{W}}{\gamma_{W}-1}.$$
 (25)

See 8 and 9 .

⁸R. Saurel and R. Abgrall. A simple method for compressible multifluid flows. *SIAM Journal on Scientific Computing*, 21(3):1115–1145, 1999.

⁹F. Golay and P. Helluy. Numerical schemes for low mach wave breaking. Submitted, 2007.

General pressure law

We also have to define the energy fraction ζ and the partial specific energies ε_i by

$$\rho \varepsilon = \alpha \rho_1 \varepsilon_1 + (1 - \alpha) \rho_2 \varepsilon_2,$$

$$\zeta = \frac{\alpha \rho_1 \varepsilon_1}{\rho \varepsilon}.$$
(26)

The pressure laws of each fluid is noted p_i . We then eliminate the volume fraction by setting

$$p_{1}(\rho_{1},\rho_{1}\varepsilon_{1}) = p_{2}(\rho_{2},\rho_{2}\varepsilon_{2}),$$

or $p_{1}\left(\frac{\rho\varphi}{\alpha},\frac{\zeta\rho\varepsilon}{\alpha}\right) = p_{2}\left(\frac{\rho(1-\varphi)}{1-\alpha},\frac{(1-\zeta)\rho\varepsilon}{1-\alpha}\right).$ (27)

In this case, the evolution of the energy fraction $\boldsymbol{\zeta}$ has to be provided

Koren¹⁰ suggested to add the following equation to (23)

$$E_{i} = \varepsilon_{i} + \frac{1}{2}u^{2},$$

$$(\alpha\rho_{1}E_{1})_{t} + (\alpha\rho_{1}E_{1}u)_{x} + \alpha\rho u_{x} + \varphi u\rho_{x} = 0.$$
(28)

- This non-conservative equation gives the missing evolution of ζ.
- It is obtained from mechanical arguments (the work of the interphase drag force is computed from the common acceleration of the two fluids in the mixture region).
- It could also be deduced from a 7 equations model by Chapmann-Enskog expansions (relaxation of pressures and velocities but not of temperatures).
- The whole system is hyperbolic.

 $^{^{10}}$ E. H. van Brummelen and B. Koren. Five-Equation Model for Compressible Two-Fluid Flow. Centrum voor Wiskunde en Informatica, Report MAS-E0414, 2004.

When the two fluids are stiffened gases, it is possible to make the computations more precise. We have $p_i = p_i(\rho_i \varepsilon_i)$. It gives

$$\begin{split} \delta &= \gamma_A \pi_A - \gamma_W \pi_W < 0, \\ \gamma &= \zeta \gamma_A + (1 - \zeta) \gamma_W, \\ r &= (\delta + (\gamma - 1)\rho\varepsilon)^2 - 4\delta(\gamma_A - 1)\zeta\rho\varepsilon, \\ \alpha(\zeta) &= \frac{\delta + (\gamma - 1)\rho\varepsilon - \sqrt{r}}{2\delta}, \\ \alpha(1) &= 1, \\ \alpha(0) &= \begin{cases} 0 & \text{if } (\gamma - 1)\rho\varepsilon > -\delta, \\ 1 + \frac{(\gamma - 1)\rho\varepsilon}{\delta} & \text{if } (\gamma - 1)\rho\varepsilon < -\delta. \end{cases} \end{split}$$
(29)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We find the same behavior as in the isothermal case (the gas can fill a positive volume with no energy).

Non-conservative scheme

The conserved variables are $w = (\rho, \rho u, \rho E)$ and the non-conservative variable is φ that satisfies

$$\varphi_t + u\varphi_x = 0. \tag{30}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The conservative flux is

$$f(w,\varphi) = (\rho u, \rho u^2 + p, (\rho E + p)u).$$
(31)

A non-conservative version of the Rusanov scheme is

$$\frac{w_{i}^{n+1} - w_{i}^{n}}{\Delta t} + \frac{f_{i+1/2}^{n} - f_{i-1/2}^{n}}{\Delta x} = 0,$$

$$f_{i+1/2}^{n} = \frac{f_{i}^{n} + f_{i+1}^{n}}{2} - \frac{s_{i+1/2}^{n}}{2} (w_{i+1}^{n} - w_{i}^{n})$$

$$s : \text{ maximal wave speed at } i + 1/2$$

$$\frac{\varphi_{i}^{n+1} - \varphi_{i}^{n}}{\Delta t} + \frac{g_{i+1/2,-}^{n} - g_{i-1/2,+}^{n}}{\Delta x} = 0,$$

$$g_{i+1/2,-}^{n} = \frac{u_{i}^{n}}{2} (\varphi_{i+1}^{n} - \varphi_{i}^{n}) - \frac{s_{i+1/2}^{n}}{2} (\varphi_{i+1}^{n} - \varphi_{i}^{n}),$$

$$g_{i-1/2,+}^{n} = \frac{u_{i}^{n}}{2} (\varphi_{i-1}^{n} - \varphi_{i}^{n}) - \frac{s_{i-1/2}^{n}}{2} (\varphi_{i}^{n} - \varphi_{i-1}^{n}).$$
(32)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Isobaric scheme

We can also adapt the Rusanov scheme to the isobaric model. Setting

$$w = (\rho, \rho u, \rho E, \rho \varphi, \alpha \rho_1 E_1)$$

$$f(w) = (\rho u, \rho u^2 + p, (\rho E + p)u, \rho \varphi u, \alpha \rho_1 E_1 u)$$
(33)

$$B(w)w_x = (0, 0, 0, 0, \alpha p u_x + \varphi u p_x)$$

The system is written

$$w_t + f(w)_x + B(w)w_x = 0$$
 (34)

(ロ)、(型)、(E)、(E)、 E) の(の)

We write

$$\frac{w_i^{n+1} - w_i^n}{\Delta t} + \frac{f_{i+1/2}^n - f_{i-1/2}^n}{\Delta x} + \frac{g_{i+1/2,-}^n - g_{i-1/2,+}^n}{\Delta x} = 0,$$

$$f_{i+1/2}^n = \frac{f_i^n + f_{i+1}^n}{2} - \frac{s_{i+1/2}^n}{2} (w_{i+1}^n - w_i^n)$$

s: maximal wave speed at $i + 1/2$ (35)

$$g_{i+1/2,-}^{n} = \frac{1}{2} \left(0, 0, 0, 0, \alpha_{i}^{n} p_{i}^{n} (u_{i+1}^{n} - u_{i}^{n}), \varphi_{i}^{n} u_{i}^{n} (p_{i+1}^{n} - p_{i}^{n}) \right),$$

$$g_{i-1/2,+}^{n} = \frac{1}{2} \left(0, 0, 0, 0, \alpha_{i}^{n} p_{i}^{n} (u_{i-1}^{n} - u_{i}^{n}), \varphi_{i}^{n} u_{i}^{n} (p_{i-1}^{n} - p_{i}^{n}) \right).$$

Precision issue

Riemann problem with

$$\begin{aligned} \varphi_L &= 0 \quad p_L = 500 \times 10^5 \text{ Pa} \quad u_L = 0 \quad \rho_L = 1000 \text{ kg/m}^3 \\ \varphi_R &= 1 \quad p_R = 2118 \text{ Pa} \quad u_R = 0 \quad \rho_R = 0.026077 \text{ kg/m}^3 \end{aligned}$$
 (36)

500 cells (or 5000 cells), $x \in [-2, 2]$, t = 0.001 s.

$$\pi_{A} = 0$$

$$\gamma_{A} = 1.4$$

$$\gamma_{W} = 7.15$$

$$\pi_{W} = 3 \times 10^{8} \text{ Pa}$$
(37)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Comparison between: Rusanov with Isobaric EOS and Godunov with Linear EOS.

Density

Velocity

- < ロト < 課 ト < 注 ト < 注 ト 三 三 つへ(

2D Numerical applications

<ロ> <@> < E> < E> E のQの

Bubble collapse

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Linear isothermal pressure law

Pressure

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Isobaric isothermal pressure law

Pressure

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Wave breaking

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Conclusion

- It is possible to use a conservative approach in two-fluid flows;
- It seems to imply a modification of the pressure law in strong rarefaction waves;
- The precision of the isobaric two-energy model has still to be improved (second order + relaxation + better Riemann solver);
- Multiscale grid adaptation;
- There are still open questions in the modeling: reality of negative pressures? neglecting or not the mass transfer? if not, is it instantaneous? etc.

Grégoire Allaire, Sébastien Clerc, and Samuel Kokh. A five-equation model for the simulation of interfaces between compressible fluids.

Journal of Computational Physics, 181(2):577–616, 2002.

Thierry Gallouët, Jean-Marc Hérard, and Nicolas Seguin. A hybrid scheme to compute contact discontinuities in one-dimensional Euler systems.

M2AN. Mathematical Modelling and Numerical Analysis, 36(6):1133–1159 (2003), 2002.

F. Golay and P. Helluy.

Numerical schemes for low mach wave breaking. Submitted, 2007.

🔋 S. Karni.

Multicomponent flow calculations by a consistent primitive algorithm.

Journal of Computational Physics, 112(1):31–43, 1994.

R. Saurel and R. Abgrall.

A simple method for compressible multifluid flows. SIAM Journal on Scientific Computing, 21(3):1115–1145, 1999.

- E. H. van Brummelen and B. Koren.
 Five-Equation Model for Compressible Two-Fluid Flow.
 Centrum voor Wiskunde en Informatica, Report MAS-E0414, 2004.
- G. Chanteperdrix, P. Villedieu, and Vila J.-P.

A compressible model for separated two-phase flows computations.

In ASME Fluids Engineering Division Summer Meeting. ASME, Montreal, Canada, July 2002.

R. Abgrall.

Generalisation of the Roe scheme for the computation of mixture of perfect gases.

Recherche Aérospatiale, 6:31–43, 1988.