On a simple model of isothermal phase transition

Nicolas Seguin

Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie – Paris 6 France

Micro-Macro Modelling and Simulation of Liquid-Vapour Flows Bordeaux

On a simple model of isothermal phase transition – p.1/21

Modelling of isothermal phase transition

- Optimization of the entropy
- The Homogeneous Relaxation Model (HRM)
- The Homogeneous Equilibrium Model (HEM)
- The zero-relaxation limit

The Riemann problem for the HEM

- Multiple waves and the Liu entropy condition
- ▶ Main results : existence, uniqueness and L_{loc}^1 -continuity

Numerical tests

- Some shock tubes
- Two-dimensional cavitation
- Conclusion

Collaboration between the Laboratoire Jacques-Louis Lions

C. Chalons, F. Coquel, E. Godlewski, F. Lagoutière, P.-A. Raviart, N. Seguin

and the CEA Saclay

A. Ambroso, S. Kokh , J. Segré.

Goal: Interfacial coupling of thermohydraulic models

- Hyperbolic systems
- Theory and numerics
- Two-phase flows

See [Barberon, Helluy '04], [Helluy, Seguin '06] and [Allaire, Faccanoni, Kokh '06]. (and [Coquel, Perthame '98], [Jaouen '01], [Chanteperdrix, Villedieu, Vila '02]...)

Classical Euler equations for the mixture

$$\begin{cases} \partial_t \rho + \partial_x \rho u = 0\\ \partial_t \rho u + \partial_x (\rho u^2 + p) = 0\\ \partial_t \rho E + \partial_x ((\rho E + p)u) = 0\\ \partial_t Y + u \partial_x Y = \lambda (Y_{eq} - Y) \end{cases}$$

where Y is the vector of fractions of volume, mass and energy

Thermodynamical behaviour

- ▷ Mixture laws for thermodynamical variables (ρ , p, T, s...)
- > Thermodynamical equilibrium defined by entropy optimization w.r.t. γ :

$$Y_{eq}(\tau,\varepsilon) = \max_{Y \in [0,1]^3} s(\tau,\varepsilon,Y)$$

The **isothermal HRM** we consider here is (in Lagrangian coordinates "(t, x)")

$$\begin{cases} \partial_t \tau - \partial_x u = 0\\ \partial_t u + \partial_x \mathscr{P}_R(\tau, \alpha) = 0\\ \partial_t \alpha = \lambda(\alpha_{eq}(\tau) - \alpha) \end{cases}$$

where α is the mass fraction.

The equilibrium α_{eq} is given by the equality of chemical potentials.

The isothermal Homogeneous Equilibrium Model

The equilibrium pressure is given by

$$\mathscr{P}_{E}(\tau) = \mathscr{P}_{R}(\tau, \alpha_{eq}(\tau)), \quad \tau > 0,$$

and the **isothermal HEM** is

$$\begin{cases} \partial_t \tau - \partial_x u = 0, \\ \partial_t u + \partial_x \mathscr{P}_E(\tau) = 0 \end{cases}$$

The isothermal Homogeneous Equilibrium Model

Proposition In $\Omega_p = ((0, \tau_2^*) \cup (\tau_1^*, \infty)) \times \mathbb{R}$, the HEM is strictly hyperbolic ($\lambda_{\pm}(\mathbf{u}) = \pm \sqrt{-\mathscr{P}'_E(\tau)}$). In $\Omega_m = [\tau_2^*, \tau_1^*] \times \mathbb{R}$, the HEM is nonstrictly hyperbolic ($\lambda_-(\mathbf{u}) = \lambda_+(\mathbf{u})$ and loss of basis). The model locally becomes the system of pressureless gases.

Since **HEM is not strictly hyperbolic**, it does not enter in classical frameworks. ([Liu '87], [Chen, Liu, Levermore '94], [Hanouzet, Natalini '03], [Yong '04]...)

Study of relaxation shock profiles [Yong, Zumbrun '04]:

▷ Take two states (τ_L, u_L) and (τ_R, u_R) and a speed σ satisfying the Rankine-Hugoniot jump relations:

$$\begin{cases} -\sigma(\tau_R - \tau_L) - (u_R - u_L) = 0, \\ -\sigma(u_R - u_L) + (\mathscr{P}_E(\tau_R) - \mathscr{P}_E(\tau_L)) = 0. \end{cases}$$

- ▶ Parametrize the solutions of HRM by $\xi = \lambda(x \sigma t)$: $\tau(\xi)$, $u(\xi)$, $\alpha(\xi)$.
- Solve the system of ODE with $(\tau_L, u_L, \alpha_{eq}(\tau_L))$ for $\xi = -\infty$ and $(\tau_R, u_R, \alpha_{eq}(\tau_R))$ for $\xi = +\infty$.

Relaxation shock profiles [Kokh, Seguin '07]:

- ► **First case:** if $\alpha_{eq}(\tau_L) = \alpha_{eq}(\tau_R)$ (= 0 or 1), the relaxation term is inactive. ⇒ Use of the Lax entropy condition
- ▷ Second case: $\alpha_{eq}(\tau_L) \neq \alpha_{eq}(\tau_R)$ We have to solve the 2 × 2 ODE system

$$\begin{cases} \sigma^{2}\tau'(\xi) + \mathsf{d}_{\xi}\mathscr{P}_{R}(\tau(\xi), \alpha(\xi)) = 0, \\ \alpha'(\xi) = (\alpha_{eq}(\tau(\xi)) - \alpha(\xi)). \end{cases}$$

If the equations of state of each phase are perfect gas pressure laws:

PropositionA relaxation shock profile exists for the discontinuity \iff The discontinuity statisfies the Liu entropy condition

The Riemann problem for HEM

The Riemann problem for HEM: [Godlewski, Seguin '06]

$$\begin{aligned} \partial_t \tau - \partial_x u &= 0, \\ \partial_t u + \partial_x \mathscr{P}_E(\tau) &= 0, \\ (\tau, u)(0, x) &= \begin{cases} (\tau_L, u_L) & \text{if } x < 0, \\ (\tau_R, u_R) & \text{if } x > 0. \end{cases} \end{aligned}$$

We consider self-similar solutions $\mathbf{u}(x,t) = \mathbf{u}(x/t)$.

A discontinuity is admissible if it satisfies the Liu entropy condition:

 $\sigma(\mathbf{u}_l,\mathbf{u}_r) \leq \sigma(\mathbf{u}_l,\mathbf{u})$

for all $\mathbf{u} \in \mathscr{S}(\mathbf{u}_l)$ with $\tau \in (\min(\tau_l, \tau_r), \max(\tau_l, \tau_r))$.

The speed of an admissible discontinuity is smaller than the speed of any discontinuity included in it.

Theorem 1

For all $\mathbf{u}_L, \mathbf{u}_R \in \Omega$, the self-similar solution of the Riemann problem exists and is unique, allowing the occurrence of vacuum $\{\tau = +\infty\}$ when necessary.

Theorem 2

Let $\mathscr{W}(x/t; \mathbf{u}_L, \mathbf{u}_R)$ be the self-similar solution of the Riemann problem. For any L > 0 and initial data $(\mathbf{u}_L, \mathbf{u}_R), (\mathbf{v}_L, \mathbf{v}_R) \in \Omega^2$, there exists a constant C > 0 such that

$$\int_{-L}^{L} |\mathscr{W}(\xi; \mathbf{u}_L, \mathbf{u}_R) - \mathscr{W}(\xi; \mathbf{v}_L, \mathbf{v}_R)| d\xi \leq C(|\mathbf{u}_L - \mathbf{v}_L| + |\mathbf{u}_R - \mathbf{v}_R|)$$

where $|\cdot|$ stands for the Euclidean norm of \mathbb{R}^2 .

Nonpositive multiple waves are given as a succession of nonpositive rarefaction waves and admissible discontinuities (geometric interpretation) $\implies \mathscr{U}(\mathbf{u}_L)$.

An example of Riemann solution

Construction (by symmetry) of $\mathscr{U}(\mathbf{u}_R)$ and find the intersection

 $\mathscr{I}(\mathbf{u}_L,\mathbf{u}_R)=\mathscr{U}_{-}(\mathbf{u}_L)\cap\mathscr{U}_{+}(\mathbf{u}_R).$

A solution with multiple waves:

Uniqueness of the Riemann solution

The uniqueness is given if $\mathscr{I}(\mathbf{u}_L,\mathbf{u}_R) = \mathscr{U}_{-}(\mathbf{u}_L) \cap \mathscr{U}_{+}(\mathbf{u}_R)$ is a singleton.

Remark

If two states are separated by a phase transition discontinuity, at least one of them is at **saturation**.

Remark

If the initial data is composed only by **pure phases**, no mixture zone can occur in the solution.

Remark

The Cauchy problem can be **ill-posed** if the initial data is in the mixture zone. [Lagoutière]

 \implies Instable behaviour of the mixture zone

Any classical Finite Volume scheme can be used.

Two approaches:

- ▷ Compute HRM + instantaneous equilibrium $\alpha = \alpha_{eq}$ after each time step
- Directly compute HEM

Here, we used two different numerical schemes:

- Suliciu's relaxation method ([Coquel et al. '99], [Bouchut '04])
- The Rusanov scheme

1D and 2D tests in the Eulerian setting.

Two rarefaction waves in the "liquid" with occurence of "vapor"

Two rarefaction waves with one state in the "liquid" and the other in the mixture

Box in a hypervelocity "liquid" flow (mesh: 300x60)

Conclusion

- Study of a model of isothermal phase change
 - Relaxation
 - Riemann problem
 - Numerical approximations
- Remaining points
 - Zero-relaxation limit for rarefaction waves and smooth solutions
 - ▶ The Cauchy problem
 - More numerical tests
- More complex modelling
 - Realistic equations of state
 - More complex phase change