Fluid-mixture type algorithm for
 compressible multifluid flows in generalized curvilinear grids
 Keh-Ming Shyue

Department of Mathematics
National Taiwan University
Taiwan

Overview

- Mathematical model for homogeneous multifluid flow
- Compressible Euler eqs. in generalized coordinates
- Grid-movement conditions for moving grid system
- Mixture equations of state
- Transport eqs. for multifluid problems of concerns
- Finite volume numerical method
- Godunov-type f-wave formulation of LeVeque et al.
- Numerical examples
- Underwater explosions, shock-bubble, ...
- Future direction

Motivations

- Some basic facts
- Lagrangian method can resolve material or slip lines sharply if there is not too much grid tangling
- Generalized curvilinear grid is often superior to Cartesian grid when they are employed in numerical methods for complex fixed or moving geometries

Motivations

- Some basic facts
- Lagrangian method can resolve material or slip lines sharply if there is not too much grid tangling
- Generalized curvilinear grid is often superior to Cartesian grid when they are employed in numerical methods for complex fixed or moving geometries
- Some examples done by Cartesian-based method
- Falling liquid drop problem
- Shock-bubble interaction
- Flying projectile \& ocean surface
- Falling rigid object in water tank

Motivations

- Some basic facts
- Lagrangian method can resolve material or slip lines sharply if there is not too much grid tangling
- Generalized curvilinear grid is often superior to Cartesian grid when they are employed in numerical methods for complex fixed or moving geometries
- Some examples done by Cartesian-based method
- Falling liquid drop problem
- Shock-bubble interaction
- Flying projectile \& ocean surface
- Falling rigid object in water tank
- Search for more robust method (work present here is preliminary)

Falling Liquid Drop Problem

- Interface capturing with gravity

Falling Liquid Drop Problem

Falling Liquid Drop Problem

- Interface diffused badily

Falling Liquid Drop Problem

Falling Liquid Drop Problem

\title{

}

Falling Liquid Drop Problem

\qquad

Shock-Bubble Interaction

- Volume tracking for material interface

Shock-Bubble Interaction

Shock-Bubble Interaction

time $=115 \mu \mathrm{~s}$

Shock-Bubble Interaction

time $=135 \mu \mathrm{~s}$

Shock-Bubble Interaction

Shock-Bubble Interaction

time $=247 \mu \mathrm{~s}$

Shock-Bubble Interaction

time $=318 \mu \mathrm{~s}$

Shock-Bubble Interaction

time $=342 \mu \mathrm{~s}$

Shock-Bubble Interaction

time $=417 \mu \mathrm{~s}$

Shock-Bubble Interaction

- Small moving irregular cells: stability \& accuracy

Flying Projectile \& Ocean Surface

- Moving boundary tracking \& interface capturing

Flying Projectile \& Ocean Surface

Flying Projectile \& Ocean Surface

- Small moving irregular cells: stability \& accuracy

Falling Rigid Object in Water Tank

- Moving boundary tracking \& interface capturing

Falling Rigid Object in Water Tank

Falling Rigid Object in Water Tank

Ag

- Small moving irregular cells: stability \& accuracy

Euler Eqs. in Generalized Coord.

With gravity effect included, for example, 2D compressible Euler eqs. in Cartesian coordinates take

$$
\frac{\partial q}{\partial t}+\frac{\partial f(q)}{\partial x}+\frac{\partial g(q)}{\partial y}=\psi(q)
$$

where

$$
q=\left[\begin{array}{c}
\rho \\
\rho u \\
\rho v \\
E
\end{array}\right], \quad f(q)=\left[\begin{array}{c}
\rho u \\
\rho u^{2}+p \\
\rho u v \\
E u+p u
\end{array}\right], \quad g(q)=\left[\begin{array}{c}
\rho v \\
\rho u v \\
\rho v^{2}+p \\
E v+p v
\end{array}\right], \quad \psi=\left[\begin{array}{c}
0 \\
0 \\
\rho g \\
\rho g v
\end{array}\right]
$$

ρ : density,
p : pressure,
$e(\rho, p)$: internal energy, ψ : gravitational source term

Euler in General. Coord. (Cont.)

- Introduce transformation $(t, x, y) \leftrightarrow(\tau, \xi, \eta)$ via

$$
\left(\begin{array}{l}
d t \\
d x \\
d y
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
x_{\tau} & x_{\xi} & x_{\eta} \\
y_{\tau} & y_{\xi} & y_{\eta}
\end{array}\right)\left(\begin{array}{l}
d \tau \\
d \xi \\
d \eta
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{l}
d \tau \\
d \xi \\
d \eta
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\xi_{t} & \xi_{x} & \xi_{y} \\
\eta_{t} & \eta_{x} & \eta_{y}
\end{array}\right)\left(\begin{array}{l}
d t \\
d x \\
d y
\end{array}\right)
$$

- Basic grid-metric relations:
$\left(\begin{array}{ccc}1 & 0 & 0 \\ \xi_{t} & \xi_{x} & \xi_{y} \\ \eta_{t} & \eta_{x} & \eta_{y}\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ x_{\tau} & x_{\xi} & x_{\eta} \\ y_{\tau} & y_{\xi} & y_{\eta}\end{array}\right)^{-1}=\frac{1}{J}\left[\begin{array}{ccc}x_{\xi} y_{\eta}-x_{\eta} y_{\xi} & 0 & 0 \\ -x_{\tau} y_{\eta}+y_{\tau} x_{\eta} & y_{\eta} & -y_{\xi} \\ x_{\tau} y_{\xi}-y_{\tau} x_{\xi} & -x_{\eta} & x_{\xi}\end{array}\right]$
- $J=x_{\xi} y_{\eta}-x_{\eta} y_{\xi}$: grid Jacobian

Euler in General. Coord. (Cont.)

With these notations, Euler eqs. in generalized coord. are

$$
\frac{\partial \tilde{q}}{\partial \tau}+\frac{\partial \tilde{f}}{\partial \xi}+\frac{\partial \tilde{g}}{\partial \eta}=\tilde{\psi}
$$

where
$\tilde{q}=J\left[\begin{array}{c}\rho \\ \rho u \\ \rho v \\ E\end{array}\right], \tilde{f}=J\left[\begin{array}{c}\rho U \\ \rho u U+\xi_{x} p \\ \rho v U+\xi_{y} p \\ E U+p U-\xi_{t} p\end{array}\right], \tilde{g}=J\left[\begin{array}{c}\rho V \\ \rho u V+\eta_{x} p \\ \rho v V+\eta_{y} p \\ E V+p V-\eta_{t} p\end{array}\right], \tilde{\psi}=J\left[\begin{array}{c}0 \\ 0 \\ \rho g \\ \rho g v\end{array}\right]$
with contravariant velocities $U \& V$ defined by

$$
U=\xi_{t}+\xi_{x} u+\xi_{y} v \quad \& \quad V=\eta_{t}+\eta_{x} u+\eta_{y} v
$$

Grid Movement Conditions

Continuity on mixed derivatives of grid coordinates gives geometrical conservation laws

$$
\frac{\partial}{\partial \tau}\left(\begin{array}{l}
x_{\xi} \\
y_{\xi} \\
x_{\eta} \\
y_{\eta}
\end{array}\right)+\frac{\partial}{\partial \xi}\left(\begin{array}{c}
-x_{\tau} \\
-y_{\tau} \\
0 \\
0
\end{array}\right)+\frac{\partial}{\partial \eta}\left(\begin{array}{c}
0 \\
0 \\
-x_{\tau} \\
-y_{\tau}
\end{array}\right)=0
$$

with $\left(x_{\tau}, y_{\tau}\right)$ to be specified as, for example,

- Eulerian case: $\left(x_{\tau}, y_{\tau}\right)=\overrightarrow{0}$
- Lagrangian case: $\left(x_{\tau}, y_{\tau}\right)=(u, v)$
- Lagrangian-like case: $\left(x_{\tau}, y_{\tau}\right)=h_{0}(u, v)$ or $\left(h_{0} u, k_{0} v\right)$
- $h_{0} \in[0,1] \quad \& \quad k_{0} \in[0,1]$

Grid Movement Conditions (Cont.)

- General 1-parameter case: $\left(x_{\tau}, y_{\tau}\right)=h(u, v)$
- Mesh-area preserving condition

$$
\begin{aligned}
\frac{\partial J}{\partial \tau} & =\frac{\partial}{\partial \tau}\left(x_{\xi} y_{\eta}-x_{\eta} y_{\xi}\right) \\
& =x_{\xi \tau} y_{\eta}+x_{\xi} y_{\eta \tau}-x_{\eta \tau} y_{\xi}-x_{\eta} y_{\xi \tau} \\
& =\cdots \\
& =\mathcal{A} h_{\xi}+\mathcal{B} h_{\eta}+\mathcal{C} h=0 \quad(1 \text { st order PDE for } h \in[0,1])
\end{aligned}
$$

with

$$
\begin{aligned}
& \mathcal{A}=u y_{\eta}-v x_{\eta}, \quad \mathcal{B}=v x_{\xi}-u y_{\xi} \\
& \mathcal{C}=u_{\xi} y_{\eta}+v_{\eta} x_{\xi}-u_{\eta} y_{\xi}-v_{\xi} x_{\eta}
\end{aligned}
$$

- Initial \& boundary conditions for h-equation ?

Grid Movement Conditions (Cont.)

- General 1-parameter case: $\left(x_{\tau}, y_{\tau}\right)=h(u, v)$
- Grid-angle preserving condition (Hui et al. JCP 1999)

$$
\begin{aligned}
\frac{\partial}{\partial \tau} \cos ^{-1}\left(\frac{\nabla \xi}{|\nabla \xi|} \cdot \frac{\nabla \eta}{|\nabla \eta|}\right) & =\frac{\partial}{\partial \tau} \cos ^{-1}\left(\frac{-y_{\eta} x_{\eta}-y_{\xi} x_{\xi}}{\sqrt{y_{\xi}^{2}+y_{\eta}^{2}} \sqrt{x_{\xi}^{2}+x_{\eta}^{2}}}\right) \\
& =\cdots \\
& \left.=\mathcal{A} h_{\xi}+\mathcal{B} h_{\eta}+\mathcal{C} h=0 \quad \text { (1st order PDE }\right)
\end{aligned}
$$

with

$$
\begin{aligned}
& \mathcal{A}=\sqrt{x_{\eta}^{2}+y_{\eta}^{2}}\left(v x_{\xi}-u y_{\xi}\right), \quad \mathcal{B}=\sqrt{x_{\xi}^{2}+y_{\xi}^{2}}\left(u y_{\eta}-v x_{\eta}\right) \\
& \mathcal{C}=\sqrt{x_{\xi}^{2}+y_{\xi}^{2}}\left(u_{\eta} y_{\eta}-v_{\eta} x_{\eta}\right)-\sqrt{x_{\eta}^{2}+y_{\eta}^{2}}\left(u_{\xi} y_{\xi}-v_{\xi} x_{\xi}\right)
\end{aligned}
$$

- Initial \& boundary conditions for h-equation ?

Grid Movement Conditions (Cont.)

- 2-parameter case of Hui et al. (2005): $\left(x_{\tau}, y_{\tau}\right)=\left(U_{g}, V_{g}\right)$
- Imposed conditions

1. Grid-angle preserving
2. Specialized grid-material line matching (see next)

Grid Movement Conditions (Cont.)

- 2-parameter case of Hui et al. (2005): $\left(x_{\tau}, y_{\tau}\right)=\left(U_{g}, V_{g}\right)$
- Imposed conditions

1. Grid-angle preserving
2. Specialized grid-material line matching (see next)

- Good results are shown for steady-state problems

Grid Movement Conditions (Cont.)

- 2-parameter case of Hui et al. (2005): $\left(x_{\tau}, y_{\tau}\right)=\left(U_{g}, V_{g}\right)$
- Imposed conditions

1. Grid-angle preserving
2. Specialized grid-material line matching (see next)

- Good results are shown for steady-state problems
- Little results for time-dependent problems with rapid transient solution structures

Grid Movement Conditions (Cont.)

- 2-parameter case of Hui et al. (2005): $\left(x_{\tau}, y_{\tau}\right)=\left(U_{g}, V_{g}\right)$
- Imposed conditions

1. Grid-angle preserving
2. Specialized grid-material line matching (see next)

- Good results are shown for steady-state problems
- Little results for time-dependent problems with rapid transient solution structures
- Other 2-parameter case: $\left(x_{\tau}, y_{\tau}\right)=(h u, k v)$
- Novel imposed conditions for $h \in[0,1] \& k \in[0,1]$?

Grid Movement Conditions (Cont.)

- 2-parameter case of Hui et al. (2005): $\left(x_{\tau}, y_{\tau}\right)=\left(U_{g}, V_{g}\right)$
- Imposed conditions

1. Grid-angle preserving
2. Specialized grid-material line matching (see next)

- Good results are shown for steady-state problems
- Little results for time-dependent problems with rapid transient solution structures
- Other 2-parameter case: $\left(x_{\tau}, y_{\tau}\right)=(h u, k v)$
- Novel imposed conditions for $h \in[0,1] \& k \in[0,1]$?

Roadmap of current work:

$$
\left(x_{\tau}, y_{\tau}\right)=h_{0}(u, v) \rightarrow\left(x_{\tau}, y_{\tau}\right)=h(u, v) \rightarrow \cdots
$$

Single-Fluid Model

With $\left(x_{\tau}, y_{\tau}\right)=h_{0}(u, v)$, our model system for single-phase flow reads

$$
\frac{\partial}{\partial \tau}\left(\begin{array}{c}
J \rho \\
J \rho u \\
J \rho v \\
J E \\
x_{\xi} \\
y_{\xi} \\
x_{\eta} \\
y_{\eta}
\end{array}\right)+\frac{\partial}{\partial \xi}\left(\begin{array}{c}
J \rho U \\
J \rho u U+y_{\eta} p \\
J \rho v U-x_{\eta} p \\
J E U+\left(y_{\eta} u-x_{\eta} v\right) p \\
-h_{0} u \\
-h_{0} v \\
0 \\
0
\end{array}\right)+\frac{\partial}{\partial \eta}\left(\begin{array}{c}
J \rho V \\
J \rho u V-y_{\xi} p \\
J \rho v V+x_{\xi} p \\
J E V+\left(x_{\xi} v-y_{\xi} u\right) p \\
0 \\
0 \\
-h_{0} u \\
-h_{0} v
\end{array}\right)=\tilde{\psi}
$$

w

Single-Fluid Model: Remarks

- Hyperbolicity (under thermodyn. stability cond.)
- In Cartesian coordinates, model is hyperbolic

Single-Fluid Model: Remarks

- Hyperbolicity (under thermodyn. stability cond.)
- In Cartesian coordinates, model is hyperbolic
- In generalized-moving coord., model is hyperbolic when $h_{0} \neq 1$, \& is weakly hyperbolic when $h_{0}=1$

Single-Fluid Model: Remarks

- Hyperbolicity (under thermodyn. stability cond.)
- In Cartesian coordinates, model is hyperbolic
- In generalized-moving coord., model is hyperbolic when $h_{0} \neq 1$, \& is weakly hyperbolic when $h_{0}=1$
- Canonical form
- In Cartesian coordinates

$$
\frac{\partial q}{\partial t}+\frac{\partial f(q)}{\partial x}+\frac{\partial g(q)}{\partial y}=\psi(q)
$$

- In generalized coordinates

$$
\frac{\partial q}{\partial \tau}+\frac{\partial f(q, \Xi)}{\partial \xi}+\frac{\partial g(q, \Xi)}{\partial \eta}=\psi(q), \quad \Xi: \text { grid metrics }
$$

Single-Fluid Model: Remarks

- Hyperbolicity (under thermodyn. stability cond.)
- In Cartesian coordinates, model is hyperbolic
- In generalized-moving coord., model is hyperbolic when $h_{0} \neq 1$, \& is weakly hyperbolic when $h_{0}=1$
- Canonical form
- In Cartesian coordinates

$$
\frac{\partial q}{\partial t}+\frac{\partial f(q)}{\partial x}+\frac{\partial g(q)}{\partial y}=\psi(q)
$$

- In generalized coordinates : spatially varying fluxes

$$
\frac{\partial q}{\partial \tau}+\frac{\partial f(q, \Xi)}{\partial \xi}+\frac{\partial g(q, \Xi)}{\partial \eta}=\psi(q), \quad \Xi: \text { grid metrics }
$$

Extension to Multifluid

- Assume homogeneous (1-pressure \& 1-velocity) flow; i.e., across interfaces $p_{\iota}=p$ \& $\vec{u}_{\iota}=\vec{u}, \forall$ fluid phase ι

Extension to Multifluid

- Assume homogeneous (1-pressure \& 1-velocity) flow; i.e., across interfaces $p_{\iota}=p$ \& $\vec{u}_{\iota}=\vec{u}, \forall$ fluid phase ι
- Mathematical model: Fluid-mixture type
- Use basic conservation (or balance) laws for single \& multicomponent fluid mixtures
- Introduce additional transport equations for problem-dependent material quantities near numerically diffused interfaces, yielding direct computation of pressure from EOS

Extension to Multifluid

- Assume homogeneous (1-pressure \& 1-velocity) flow; i.e., across interfaces $p_{\iota}=p \& \vec{u}_{\iota}=\vec{u}, \forall$ fluid phase ι
- Mathematical model: Fluid-mixture type
- Use basic conservation (or balance) laws for single \& multicomponent fluid mixtures
- Introduce additional transport equations for problem-dependent material quantities near numerically diffused interfaces, yielding direct computation of pressure from EOS
- Sample examples
- Barotropic 2-phase flow
- Hybrid barotropic \& non-barotropic 2-phase flow

Barotropic 2-Phase Flow

- Equations of state
- Fluid component 1 \& 2: Tait EOS

$$
p(\rho)=\left(p_{0 \iota}+\mathcal{B}_{\iota}\right)\left(\frac{\rho}{\rho_{0 \iota}}\right)^{\gamma_{\iota}}-\mathcal{B}_{\iota}, \quad \iota=1,2
$$

Barotropic 2-Phase Flow

- Equations of state
- Fluid component 1 \& 2: Tait EOS

$$
p(\rho)=\left(p_{0 \iota}+\mathcal{B}_{\iota}\right)\left(\frac{\rho}{\rho_{0_{\iota}}}\right)^{\gamma_{\iota}}-\mathcal{B}_{\iota}, \quad \iota=1,2
$$

- Mixture pressure law (Shyue, JCP 2004)

$$
p(\rho, \rho e)=\left\{\begin{array}{cll}
\left(p_{0 \iota}+\mathcal{B}_{\iota}\right)\left(\frac{\rho}{\rho_{0_{\iota}}}\right)^{\gamma_{\iota}}-\mathcal{B}_{\iota} & \text { if } & \alpha=0 \text { or } 1 \\
(\gamma-1)\left(\rho e+\frac{\rho \mathcal{B}}{\rho_{0}}\right)-\gamma \mathcal{B} & \text { if } & \alpha \in(0,1)
\end{array}\right.
$$

Here α denotes volume fraction of one chosen fluid component

Barotropic 2-Phase Flow

- Equations of state
- Fluid component 1 \& 2: Tait EOS

$$
p(\rho)=\left(p_{0 \iota}+\mathcal{B}_{\iota}\right)\left(\frac{\rho}{\rho_{0 \iota}}\right)^{\gamma_{\iota}}-\mathcal{B}_{\iota}, \quad \iota=1,2 .
$$

- Mixture pressure law (Shyue, JCP 2004)

$$
\begin{aligned}
& p(\rho, \rho e)=\left\{\begin{array}{lll}
\left(p_{0 \iota}+\mathcal{B}_{\iota}\right)\left(\frac{\rho}{\rho_{0}}\right)^{\gamma_{\iota}}-\mathcal{B}_{\iota} & \text { if } & \alpha=0 \text { or } 1 \\
f^{(\gamma-1)}\left(\rho e+\frac{\rho \mathcal{B}}{\rho_{0}}\right)-\gamma \mathcal{B} & \text { if } & \alpha \in(0,1) \\
\text { form of } & \\
p(\rho, S)=\mathcal{A}(S)\left(p_{0}+\mathcal{B}\right)\left(\frac{\rho}{\rho_{0}}\right)^{\gamma}-\mathcal{B}
\end{array}\right.
\end{aligned}
$$

$\mathcal{A}(S)=e^{\left[\left(S-S_{0}\right) / C_{V}\right]}, S, C_{V}$: specific entropy \& heat at constant volume

Barotropic 2-Phase Flow (Cont.)

- Transport equations for material quantities $\gamma, \mathcal{B}, \& \rho_{0}$
- γ-based equations

$$
\begin{aligned}
\frac{\partial}{\partial \tau}\left(\frac{1}{\gamma-1}\right)+U \frac{\partial}{\partial \xi}\left(\frac{1}{\gamma-1}\right)+V \frac{\partial}{\partial \eta}\left(\frac{1}{\gamma-1}\right) & =0 \\
\frac{\partial}{\partial \tau}\left(\frac{\gamma \mathcal{B}}{\gamma-1}\right)+U \frac{\partial}{\partial \xi}\left(\frac{\gamma \mathcal{B}}{\gamma-1}\right)+V \frac{\partial}{\partial \eta}\left(\frac{\gamma \mathcal{B}}{\gamma-1}\right) & =0 \\
\frac{\partial}{\partial \tau}\left(J \frac{\mathcal{B}}{\rho_{0}} \rho\right)+\frac{\partial}{\partial \xi}\left(J \frac{\mathcal{B}}{\rho_{0}} \rho U\right)+\frac{\partial}{\partial \eta}\left(J \frac{\mathcal{B}}{\rho_{0}} \rho V\right) & =0
\end{aligned}
$$

Barotropic 2-Phase Flow (Cont.)

- Transport equations for material quantities $\gamma, \mathcal{B}, \& \rho_{0}$
- γ-based equations

$$
\begin{aligned}
& \frac{\partial}{\partial \tau}\left(\frac{1}{\gamma-1}\right)+U \frac{\partial}{\partial \xi}\left(\frac{1}{\gamma-1}\right)+V \frac{\partial}{\partial \eta}\left(\frac{1}{\gamma-1}\right)=0 \\
& \frac{\partial}{\partial \tau}\left(\frac{\gamma \mathcal{B}}{\gamma-1}\right)+U \frac{\partial}{\partial \xi}\left(\frac{\gamma \mathcal{B}}{\gamma-1}\right)+V \frac{\partial}{\partial \eta}\left(\frac{\gamma \mathcal{B}}{\gamma-1}\right)=0 \\
& \frac{\partial}{\partial \tau}\left(J \frac{\mathcal{B}}{\rho_{0}} \rho\right)+\frac{\partial}{\partial \xi}\left(J \frac{\mathcal{B}}{\rho_{0}} \rho U\right)+\frac{\partial}{\partial \eta}\left(J \frac{\mathcal{B}}{\rho_{0}} \rho V\right)=0
\end{aligned}
$$

- Above equations are derived from energy equation \& make use of homogeneous equilibrium flow assumption together with mass conservation law

Barotropic 2-Phase Flow (Cont.)

- Transport equations for material quantities $\gamma, \mathcal{B}, \& \rho_{0}$
- γ-based equations

$$
\begin{aligned}
& \frac{\partial}{\partial \tau}\left(\frac{1}{\gamma-1}\right)+U \frac{\partial}{\partial \xi}\left(\frac{1}{\gamma-1}\right)+V \frac{\partial}{\partial \eta}\left(\frac{1}{\gamma-1}\right)=0 \\
& \frac{\partial}{\partial \tau}\left(\frac{\gamma \mathcal{B}}{\gamma-1}\right)+U \frac{\partial}{\partial \xi}\left(\frac{\gamma \mathcal{B}}{\gamma-1}\right)+V \frac{\partial}{\partial \eta}\left(\frac{\gamma \mathcal{B}}{\gamma-1}\right)=0 \\
& \frac{\partial}{\partial \tau}\left(J \frac{\mathcal{B}}{\rho_{0}} \rho\right)+\frac{\partial}{\partial \xi}\left(J \frac{\mathcal{B}}{\rho_{0}} \rho U\right)+\frac{\partial}{\partial \eta}\left(J \frac{\mathcal{B}}{\rho_{0}} \rho V\right)=0
\end{aligned}
$$

- If we ignore $J \mathcal{B} \rho / \rho_{0}$ term, they are essentially equations proposed by Saurel \& Abgrall (SISC 1999), but are written in generalized coord.

Barotropic 2-Phase Flow (Cont.)

- Transport equations for material quantities $\gamma, \mathcal{B}, \& \rho_{0}$
- γ-based equations

$$
\begin{aligned}
& \frac{\partial}{\partial \tau}\left(\frac{1}{\gamma-1}\right)+U \frac{\partial}{\partial \xi}\left(\frac{1}{\gamma-1}\right)+V \frac{\partial}{\partial \eta}\left(\frac{1}{\gamma-1}\right)=0 \\
& \frac{\partial}{\partial \tau}\left(\frac{\gamma \mathcal{B}}{\gamma-1}\right)+U \frac{\partial}{\partial \xi}\left(\frac{\gamma \mathcal{B}}{\gamma-1}\right)+V \frac{\partial}{\partial \eta}\left(\frac{\gamma \mathcal{B}}{\gamma-1}\right)=0 \\
& \frac{\partial}{\partial \tau}\left(J \frac{\mathcal{B}}{\rho_{0}} \rho\right)+\frac{\partial}{\partial \xi}\left(J \frac{\mathcal{B}}{\rho_{0}} \rho U\right)+\frac{\partial}{\partial \eta}\left(J \frac{\mathcal{B}}{\rho_{0}} \rho V\right)=0
\end{aligned}
$$

- α-based equations

$$
\begin{aligned}
& \frac{\partial \alpha}{\partial \tau}+U \frac{\partial \alpha}{\partial \xi}+V \frac{\partial \alpha}{\partial \eta}=0, \quad \text { with } \quad z=\sum_{l=1}^{2} \alpha_{l} z_{l}, \quad z=\frac{1}{\gamma-1} \& \frac{\gamma \mathcal{B}}{\gamma-1} \\
& \frac{\partial}{\partial \tau}\left(J \frac{\mathcal{B}}{\rho_{0}} \rho\right)+\frac{\partial}{\partial \xi}\left(J \frac{\mathcal{B}}{\rho_{0}} \rho U\right)+\frac{\partial}{\partial \eta}\left(J \frac{\mathcal{B}}{\rho_{0}} \rho V\right)=0
\end{aligned}
$$

Barotropic 2-Phase Flow (Cont.)

- Transport equations for material quantities $\gamma, \mathcal{B}, \& \rho_{0}$
- γ-based equations

$$
\begin{aligned}
& \frac{\partial}{\partial \tau}\left(\frac{1}{\gamma-1}\right)+U \frac{\partial}{\partial \xi}\left(\frac{1}{\gamma-1}\right)+V \frac{\partial}{\partial \eta}\left(\frac{1}{\gamma-1}\right)=0 \\
& \frac{\partial}{\partial \tau}\left(\frac{\gamma \mathcal{B}}{\gamma-1}\right)+U \frac{\partial}{\partial \xi}\left(\frac{\gamma \mathcal{B}}{\gamma-1}\right)+V \frac{\partial}{\partial \eta}\left(\frac{\gamma \mathcal{B}}{\gamma-1}\right)=0 \\
& \frac{\partial}{\partial \tau}\left(J \frac{\mathcal{B}}{\rho_{0}} \rho\right)+\frac{\partial}{\partial \xi}\left(J \frac{\mathcal{B}}{\rho_{0}} \rho U\right)+\frac{\partial}{\partial \eta}\left(J \frac{\mathcal{B}}{\rho_{0}} \rho V\right)=0
\end{aligned}
$$

- α-based equations (Allaire et al. , JCP 2002)

$$
\begin{array}{lll}
\frac{\partial \alpha}{\partial \tau}+U \frac{\partial \alpha}{\partial \xi}+V \frac{\partial \alpha}{\partial \eta}=0 & \text { with } \quad z=\sum_{l=1}^{2} \alpha_{l} z_{l} & z=\frac{1}{\gamma-1} \& \frac{\gamma \mathcal{B}}{\gamma-1} \\
\frac{\partial}{\partial \tau}\left(J \rho_{1} \alpha\right)+\frac{\partial}{\partial \xi}\left(J \rho_{1} \alpha U\right)+\frac{\partial}{\partial \eta}\left(J \rho_{1} \alpha V\right)=0 & \text { with } z=\frac{\mathcal{B}}{\rho_{0}} \rho
\end{array}
$$

Barotropic 2-Phase Flow (Cont.)

- Transport equations for material quantities $\gamma, \mathcal{B}, \& \rho_{0}$
- γ-based equations

$$
\begin{aligned}
& \frac{\partial}{\partial \tau}\left(\frac{1}{\gamma-1}\right)+U \frac{\partial}{\partial \xi}\left(\frac{1}{\gamma-1}\right)+V \frac{\partial}{\partial \eta}\left(\frac{1}{\gamma-1}\right)=0 \\
& \frac{\partial}{\partial \tau}\left(\frac{\gamma \mathcal{B}}{\gamma-1}\right)+U \frac{\partial}{\partial \xi}\left(\frac{\gamma \mathcal{B}}{\gamma-1}\right)+V \frac{\partial}{\partial \eta}\left(\frac{\gamma \mathcal{B}}{\gamma-1}\right)=0 \\
& \frac{\partial}{\partial \tau}\left(J \frac{\mathcal{B}}{\rho_{0}} \rho\right)+\frac{\partial}{\partial \xi}\left(J \frac{\mathcal{B}}{\rho_{0}} \rho U\right)+\frac{\partial}{\partial \eta}\left(J \frac{\mathcal{B}}{\rho_{0}} \rho V\right)=0
\end{aligned}
$$

- α-based equations (Kapila et al. , Phys. Fluid 2001)

$$
\frac{\partial \alpha}{\partial \tau}+U \frac{\partial \alpha}{\partial \xi}+V \frac{\partial \alpha}{\partial \eta}=\alpha_{1} \alpha_{2}\left(\frac{\rho_{1} c_{1}^{2}-\rho_{2} c_{2}^{2}}{\sum_{k=1}^{2} \alpha_{k} \rho_{k} c_{k}^{2}}\right) \nabla \cdot \vec{u}
$$

... will not be discussed here

Barotropic \& Non-Barotropic Flow

- Equations of state
- Fluid component 1: Tait EOS

$$
p(\rho)=\left(p_{0}+\mathcal{B}\right)\left(\frac{\rho}{\rho_{0}}\right)^{\gamma}-\mathcal{B}
$$

- Fluid component 2: Noble-Abel EOS

$$
p(\rho, \rho e)=\left(\frac{\gamma-1}{1-b \rho}\right) \rho e \quad(0 \leq b \leq 1 / \rho)
$$

Barotropic \& Non-Barotropic Flow

- Equations of state
- Fluid component 1: Tait EOS

$$
p(\rho)=\left(p_{0}+\mathcal{B}\right)\left(\frac{\rho}{\rho_{0}}\right)^{\gamma}-\mathcal{B}
$$

- Fluid component 2: Noble-Abel EOS

$$
p(\rho, \rho e)=\left(\frac{\gamma-1}{1-b \rho}\right) \rho e \quad(0 \leq b \leq 1 / \rho)
$$

- Mixture pressure law (Shyue, Shock Waves 2006)

$$
p(\rho, \rho e)=\left\{\begin{array}{rll}
\left(p_{0}+\mathcal{B}\right)\left(\frac{\rho}{\rho_{0}}\right)^{\gamma}-\mathcal{B} & \text { if } & \alpha=1 \tag{fluid1}\\
\left(\frac{\gamma-1}{1-b \rho}\right)(\rho e-\mathcal{B})-\mathcal{B} & \text { if } & \alpha \neq 1
\end{array}\right.
$$

Baro. \& Non-Baro. Flow (Cont.)

- Equations of state
- Fluid component 1: Tait EOS

$$
p(V)=\mathcal{A}\left(S_{0}\right)\left(p_{0}+\mathcal{B}\right)\left(\frac{V_{0}}{V}\right)^{\gamma}-\mathcal{B}, \quad V=1 / \rho
$$

- Fluid component 2: Noble-Abel EOS

$$
p(V, S)=\mathcal{A}(S) p_{0}\left(\frac{V_{0}-b}{V-b}\right)^{\gamma}
$$

- Mixture pressure law

$$
p(V, S)=\mathcal{A}(S)\left(p_{0}+\mathcal{B}\right)\left(\frac{V_{0}-b}{V-b}\right)^{\gamma}-\mathcal{B}
$$

Baro. \& Non-Baro. Flow (Cont.)

- Equations of state
- Fluid component 1: Tait EOS

$$
p(V)=\mathcal{A}\left(S_{0}\right)\left(p_{0}+\mathcal{B}\right)\left(\frac{V_{0}}{V}\right)^{\gamma}-\mathcal{B}, \quad V=1 / \rho
$$

- Fluid component 2: Noble-Abel EOS

$$
p(V, S)=\mathcal{A}(S) p_{0}\left(\frac{V_{0}-b}{V-b}\right)^{\gamma}
$$

- Mixture pressure law

$$
p(V, S)=\mathcal{A}(S)\left(p_{0}+\mathcal{B}\right)\left(\frac{V_{0}-b}{V-b}\right)^{\gamma}-\mathcal{B}
$$

variant form of

$$
p(\rho, \rho e)=\left(\frac{\gamma-1}{1-b \rho}\right)(\rho e-\mathcal{B})-\mathcal{B}
$$

Baro. \& Non-Baro. Flow (Cont.)

- Transport equations for material quantities $\gamma, b, \& \mathcal{B}$
- α-based equations

$$
\begin{aligned}
& \frac{\partial \alpha}{\partial \tau}+U \frac{\partial \alpha}{\partial \xi}+V \frac{\partial \alpha}{\partial \eta}=0 \\
& \frac{\partial}{\partial \tau}\left(J \rho_{1} \alpha\right)+\frac{\partial}{\partial \xi}\left(J \rho_{1} \alpha U\right)+\frac{\partial}{\partial \eta}\left(J \rho_{1} \alpha V\right)=0
\end{aligned}
$$

with $z=\sum_{\iota=1}^{2} \alpha_{\iota} z_{\iota}, \quad z=\frac{1}{\gamma-1}, \quad \frac{b \rho}{\gamma-1}, \quad \& \frac{\gamma-b \rho}{\gamma-1} \mathcal{B}$

Baro. \& Non-Baro. Flow (Cont.)

- Transport equations for material quantities $\gamma, b, \& \mathcal{B}$
- α-based equations

$$
\begin{aligned}
& \frac{\partial \alpha}{\partial \tau}+U \frac{\partial \alpha}{\partial \xi}+V \frac{\partial \alpha}{\partial \eta}=0 \\
& \frac{\partial}{\partial \tau}\left(J \rho_{1} \alpha\right)+\frac{\partial}{\partial \xi}\left(J \rho_{1} \alpha U\right)+\frac{\partial}{\partial \eta}\left(J \rho_{1} \alpha V\right)=0
\end{aligned}
$$

$$
\text { with } \quad z=\sum_{\iota=1}^{2} \alpha_{\iota} z_{\iota}, \quad z=\frac{1}{\gamma-1}, \quad \frac{b \rho}{\gamma-1}, \quad \& \frac{\gamma-b \rho}{\gamma-1} \mathcal{B}
$$

Note: $\frac{1-b \rho}{\gamma-1} p+\frac{\gamma-b \rho}{\gamma-1} \mathcal{B}=\rho e=\sum_{\iota=1}^{2} \alpha_{\iota} \rho_{\iota} e_{\iota}$

$$
=\sum_{\iota=1}^{2} \alpha_{\iota}\left(\frac{1-b_{\iota} \rho_{\iota}}{\gamma_{\iota}-1} p_{\iota}+\frac{\gamma_{\iota}-b_{\iota} \rho_{\iota}}{\gamma_{\iota}-1} \mathcal{B}_{\iota}\right)
$$

Baro. \& Non-Baro. Flow (Cont.)

- Transport equations for material quantities $\gamma, b, \& \mathcal{B}$
- α-based equations

$$
\begin{aligned}
& \frac{\partial \alpha}{\partial \tau}+U \frac{\partial \alpha}{\partial \xi}+V \frac{\partial \alpha}{\partial \eta}=0 \\
& \frac{\partial}{\partial \tau}\left(J \rho_{1} \alpha\right)+\frac{\partial}{\partial \xi}\left(J \rho_{1} \alpha U\right)+\frac{\partial}{\partial \eta}\left(J \rho_{1} \alpha V\right)=0
\end{aligned}
$$

with $\quad z=\sum_{l=1}^{2} \alpha_{l} z_{l}, \quad z=\frac{1}{\gamma-1}, \quad \frac{b \rho}{\gamma-1}, \quad \& \frac{\gamma-b \rho}{\gamma-1} \mathcal{B}$
Note: $\left.\frac{1-b \rho}{\gamma-1}(P)+\frac{\gamma-b \rho}{\gamma-1} \mathcal{B}=\rho e=\sum_{l=1}^{2} \alpha_{\iota} \rho_{t} e_{\iota}+\sum_{t=1}^{2} \alpha_{\iota}\left(\frac{1-b_{\iota} \rho_{t}}{\gamma_{t}-1}\left(p_{\iota}\right)+\frac{\gamma_{t}-b_{\iota} \rho_{\iota}}{\gamma_{t}-1} \mathcal{B}_{\iota}\right)\right)$

Multifluid Model

With $\left(x_{\tau}, y_{\tau}\right)=h_{0}(u, v)$ \& sample EOS described above, our α-based model for multifluid flow is
$\frac{\partial}{\partial \tau}\left(\begin{array}{c}J \rho \\ J \rho u \\ J \rho v \\ J E \\ x_{\xi} \\ y_{\xi} \\ x_{\eta} \\ y_{\eta} \\ J \rho_{1} \alpha\end{array}\right)+\frac{\partial}{\partial \xi}\left(\begin{array}{c}J \rho U \\ J \rho u U+y_{\eta} p \\ J \rho v U-x_{\eta} p \\ J E U+\left(y_{\eta} u-x_{\eta} v\right) p \\ -h_{0} u \\ -h_{0} v \\ 0 \\ 0 \\ J \rho_{1} \alpha U\end{array}\right)+\frac{\partial}{\partial \eta}\left(\begin{array}{c}J \rho V \\ J \rho u V-y_{\xi} p \\ J \rho v V+x_{\xi} p \\ J E V+\left(x_{\xi} v-y_{\xi} u\right) p \\ 0 \\ 0 \\ -h_{0} u \\ -h_{0} v \\ J \rho_{1} \alpha V\end{array}\right)=\tilde{\psi}$

$$
\frac{\partial \alpha}{\partial \tau}+U \frac{\partial \alpha}{\partial \xi}+V \frac{\partial \alpha}{\partial \eta}=0
$$

Multifluid Model (Cont.)

For convenience, our multifluid model is written into

$$
\frac{\partial q}{\partial \tau}+f\left(\frac{\partial}{\partial \xi}, q, \Xi\right)+g\left(\frac{\partial}{\partial \eta}, q, \Xi\right)=\tilde{\psi}
$$

with

$$
\begin{aligned}
& q= {\left[J \rho, J \rho u, J \rho v, J E, x_{\xi}, y_{\xi}, x_{\eta}, y_{\eta}, J \rho_{1} \alpha, \alpha\right]^{T} } \\
& f= {\left[\frac{\partial}{\partial \xi}(J \rho U), \frac{\partial}{\partial \xi}\left(J \rho u U+y_{\eta} p\right), \frac{\partial}{\partial \xi}\left(J \rho v U-x_{\eta} p\right), \frac{\partial}{\partial \xi}\left(J E U+\left(y_{\eta} u-x_{\eta} v\right) p\right),\right.} \\
&\left.\quad \frac{\partial}{\partial \xi}\left(-h_{0} u\right), \frac{\partial}{\partial \xi}\left(-h_{0} v\right), 0,0, \frac{\partial}{\partial \xi}\left(J \rho_{1} \alpha U\right), U \frac{\partial \alpha}{\partial \xi}\right]^{T} \\
& g=\left[\frac{\partial}{\partial \eta}(J \rho V), \frac{\partial}{\partial \eta}\left(J \rho u V-y_{\xi} p\right), \frac{\partial}{\partial \eta}\left(J \rho v V+x_{\xi} p\right), \frac{\partial}{\partial \eta}\left(J E V+\left(x_{\xi} v-y_{\xi} u\right) p\right),\right. \\
&\left.\quad 0,0, \frac{\partial}{\partial \eta}\left(-h_{0} u\right), \frac{\partial}{\partial \eta}\left(-h_{0} v\right), \frac{\partial}{\partial \eta}\left(J \rho_{1} \alpha V\right), V \frac{\partial \alpha}{\partial \eta}\right]^{T}
\end{aligned}
$$

Multifluid model: Remarks

- As before, under thermodyn. stability condition, our multifluid model in generalized coordinates is hyperbolic when $h_{0} \neq 1$, \& is weakly hyperbolic when $h_{0}=1$
- Our model system is written in quasi-conservative form with spatially varying fluxes in generalized coordinates
- Our grid system is a time-varying grid
- Extension of the model to general non-barotropic multifluid flow can be made in an analogous manner

Multifluid model: Remarks

- As before, under thermodyn. stability condition, our multifluid model in generalized coordinates is hyperbolic when $h_{0} \neq 1$, \& is weakly hyperbolic when $h_{0}=1$
- Our model system is written in quasi-conservative form with spatially varying fluxes in generalized coordinates
- Our grid system is a time-varying grid
- Extension of the model to general non-barotropic multifluid flow can be made in an analogous manner

Numerical approximation?

Numerical Approximation

- Equations to be solved are

$$
\frac{\partial q}{\partial \tau}+f\left(\frac{\partial}{\partial \xi}, q, \Xi\right)+g\left(\frac{\partial}{\partial \eta}, q, \Xi\right)=\tilde{\psi}
$$

- A simple dimensional-splitting approach based on f-wave formulation of LeVeque et al. is used
- Solve one-dimensional generalized Riemann problem (defined below) at each cell interfaces
- Use resulting jumps of fluxes (decomposed into each wave family) of Riemann solution to update cell averages
- Introduce limited jumps of fluxes to achieve high resolution

Numerical Approximation (Cont.)

Employ finite volume formulation of numerical solution

$$
Q_{i j}^{n} \approx \frac{1}{\Delta \xi \Delta \eta} \int_{C_{i j}} q\left(\xi, \eta, \tau_{n}\right) d A
$$

that gives approximate value of cell average of solution q over cell $C_{i j}=\left[\xi_{i}, \xi_{i+1}\right] \times\left[\eta_{j}, \eta_{j+1}\right]$ at time τ_{n}

Generalized Riemann Problem

Generalized Riemann problem of our multifluid model at cell interface $\xi_{i-1 / 2}$ consists of the equation

$$
\frac{\partial q}{\partial \tau}+F_{i-\frac{1}{2}, j}\left(\partial_{\xi}, q, \Xi\right)=0
$$

together with flux function

$$
F_{i-\frac{1}{2}, j}=\left\{\begin{array}{ccc}
f_{i-1, j}\left(\partial_{\xi}, q, \Xi\right) & \text { for } & \xi<\xi_{i-1 / 2} \\
f_{i j}\left(\partial_{\xi}, q, \Xi\right) & \text { for } & \xi>\xi_{i-1 / 2}
\end{array}\right.
$$

and piecewise constant initial data

$$
q(\xi, 0)=\left\{\begin{array}{ccc}
Q_{i-1, j}^{n} & \text { for } & \xi<\xi_{i-1 / 2} \\
Q_{i j}^{n} & \text { for } & \xi>\xi_{i-1 / 2}
\end{array}\right.
$$

General. Riemann Problem (Cont)

Generalized Riemann problem at time $\tau=0$

General. Riemann Problem (Cont)

Exact generalized Riemann solution: basic structure

General. Riemann Problem (Cont)

Shock-only approximate Riemann solution: basic structure

Numerical Approximation (Cont.)

Basic steps of a dimensional-splitting scheme

- ξ-sweeps: solve

$$
\frac{\partial q}{\partial \tau}+f\left(\frac{\partial}{\partial \xi}, q, \Xi\right)=0
$$

updating $Q_{i j}^{n}$ to $Q_{i, j}^{*}$

- η-sweeps: solve

$$
\frac{\partial q}{\partial \tau}+g\left(\frac{\partial}{\partial \eta}, q, \Xi\right)=0
$$

updating $Q_{i j}^{*}$ to $Q_{i, j}^{n+1}$

Numerical Approximation (Cont.)

That is to say,

- ξ-sweeps: we use

$$
Q_{i j}^{*}=Q_{i j}^{n}-\frac{\Delta \tau}{\Delta \xi}\left(\mathcal{F}_{i+\frac{1}{2}, j}^{-}-\mathcal{F}_{i-\frac{1}{2}, j}^{+}\right)-\frac{\Delta \tau}{\Delta \xi}\left(\tilde{\mathcal{F}}_{i+\frac{1}{2}, j}-\tilde{\mathcal{F}}_{i-\frac{1}{2}, j}\right)
$$

with $\quad \tilde{\mathcal{F}}_{i-\frac{1}{2}, j}=\frac{1}{2} \sum_{p=1}^{m_{w}} \operatorname{sign}\left(\lambda_{i-\frac{1}{2}, j}^{p}\right)\left(1-\frac{\Delta \tau}{\Delta \xi}\left|\lambda_{i-\frac{1}{2}, j}^{p}\right|\right) \tilde{\mathcal{W}}_{i-\frac{1}{2}, j}^{p}$

- η-sweeps: we use

$$
\begin{aligned}
& Q_{i j}^{n+1}=Q_{i j}^{*}-\frac{\Delta \tau}{\Delta \eta}\left(\mathcal{G}_{i, j+\frac{1}{2}}^{-}-\mathcal{G}_{i, j-\frac{1}{2}}^{+}\right)-\frac{\Delta \tau}{\Delta \eta}\left(\tilde{\mathcal{G}}_{i, j+\frac{1}{2}}-\tilde{\mathcal{G}}_{i, j-\frac{1}{2}}\right) \\
& \text { with } \quad \tilde{\mathcal{G}}_{i, j-\frac{1}{2}}=\frac{1}{2} \sum_{p=1}^{m_{w}} \operatorname{sign}\left(\lambda_{i, j-\frac{1}{2}}^{p}\right)\left(1-\frac{\Delta \tau}{\Delta \eta}\left|\lambda_{i, j-\frac{1}{2}}^{p}\right|\right) \tilde{\mathcal{W}}_{i, j-\frac{1}{2}}^{p}
\end{aligned}
$$

Numerical Approximation (Cont.)

- Some care should be taken on the limited jump of fluxes $\tilde{\mathcal{W}}^{p}$, for $p=2$ (contact wave), in particular to ensure correct pressure equilibrium across material interfaces
- First order or high resolution method for geometric conservation laws ? Their effect to the grid uniformity,

Numerical Examples

- 2D Riemann problem
- Underwater explosion
- Shock-bubble interaction
- Helium bubble case
- Refrigerant bubble case

2D Riemann Problem

Initial condition for 4-shock wave pattern

2D Riemann problem (Cont.)

- Numerical contours for density and pressure

2D Riemann problem (Cont.)

- Grid system with $h_{0}=0.99$

$$
\text { time }=0.2
$$

2D Riemann problem (Cont.)

- Euler vs. generalized coord.

Underwater Explosions

- Numerical schlieren images $h_{0}=0.9,800 \times 500$ grid

Underwater Explosions

- Numerical schlieren images $h_{0}=0.9,800 \times 500$ grid

Underwater Explosions

- Numerical schlieren images $h_{0}=0.9,800 \times 500$ grid

Underwater Explosions

- Numerical schlieren images $h_{0}=0.9,800 \times 500$ grid

Underwater Explosions

- Numerical schlieren images $h_{0}=0.9,800 \times 500$ grid

Underwater Explosions (Cont.)

- Grid system (coarsen by factor 5) with $h_{0}=0.9$

Underwater Explosions (Cont.)

- Grid system (coarsen by factor 5) with $h_{0}=0.9$

Underwater Explosions (Cont.)

- Grid system (coarsen by factor 5) with $h_{0}=0.9$

Underwater Explosions (Cont.)

- Grid system (coarsen by factor 5) with $h_{0}=0.9$

Underwater Explosions (Cont.)

- Grid system (coarsen by factor 5) with $h_{0}=0.9$

Underwater Explosions (Cont.)

- Volume tracking \& interface capturing results
a) Density

Underwater Explosions (Cont.)

- Generalized curvilinear grid: single bubble animation
- Cartesian grid: multiple bubble animation

Shock-Bubble (Helium) Interaction

- Numerical schlieren images: $h_{0}=0.5,600 \times 400$ grid

Shock-Bubble (Helium) Interaction

- Numerical schlieren images: $h_{0}=0.5,600 \times 400$ grid
$\mathrm{t}=0.02$

Shock-Bubble (Helium) Interaction

- Numerical schlieren images: $h_{0}=0.5,600 \times 400$ grid
$t=0.08$

Shock-Bubble (Helium) Interaction

- Numerical schlieren images: $h_{0}=0.5,600 \times 400$ grid
$\mathrm{t}=0.16$

Shock-Bubble (Helium) Interaction

- Numerical schlieren images: $h_{0}=0.5,600 \times 400$ grid
$t=0.35$

Shock-Bubble (Helium) (Cont.)

- Grid system (coarsen by factor 5) with $h_{0}=0.5$

Shock-Bubble (Helium) (Cont.)

- Grid system (coarsen by factor 5) with $h_{0}=0.5$

Shock-Bubble (Helium) (Cont.)

- Grid system (coarsen by factor 5) with $h_{0}=0.5$

Shock-Bubble (Helium) (Cont.)

- Grid system (coarsen by factor 5) with $h_{0}=0.5$

Shock-Bubble (Helium) (Cont.)

- Grid system (coarsen by factor 5) with $h_{0}=0.5$

Shock-Bubble (Refrigerant) Interactio

- Numerical schlieren images: $h_{0}=0.5,300 \times 200$ grid

- Numerical schlieren images: $h_{0}=0.5,300 \times 200$ grid
$t=0.02$

Shock-Bubble (Refrigerant) Interactio

- Numerical schlieren images: $h_{0}=0.5,300 \times 200$ grid
$t=0.08$

Shock-Bubble (Refrigerant) Interactio

- Numerical schlieren images: $h_{0}=0.5,300 \times 200$ grid

Shock-Bubble (Refrigerant) Interactio

- Numerical schlieren images: $h_{0}=0.5,300 \times 200$ grid

Shock-Bubble (R22) (Cont.)

- Grid system (coarsen by factor 5) with $h_{0}=0.5$

Shock-Bubble (R22) (Cont.)

- Grid system (coarsen by factor 5) with $h_{0}=0.5$

Shock-Bubble (R22) (Cont.)

- Grid system (coarsen by factor 5) with $h_{0}=0.5$

Shock-Bubble (R22) (Cont.)

- Grid system (coarsen by factor 5) with $h_{0}=0.5$

Shock-Bubble (R22) (Cont.)

- Grid system (coarsen by factor 5) with $h_{0}=0.5$

Three Space Dimensions

Euler equations for inviscid compressible flow
$\frac{\partial}{\partial t}\left(\begin{array}{c}\rho \\ \rho u \\ \rho v \\ \rho w \\ \rho E\end{array}\right)+\frac{\partial}{\partial x}\left(\begin{array}{c}\rho u \\ \rho u^{2}+p \\ \rho u v \\ \rho u w \\ \rho E u+p u\end{array}\right)+\frac{\partial}{\partial y}\left(\begin{array}{c}\rho v \\ \rho u v \\ \rho v^{2}+p \\ \rho v w \\ \rho E v+p v\end{array}\right)+\frac{\partial}{\partial z}\left(\begin{array}{c}\rho w \\ \rho u w \\ \rho v w \\ \rho w^{2}+p \\ \rho E w+p w\end{array}\right)=\psi$
$E=e+\left(u^{2}+v^{2}+w^{2}\right) / 2, \quad e(\rho, p)$: internal energy ψ : source terms (geometrical, gravitational, \& so on)

Three Space Dimensions (Cont.)

Introduce transformation $(t, x, y, z) \rightarrow(\tau, \xi, \eta, \zeta)$ via

$$
\left(\begin{array}{c}
d t \\
d x \\
d y \\
d z
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
U & A_{1} & B_{1} & C_{1} \\
V & A_{2} & B_{2} & C_{2} \\
W & A_{3} & B_{3} & C_{3}
\end{array}\right)\left(\begin{array}{l}
d \tau \\
d \xi \\
d \eta \\
d \zeta
\end{array}\right)
$$

where
$\vec{Q}=(U, V, W)$: grid velocity

- $\vec{Q}=0$ Eulerian case
- $\vec{Q}=(u, v, w)$ Lagrangian case
A_{i}, B_{i}, C_{i} : geometric variables, $i=1,2,3$

Three Space Dimensions (Cont.)

Inverse transformation $(\tau, \xi, \eta, \zeta) \rightarrow(t, x, y, z)$ reads

$$
\left(\begin{array}{l}
d \tau \\
d \xi \\
d \eta \\
d \zeta
\end{array}\right)=\frac{1}{J}\left(\begin{array}{cccc}
J & 0 & 0 & 0 \\
J_{01} & J_{11} & J_{21} & J_{31} \\
J_{02} & J_{12} & J_{22} & J_{32} \\
J_{03} & J_{13} & J_{23} & J_{33}
\end{array}\right)\left(\begin{array}{l}
d t \\
d x \\
d y \\
d z
\end{array}\right), \quad J=\left|\begin{array}{lll}
A_{1} & B_{1} & C_{1} \\
A_{2} & B_{2} & C_{2} \\
A_{3} & B_{3} & C_{3}
\end{array}\right|
$$

where

$$
\begin{array}{ll}
J_{11}=B_{2} C_{3}-B_{3} C_{2}, & J_{21}=C_{1} B_{3}-B_{1} C_{3}, \\
J_{12}=C_{2} A_{3}-A_{2} C_{3}, & J_{22}=A_{1} C_{3}-C_{1}-C_{1} B_{2} \\
J_{13}=A_{2} B_{3}-B_{2} A_{3}, & J_{33}=B_{1} A_{3}-A_{1} B_{3}, \\
J_{33}=A_{1} A_{1} B_{2}-B_{1} A_{2} \\
J_{01} & =-\left(U J_{11}+V J_{21}+W J_{31}\right), \\
J_{03} & =-\left(U J_{13}+V J_{23}+W J_{33}\right)
\end{array}
$$

Three Space Dimensions (Cont.)

Euler equations in generalized curvilinear coordinates

$$
\frac{\partial}{\partial \tau}\left(\begin{array}{c}
\rho J \\
\rho J u \\
\rho J v \\
\rho J w \\
\rho J E
\end{array}\right)+\frac{\partial}{\partial \xi}\left(\begin{array}{c}
\rho \mathcal{U} \\
\rho u \mathcal{U}+p J_{11} \\
\rho v \mathcal{U}+p J_{21} \\
\rho w \mathcal{U}+p J_{31} \\
\rho E \mathcal{U}+p \mathcal{X}
\end{array}\right)+\frac{\partial}{\partial \eta}\left(\begin{array}{c}
\rho \mathcal{V} \\
\rho u \mathcal{V}+p J_{12} \\
\rho v \mathcal{V}+p J_{22} \\
\rho w \mathcal{V}+p J_{32} \\
\rho E \mathcal{V}+p \mathcal{Y}
\end{array}\right)+\frac{\partial}{\partial \zeta}\left(\begin{array}{c}
\rho \mathcal{W} \\
\rho u \mathcal{W}+p J_{13} \\
\rho v \mathcal{W}+p J_{23} \\
\rho w \mathcal{W}+p J_{33} \\
\rho E \mathcal{W}+p \mathcal{Z}
\end{array}\right)=\psi
$$

where

$$
\begin{aligned}
& \mathcal{U}=(u-U) J_{11}+(v-V) J_{21}+(w-W) J_{31}, \quad \mathcal{X}=u J_{11}+v J_{21}+w J_{31} \\
& \mathcal{V}=(u-U) J_{12}+(v-V) J_{22}+(w-W) J_{32}, \quad \mathcal{Y}=u J_{12}+v J_{22}+w J_{32} \\
& \mathcal{W}=(u-U) J_{13}+(v-V) J_{23}+(w-W) J_{33}, \quad \mathcal{Z}=u J_{13}+v J_{23}+w J_{33}
\end{aligned}
$$

Three Space Dimensions (Cont.)

Geometrical conservation laws
$\frac{\partial}{\partial \tau}\left(\begin{array}{l}A_{1} \\ A_{2} \\ A_{3} \\ B_{1} \\ B_{2} \\ B_{3} \\ C_{1} \\ C_{2} \\ C_{3}\end{array}\right)+\frac{\partial}{\partial \xi}\left(\begin{array}{c}-U \\ -V \\ -W \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right)+\frac{\partial}{\partial \eta}\left(\begin{array}{c}0 \\ 0 \\ 0 \\ -U \\ -V \\ -W \\ 0 \\ 0 \\ 0\end{array}\right)+\frac{\partial}{\partial \zeta}\left(\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -U \\ -V \\ -W\end{array}\right)=0$

Grid-Velocity Selection

- Pseudo-Lagrangian like

$$
(U, V, W)=h_{0}(u, v, w), \quad h_{0} \in(0,1)
$$

- Mesh-volume preserving: $\partial J / \partial t=0$
- Grid-angle preserving
- Other novel approach

Three Space Dimensions (Cont.)

In summary, Euler equations in generalized coord. takes

$$
\frac{\partial q}{\partial t}+\frac{\partial f(q, \Xi)}{\partial \xi}+\frac{\partial g(q, \Xi)}{\partial \eta}+\frac{\partial h(q, \Xi)}{\partial \zeta}=\psi
$$

where

$$
\begin{aligned}
& q=\left(\rho J, \rho J u, \rho J v, \rho J w, \rho J E, A_{i}, B_{i}, C_{i}\right) \\
& f(q, \Xi)=\left(\rho \mathcal{U}, \rho u \mathcal{U}+p J_{11}, \rho v \mathcal{U}+p J_{21}, \rho w \mathcal{U}+p J_{31}, \rho E \mathcal{U}+p \mathcal{X}, \cdots\right) \\
& g(q, \Xi)=\left(\rho \mathcal{V}, \rho u \mathcal{V}+p J_{12}, \rho v \mathcal{V}+p J_{22}, \rho w \mathcal{V}+p J_{32}, \rho E \mathcal{V}+p \mathcal{Y}, \cdots\right) \\
& h(q, \Xi)=\left(\rho \mathcal{W}, \rho u \mathcal{W}+p J_{13}, \rho v \mathcal{W}+p J_{23}, \rho w \mathcal{W}+p J_{33}, \rho E \mathcal{W}+p \mathcal{Z}, .\right. \\
& \text { with } \Xi: \text { grid metrics \& equation of state } p=p(\rho, e)
\end{aligned}
$$

Conclusion

- Have described fluid-mixture type algorithm in generalized moving-curvilinear grid
- Have shown results in 2D to demonstrate feasibility of method for practical problems

Conclusion

- Have described fluid-mixture type algorithm in generalized moving-curvilinear grid
- Have shown results in 2D to demonstrate feasibility of method for practical problems
- Future direction
- Efficient \& accurate grid movement conditions
- 3D computer program realization (have done mostly)
- Weakly compressible flow
- . .

Conclusion

- Have described fluid-mixture type algorithm in generalized moving-curvilinear grid
- Have shown results in 2D to demonstrate feasibility of method for practical problems
- Future direction
- Efficient \& accurate grid movement conditions
- 3D computer program realization (have done mostly)
- Weakly compressible flow
- . .

Thank You

Automatic Time-Marching Grid

- Supersonic NACA0012 over heavier gas

Automatic Time-Marching Grid

- Supersonic NACA0012 over heavier gas

Automatic Time-Marching Grid

- Supersonic NACA0012 over heavier gas
c)

