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Outline

(i) Two-phase model for interfaces of simple contact

(ii) Associated shock relations

(iii) Capillary effects modeling 

(iv) Heat and mass transfer modeling: Phase transition –
Evaporation fronts 

(v) Numerical method: The relaxation projection method 
for non-conservative hyperbolic systems



How to compute the pressure in 
this artificial zone ?

The EOS are discontinuous with a 
restricted domain of validity. 
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� Mixture cell

Diffuse interfaces appear as a consequence of 
numerical diffusion



Starting point: The seven equations model
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Each phase evolves in its own volume with 
its own velocity, energy and pressure.

The pressure equilibrium condition is 
replaced by a differential equation �
Hyperbolicity is preserved as well as the 
correct waves propagation

3 symmetric equations are used for phase 2.



Closure relations: Interface pressure and velocity
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Baer and Nunziato (1986)

Symmetric closure relations 

and relaxation parameters: 

Abgrall and Saurel, JCP (2003), 

Saurel et. al., JFM (2003)

µ=λ 21ZZ

Pressure relaxation coefficient

Velocity relaxation coefficient



Interface conditions in mixture cells

εαε −<< 1k

Interface conditions = equal normal velocities and pressures

‘Bubbles’ growth in the mixture cells forces the pressure equilibrium
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The same relaxation method is used to guarantee velocities equality at the 
interface. 

Central idea of Saurel and Abgrall, JCP, 1999

where µ tends to infinity



Limit model solved by such relaxation method:
A mechanical equilibrium model (out of thermal 

equilibrium)

+∞→ε=µλ 1,

Interesting in order to:

•Facilitate numerical resolution (reduce the number of equations)

•Facilitate the extension to extra physics: surface tension, phase transition

The Chapman-Enskog method is employed:

1o fff ε+=

The relaxation coefficients tend to infinity

Each flow variable evolves with small perturbations 
around the initial mechanical equilibrium state
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Consequence

The pressure relaxation term becomes a differential one:
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The reduced model (Kapila et al., Phys. Fluids, 2001)
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A mixture EOS is derived from the energy 
definition and pressure equilibrium:

Difficulty: This model is not closed in the presence of shocks: The first equation is
not conservative. 
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Rankine Hugoniot system

� Shock conditions = 7 unknowns : α1, Y1, ρ, u, P, e, σ

� 4 conservation laws :

cteY =1
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• Mixture EOS :

• One of the variable behind the shock is given (often σ or P)

( )αρ ,,ePP =

An extra relation is needed : Jump of volume fraction or any
other thermodynamic variable (or relation between them)

How to determine such kinetic relation ?



Information from the 7 equations model

Mixture of two solidspiston

Us

For each piston velocity the shock relaxation zone is computed



Flow profiles for several piston velocities
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Fully dispersed waves

Why are the waves dispersed in the mixture ?



Dispersion mechanism: consider a two-layers mixture
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A ‘circular process’ combining pressure and velocity relaxation and 
acoustic propagation results in a ‘smooth’ two-phase shock.



Dispersed shocks

• The two-phase shock is smooth

• shock = succession of mechanical equilibrium states
• We can use the 7 equations model in the limit

that is easier to integrate between pre- and post-shock states.

• In that case, the energy equations reduce to :
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It is interesting to note that the drag work is absent

while the pressure work (           ) is still present in this limit.
Pressure work is thus the dominant interaction effect.

or or



Integration of the energy equations between pre- and 

post- shock states
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The closure necessitates a link between the pressure averages   and 2p̂

The ratio          is assumed constant in the shock layer for a given shock speed: 

0
2

*
2

0
1

*
1

2

1

vv

vv

dv

dv

−
−

= necessarily valid for weak shocks.

It imply: 



The assumption can be checked with the 7 eqs. modelcst
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The energy conservation for the mixture implies

Kinetic relation: Each phase follows its own Hugoniot
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seems also valid for strong shocks

Resolution of the 7 equations model shows 

a quasi-linear dependence of the two 

specific volumes inside the shock layer.

Thus, 
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Some properties

� Symmetric and conservative formulation

� Entropy inequality is fulfilled

� Single phase limit is recovered

� Validated for weak and strong shocks against 
more than 100 experimental data

� The mixture Hugoniot curve is tangent to 
mixture isentrope



Validation

Mixture of two solidspiston

Us

For each piston velocity the shock speed is 
recorded



Experimental data (symbols) versus analytical model (lines)
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We realized recently that Trunin (2001) (VNIIEF –Sarov) proposed 

the same relation, without justification, but with validations for 

more than 230 experimental tests done in Russia!

The pressure range is 1 atm – 5 000 000 atms !



With the 5 equations model and associated shock relations, it is possible to 
solve interface problems. Example of the impact of a projectile over a copper 
tank filled with water. Numerical issues will be addressed at the end.



Shock/bubble interaction: experiments (IUSTI-left) computations (right)



Modeling capillary effects

� We are seeking for a compressible flow model with
surface tension



Modeling capillary effects

� Continuum Surface Force  CSF [Brackbillet al. , JCP, 1992]

� Allows numerical diffusion of the interfaces 

� Surface force → volume force 

� Developed in the incompressible flow context
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� With compressible fluids, the volume fraction cannotbe used for the 
curvature computation: it varies across shocks and rarefactions.

Thus, the mass fraction Y is used:

the mass fraction Y varies only across interfaces and is constant across shocks and 
rarefaction waves.
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� Fσ acts as a volume force as well as gravity→ its power must be
accounted for in the energy equation

Local curvature

Capillary
effects

Momentum and energy contributions
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Conservative formulation (Perigaud and Saurel, JCP, 2005)



Model’s features

� It is able to deal with arbitrary density ratios

�There is no interface length scale

� The same equations are solved everywhere � important for 
breakup and coalescence
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Richtmyer
Meshkov

instabilities



1.0 −= mNσ 1.50 −= mNσ 1.1460 −= mNσ

Increasing surface tension coefficient



Quantitative comparison: Falling drop

Experiments done at IUSTI- shown with grey areas

Computations shown with lines
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� Surface erosion in cavitating systems



Next extension: Phase transition at interfaces



How to account for volume fraction variations due 
to mass transfer ?

� Mass transfer involves source terms in the mass equations:

� Mass transfer also results in volume fraction variations:

( )

( ) 1122
22

1111
11

Ymudiv
t

Ymudiv
t

&&
r

&&
r

ρραρα

ρραρα

−=−=+
∂

∂

==+
∂

∂

( )
I

m
AQuKdiv

dt

d

ρ
α 1

1
1 &r ++=










ρ
ρα== 111

1
dt

d

dt

dY
Y  with &

The ‘interfacial density’ has to 
be determined. 



Closure issues

dt

ds
 and 

dt

ds 21

The phase’s entropy equations are examined. 

are determined as the solution of an algebraic system formed by:

� The energy conservation constraint

� The pressure equilibrium condition
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Heat exchanges
Chemical relaxation Entropy production due to 

mechanical relaxation during mass 

transfer� this relaxation occurs by 
the way of acoustic waves (isentropic)



Why mechanical relaxation during mass transfer is
isentropic ?

Example : Evaporation of a liquid layer in a closed vessel



Closure relations 

� Examination of the phase’s entropy equations �
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Results in:

Thus mass transfer is 
modeled as

energyfreeGibbsTshg =−=



Summary of the flow model

� Mass equations

� Volume fraction equation:
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linked to mass transfer

� Momentum and energy
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Remark: the model involves 2 temperatures and 
entropies

02 <c

Hyperbolicity is preserved in the 
spinodal zone: the connection of the 
two isentropes is modeled as a 
kinetic path

� Very different of the Van der Waals model

Mass transfer is modeled as a 
thermodynamic path:

� ill posed model

Mixture

Mixture

Critical isotherm

Critical isotherm
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Kinetic parameters ?

� The model requires heat exchange (H) and evaporation
kinetics (ν) relaxation parameters

How to chose them ?

� Evaporation front observed in expansion tubes

4 waves are present in such experiment: left expansion, 
evaporation front, contact discontinuity, right shock wave.



Relaxation of metastable states at interfaces

� The interface is assumed at thermodynamic equilibrium

BUT 

� Acoustic precusors are present and produce metastable states



 ε−<α<ε∞+

=ν
                        otherwise     0  

1             if
H,

k

At the interface when one of the 
fluids is metastable instantaneous
relaxation is assumed:

εαε −<< 1k



Shock tube with phase 
transition (relaxation) at the 
interface

Liquid at high
pressure

Vapor at low
pressure

4 waves are observed

� Relaxation terms are 
responsible for the 
appearance of an 
extra wave 
(evaporation front) 



Validations for different initial liquid temperatures 
- Caltech experiments in red: Simoes Moreira and Shepherd, 
JFM, 1999
- Computations in blue lines
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Limit model

� The limit model solved at the interface when ν and H tend to infinity
corresponds to the mixture Euler equations:  

  cu  and u ,cu eqeq +−
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Remarks
� The hyperbolic system with 5 equations connects two limit models:

- a mechanical equilibrium model responsible for acoustic propagation 
and metastable states appearance
- a thermodynamical equilibrium model used in order to match 

interface conditions
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The model involves 5 waves:

u, u+cw, u-cw

u+ceq, u-ceq that appear as a 
result of relaxation terms



A physical result is obtained: The evaporation front 
speed in metastable liquids corresponds to those of 
acoustic waves of the relaxed system

Thompson et al. JFM (1987)
Kurschat et al., JFM (1992)
Moreira & Shepherd, JFM (1999)

It is now demonstrated as an eigenvalue of the relaxed system.

The 2 wave’s speeds               , correspond exactly to the Chapman 
Jouguet kinetic relation proposed by:

  eqcu ±



Application to cavitating flows

Fuel injection through nozzles: 
Metastable states are accounted for

Hypervelocity underwater projectile

Without mass transfer     With mass transfer



Numerical approximations

� Let us turn back to the basic 5 equations model 
without mass transfer and without capillary 
effects.

� The shock relations are known as well as 
Riemann invariants � the Riemann problem 
can be solved.

� How to average a non conservative variables in 
a given cell ?
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The relaxation-projection method: Saurel et al., JCP,  2007
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A relaxation system that replaces the use of the EOS

Conservation and entropy inequality 

are preserved if: 

∑=
j

jjI pp β

∑=
j

jjI uYu

Approximate integration of this system is possible in the limit 

� Algebraic non linear system solved with the Newton method.

)( Ijj
j pp −=

∂
∂

µβ
τ
β

0=
∂

∂
τ
ρβ jj

)( jIj
jjj uuY

u
−=

∂
∂

λ
τ
ρβ

)()( jIjIIjjI
jjj uuYuppp

E
−+−−=

∂
∂

λµβ
τ
ρβ

+∞→τ

This system is derived with the Discrete Equations Method (DEM),
Abgrall and Saurel, JCP, 2003. 



Comparison with the Godunov method

� Conventional Godunov averages assume a single pressure, velocity
and temperature in the cell. In the new method, we determine the 
cell velocity and pressure are determined but several sub-cell 
temperatures remain.

� The method guarantees conservation and volume fraction positivity

� The method does not use any flux and is valid for non conservative 
equations

� In the case of the ideal gas and the stiffened gas EOS with the 
Euler equations both methods are equivalent.  Results are different 
for more complicated EOS (Mie-Gruneisen for example) 

� The new method gives a cure to anomalous computation of some 
basic problems:

- Sliding lines

- Propagation of a density discontinuity in an uniform flow with 
Mie Gruneisen EOS.

� It can be used in Lagrange or Lagrange + Projection codes.



Propagation of a density discontinuity in a uniform flow 

with the Euler equations and JWL EOS

P = PCJ = 2 10
10 Pa

u = 1000 m/s 

ρ = ρCJ = 2182 kg/m
3

P = PCJ = 2 10
10 Pa

u = 1000 m/s 

ρ = 100 kg/m3
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Shock tube problem in extreme conditions
EULER equations + JWL EOS
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αair = 1-10
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3
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3

Stiffened Gas EOS

Shock tube problem with almost pure fluids:

Liquid-Gas interface with the 5 equations model



Shock tube problem with almost pure fluids:

Liquid-Gas interface with the 5 equations model
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Perspectives

� Coupling capillary effects and phase 
transition.

� Eulerian elastic-plastic modeling in the 
context of this multiphase theory. 



Thank you for your attention
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