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Bubble collapse

Rbubble = 1 mm
dwall = 1.5 mm

pWater = 5× 107 Pa

pBubble = 2118 Pa
(1)



A simple isothermal two-fluid model
Front capturing model
”Linear” pressure law
Isobaric pressure law
Notes on conservative schemes
Non-conservative scheme
Isobaric scheme
Numerical illustrations

A simple two-energy model
Conservation laws
Linear pressure laws
Isobaric pressure law
Non-conservative scheme
Isobaric scheme
Precision issue

2D Numerical applications
Bubble collapse
Wave breaking

Conclusion



A simple isothermal two-fluid model

We first study a simple barotrope isothermal two-fluid model,
which is not realistic, but simpler than a model with energy.



Front capturing model

I We are interested in the flow of a compressible medium made
of two fluids: a gas (1)=”Air”=(A) and a liquid
(2)=”Water”=(W).

I The fluids are located thanks to the gas fraction ϕ(x , t),
depending on the space variable x and the time variable t.

I The fraction ϕ = 0 in the fluid (2) and ϕ = 1 in the fluid (1).



The isothermal model reads, in 1D

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = 0,

(ρϕ)t + (ρϕu)x = 0,

p = p(ρ, ϕ),

(2)

with the density ρ, the velocity u and the pressure p. The last
conservation law is equivalent to

ϕt + uϕx = 0 (3)

because ϕ jumps only in contacts.



”Linear” pressure law

A possible pressure law is

p = p0 + c2(ρ− (ϕρA + (1− ϕ)ρW )). (4)

where p0 is a reference pressure, c the sound speed (the same for
the two fluids) and ρA and ρW reference densities for the Air and
the Water respectively.

ϕ = 0 ⇒ p = p2 = p0 + c2(ρ− ρW ),

ϕ = 1 ⇒ p = p1 = p0 + c2(ρ− ρA).
(5)



I If ϕ ∈ {0, 1} at the initial time, it remains true later.

I Thus the pressure law can be modified in the mixture zone
0 < ϕ < 1 without modifying the solution.

I However a modification has a crucial importance for the
numerics.

I The isobaric modification plays a particular role: it permits to
build conservative schemes that preserve constant
velocity-pressure states.



Isobaric pressure law
We define the volume fraction α and the partial densities ρi by

ρ = αρ1 + (1− α)ρ2. (6)

The fraction is now the mass fraction is

ϕ =
αρ1

ρ
. (7)

The pressure law of each pure fluid (i) is noted pi . We then
eliminate the volume fraction by setting

p = p1(ρ1) = p2(ρ2),

or p = p1(
ρϕ

α
) = p2

(
ρ(1− ϕ)

1− α

)
.

(8)

The isobaric pressure is

p = p1 = p2 = αp1 + (1− α)p2. (9)



We have here

p1(ρ1) = p0 + c2(ρ1 − ρA),

p2(ρ2) = p0 + c2(ρ2 − ρW ),

p(ρ) = αp1(
ϕρ

α
) + (1− α)p2(

(1− ϕ)ρ

1− α
),

with α such that p1(
ϕρ

α
) = p2(

(1− ϕ)ρ

1− α
).

(10)



If ρ is fixed, α = α(ϕ). We define

θ =
ρW − ρA

ρ
> 0 (11)

and we find

α(ϕ) =
θ − 1 +

√
(θ − 1)2 + 4θϕ

2θ
. (12)



We can check that

0 6 α(ϕ) 6 1 if 0 6 ϕ 6 1,

α(1) = 1,

α(0) =

{
0 if θ < 1,

θ−1
θ if θ > 1.

(13)

Thus, when the gas mass fraction is ϕ = 0, we have

p = α(0)p1(0) + (1− α(0))p2(ρ/(1− α(0)) (14)

I If ρ > ρW − ρA (equivalent to θ < 1), the linear and isobaric
models are equivalents.

I In strong rarefaction waves, the pressure law of the liquid is
modified: the gas is present, with no mass !

I Very rough model for cavitation.

I It is possible to have different sound speeds in the pure fluids.



Notes on conservative schemes

I Any standard conservative scheme is inaccurate with the
linear pressure law 1.

I It does not preserve constant (u, p) states 2.

I When it does not crash, the scheme does converge ! but the
precision is very bad on standard meshes 3.

1S. Karni. Multicomponent flow calculations by a consistent primitive
algorithm. Journal of Computational Physics, 112(1):31–43, 1994.

2R. Abgrall. Generalisation of the Roe scheme for the computation of
mixture of perfect gases. Recherche Aérospatiale, 6:31–43, 1988.

3Thierry Gallouët, Jean-Marc Hérard, and Nicolas Seguin. A hybrid scheme
to compute contact discontinuities in one-dimensional Euler systems.M2AN.
Mathematical Modelling and Numerical Analysis, 36(6):1133–1159 (2003),
2002.



Non-conservative scheme

I For the linear pressure law, we need a non-conservative
approach.

I The conserved variables are w = (ρ, ρu) and the
non-conservative variable is ϕ that satisfies

ϕt + uϕx = 0. (15)

I The conservative flux is

f (w , ϕ) = (ρu, ρu2 + p). (16)



A non-conservative version of the Rusanov scheme is

wn+1
i − wn

i

∆t
+

f n
i+1/2 − f n

i−1/2

∆x
= 0,

f n
i+1/2 =

f n
i + f n

i+1

2
−

sn
i+1/2

2
(wn

i+1 − wn
i ),

si+1/2 : maximal wave speed at i + 1/2,

ϕn+1
i − ϕn

i

∆t
+

gn
i+1/2,− − gn

i−1/2,+

∆x
= 0,

gn
i+1/2,− =

un
i

2
(ϕn

i+1 − ϕn
i )−

sn
i+1/2

2
(ϕn

i+1 − ϕn
i ),

gn
i−1/2,+ =

un
i

2
(ϕn

i−1 − ϕn
i )−

sn
i−1/2

2
(ϕn

i − ϕn
i−1).

(17)

Adapted from 4 and 5.

4R. Saurel and R. Abgrall. A simple method for compressible multifluid
flows. SIAM Journal on Scientific Computing, 21(3):1115–1145, 1999.

5F. Golay and P. Helluy. Numerical schemes for low mach wave breaking.
Submitted, 2007.



I This scheme preserves constant (u, p) states and is much
more accurate that a standard conservative scheme.

I A Godunov version, which is more precise, can also be written.

I Extension to second order is possible with a standard MUSCL
method: the reconstructed variables may be (ρ, u, p) (in order
to preserve constant (u, p) states).

I Because the last equation is non-conservative, an additional
source term is needed in the second order numerical scheme.



Isobaric scheme

I A conservative approach can be employed with the isobaric
pressure law (see 6, 7) .

I The conserved variables are here w = (ρ, ρu, ρϕ) and the flux
is f (w) = (ρu, ρu2 + p, ρϕu).

I We can use the numerical flux of Rusanov for instance

f n
i+1/2 =

f n
i + f n

i+1

2
−

sn
i+1/2

2
(wn

i+1 − wn
i ) (18)

6Grégoire Allaire, Sébastien Clerc, and Samuel Kokh. A five-equation model
for the simulation of interfaces between compressible fluids. Journal of
Computational Physics, 181(2):577–616, 2002.

7G. Chanteperdrix, P. Villedieu, and Vila J.-P. A compressible model for
separated two-phase flows computations. In ASME Fluids Engineering Division
Summer Meeting. ASME, Montreal, Canada, July 2002.



I The scheme preserves constant (u, p) states.

I The second order MUSCL extension is immediate.

I The Godunov scheme is not employed (because the exact
Riemann solver is too much complicated).

I But relaxation schemes based on exact Riemann solvers give
more accurate results.

I The main concern is that, in some regimes, the original
pressure laws are modified.



Numerical illustrations

Riemann problem with

ϕL = 0 pL = 500× 105 Pa uL = 0

ϕR = 1 pR = 2118 Pa uR = 0
(19)

500 cells, x ∈ [−2, 2], t = 0.001 s.

p0 = 105 Pa

ρA = 1 kg.m−3

ρW = 1000 kg.m−3

c = 1000 m.s−1

(20)

Comparison between: Rusanov with Linear or Isobaric EOS and
Godunov (relaxation) with Isobaric EOS.



Density



Velocity



Pressure



Strong rarefaction

Riemann problem with

ϕL = 0 pL = 105 Pa uL = −10 m/s

ϕR = 0 pR = 105 Pa uR = 10 m/s
(21)

500 cells, x ∈ [−2, 2], t = 0.001 s.

p0 = 105 Pa

ρA = 1 kg.m−3

ρW = 1000 kg.m−3

c = 1000 m.s−1

(22)

Comparison between: Exact Riemann solver with Linear pressure
law and ”Godunov” (relaxation) with Isobaric EOS.



Density



A simple two-energy model

We try now to extend the previous remarks to a two-fluid model
with an energy conservation law.



Conservation laws

The energy model reads

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = 0,

(ρE )t + ((ρE + p)u)x = 0,

(ρϕ)t + (ρϕu)x = 0,

p = p(ρ, ρε, ϕ),

E = ε +
1

2
u2.

(23)



Linear pressure law

The pressure law may be

p = (γ(ϕ)− 1)ρε− γ(ϕ)π(ϕ), (24)

with
1

γ(ϕ)− 1
= ϕ

1

γA − 1
+ (1− ϕ)

1

γW − 1
,

γ(ϕ)π(ϕ)

γ(ϕ)− 1
= ϕ

γAπA

γA − 1
+ (1− ϕ)

γW πW

γW − 1
.

(25)

See 8 and 9.

8R. Saurel and R. Abgrall. A simple method for compressible multifluid
flows. SIAM Journal on Scientific Computing, 21(3):1115–1145, 1999.

9F. Golay and P. Helluy. Numerical schemes for low mach wave breaking.
Submitted, 2007.



General pressure law

We also have to define the energy fraction ζ and the partial
specific energies εi by

ρε = αρ1ε1 + (1− α)ρ2ε2,

ζ =
αρ1ε1

ρε
.

(26)

The pressure laws of each fluid is noted pi . We then eliminate the
volume fraction by setting

p1(ρ1, ρ1ε1) = p2(ρ2, ρ2ε2),

or p1

(
ρϕ

α
,
ζρε

α

)
= p2

(
ρ(1− ϕ)

1− α
,
(1− ζ)ρε

1− α

)
.

(27)

In this case, the evolution of the energy fraction ζ has to be
provided



Koren10 suggested to add the following equation to (23)

Ei = εi +
1

2
u2,

(αρ1E1)t + (αρ1E1u)x + αpux + ϕupx = 0.
(28)

I This non-conservative equation gives the missing evolution of
ζ.

I It is obtained from mechanical arguments (the work of the
interphase drag force is computed from the common
acceleration of the two fluids in the mixture region).

I It could also be deduced from a 7 equations model by
Chapmann-Enskog expansions (relaxation of pressures and
velocities but not of temperatures).

I The whole system is hyperbolic.

10E. H. van Brummelen and B. Koren. Five-Equation Model for
Compressible Two-Fluid Flow. Centrum voor Wiskunde en Informatica, Report
MAS-E0414, 2004.



When the two fluids are stiffened gases, it is possible to make the
computations more precise. We have pi = pi (ρiεi ). It gives

δ = γAπA − γW πW < 0,

γ = ζγA + (1− ζ)γW ,

r = (δ + (γ − 1)ρε)2 − 4δ(γA − 1)ζρε,

α(ζ) =
δ + (γ − 1)ρε−

√
r

2δ
,

α(1) = 1,

α(0) =

{
0 if (γ − 1)ρε > −δ,

1 + (γ−1)ρε
δ if (γ − 1)ρε < −δ.

(29)

We find the same behavior as in the isothermal case (the gas can
fill a positive volume with no energy).



Non-conservative scheme

The conserved variables are w = (ρ, ρu, ρE ) and the
non-conservative variable is ϕ that satisfies

ϕt + uϕx = 0. (30)

The conservative flux is

f (w , ϕ) = (ρu, ρu2 + p, (ρE + p)u). (31)



A non-conservative version of the Rusanov scheme is

wn+1
i − wn

i
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i+1/2 − f n

i−1/2

∆x
= 0,

f n
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f n
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2
−

sn
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2
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i+1 − wn
i )

s : maximal wave speed at i + 1/2
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i

2
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i )−
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2
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i ),
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un
i

2
(ϕn

i−1 − ϕn
i )−

sn
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2
(ϕn

i − ϕn
i−1).

(32)



Isobaric scheme

We can also adapt the Rusanov scheme to the isobaric model.
Setting

w = (ρ, ρu, ρE , ρϕ, αρ1E1)

f (w) = (ρu, ρu2 + p, (ρE + p)u, ρϕu, αρ1E1u)

B(w)wx = (0, 0, 0, 0, αpux + ϕupx)

(33)

The system is written

wt + f (w)x + B(w)wx = 0 (34)



We write

wn+1
i − wn

i

∆t
+

f n
i+1/2 − f n
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+
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i u
n
i (pn
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)
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0, 0, 0, 0, αn
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)
.

(35)



Precision issue

Riemann problem with

ϕL = 0 pL = 500× 105 Pa uL = 0 ρL = 1000 kg/m3

ϕR = 1 pR = 2118 Pa uR = 0 ρR = 0.026077 kg/m3
(36)

500 cells (or 5000 cells), x ∈ [−2, 2], t = 0.001 s.

πA = 0

γA = 1.4

γW = 7.15

πW = 3× 108 Pa

(37)

Comparison between: Rusanov with Isobaric EOS and Godunov
with Linear EOS.
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2D Numerical applications



Bubble collapse

Rbubble = 1 mm
dwall = 1.5 mm
t=1.9× 10−6 s
Second order MUSCL ”Godunov”, isothermal linear or isobaric
EOS



Linear isothermal pressure law

Pressure



Isobaric isothermal pressure law

Pressure



Wave breaking



Conclusion

I It is possible to use a conservative approach in two-fluid flows;

I It seems to imply a modification of the pressure law in strong
rarefaction waves;

I The precision of the isobaric two-energy model has still to be
improved (second order + relaxation + better Riemann
solver);

I Multiscale grid adaptation;

I There are still open questions in the modeling: reality of
negative pressures? neglecting or not the mass transfer? if
not, is it instantaneous? etc.
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