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Micro�uidics & Level Set Micro�uidics

Micro�uidics : What ?

I study of multi�uid �ows

I channels the width of a single human hair

I sections : 10 - 100 µm
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Micro�uidics & Level Set Micro�uidics

Micro�uidics : Why ?
Allows :

I handling of nanoliters (good if expensive)

I good control of the �ow

➜ reproducibility, monodisperse emulsions

I very fast chemical kinetics : 10−4 s

Applications :

I genome sequencing

I droplets = chemical-reactors

Motivations :

I simulate bi�uid �ows in microchannels

I explore/improve mixing processes
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Micro�uidics & Level Set Micro�uidics

Speci�cities of the problem

Experimental Framework :

I geometry : cross of channels

I device to create droplets

I typical speed : 0.01 - 1 m/s

Physical speci�cities :

I low Reynolds number Re = 0.1 - 1

➜ inertia forces negligible

I surface tension predominates

➜ curvature-driven �ows, �simple� shape

I dynamics with vortices
Courtesy G.

Cristobal (LOF)
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Micro�uidics & Level Set Micro�uidics

Surface tension

I What ? A force at the interface between 2 �uids

I Linked to the curvature of the interface

I Thus, predominant in Micro�uidics

E�ect of surface tension : Minimize the interface energy

"surface" minimization

surface tension forces
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Micro�uidics & Level Set Level Set model

Mathematical modelling (1)

Hypotheses

I immiscible bi�uid �ows

I Reynolds < 1

I �uids : incompressible, viscous, homogeneous, newtonian

I sharp-interface : zero interfacial thickness

I constant surface tension

➜ Flow equation : Stokes

I moving interface & topological changes (droplets)

➜ Interface capturing by Level Set method
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Micro�uidics & Level Set Level Set model

Mathematical modelling (2)

Based on Sussman et al. (1994)

(S)


div(2ηDu)−∇p = σ κ δ(φ) n

div(u) = 0
+ B.C.

η = η1 + (η2 − η1)H(φ) n =
∇φ

|∇φ|

∣∣∣∣
φ=0

κ = ∇.

(
∇φ

|∇φ|

)∣∣∣∣
φ=0

(T )

{
φt + u .∇φ = 0

+ B.C. + I.C.
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Micro�uidics & Level Set Level Set model

Geometry and Boundary Conditions

Geometry : 2D simulations on a cross

Boundary Conditions

I wall : {
u.τ = αus(η) + βLs(η)∂(u.τ)

∂nw
u.nw = 0

interface touches the wall or not

I classical B.C. at inlet & outlets
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Micro�uidics & Level Set Level Set model

Level Set Tools (1)

(a) Curvature
Easy handling thanks to Level Set function : κn = div ∇φn

|∇φn|

(b) Reinitialization
Better results when keeping φ a distance function : |∇φ| = 1

I dτ + sign(φ)(|∇d | − 1) = 0 with I.C. d |τ=0 = φ

I Fast Marching : direct solving of eikonal equation

(c) Mass correction

I translation of φ to enforce mass conservation
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Micro�uidics & Level Set Level Set model

Level Set Tools (2)

Why does Level Set method well lend itself to Micro�uidics ?

Because interfaces' shape

I are close to circular shape

I are not thin compared to the computational domain

Thus, we can use legitimately

I reinitialization

I mass correction by translation of φ

to achieve.

I good mass conservation

I accurate curvature computation
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Stability Analysis Numerical resolution

Discretization - Solvers

Time

κn = div ∇φn
|∇φn| ,

−div(2η(φn)(Du)n+1) +∇pn+1 = −σκn∇(H(φn)), (1)

div
(
un+1) = 0, (2)

φn+1−φn
∆t + un+1 · ∇φn = 0. (3)

Space
Finite-Volume method on staggered grid (cartesian)

Solvers

I Stokes : Augmented Lagrangian for div(u) = 0

I Transport : RK 1,2 or 3 (time), WENO 5 scheme (space)
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Stability Analysis In�uence of surface tension

Time step is restricted by convective, viscous and source terms

Previous model and its discretization are consistant and follow Brackbill et
al. approach of 1992 :

surface tension handling by CSF method

Today, most of formulations based on CSF method use the following
surface tension-induced stability condition :

∆tσ ∼
√
C

( ρ
σ

)
∆x3 (Brackbill et al., 1992)

Problem for our model : there is no density.

We therefore present a new stability condition for low �ow velocities.

P. Vigneaux (IMB) Stability condition & Surface tension



Stability Analysis In�uence of surface tension

Proposition

Assume that (Navier-Stokes) (2) (3) is discretized in time by an explicit
discretization of the surface tension term. Then, a numerical scheme,
associated to such a time discretization and all space discretizations, is
stable under the condition

∆t ≤ min (∆tc ,∆tσ) , with ∆tc = c1‖u‖−1
L∞(Ω)∆x and ∆tσ = c2

η

σ
∆x

(4)
where ∆t is the time step, ∆x is space step of the discretization, and c1,
c2 do not depend on the data of the problem.
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Stability Analysis In�uence of surface tension

Sketch of the proof 1/4

First constraint : ∆t ≤ c1‖u‖−1
L∞(Ω)∆x is the standard CFL condition

induced by transport term.

Second condition
I is induced by the surface tension term
I avoids oscillatory behaviour of the interface around an asymptotic

shape of interface, due to the explicit discretization of the surface
tension term

We perform the analysis on the continuous problem instead of the discrete
problem, assuming that the numerical scheme approximates consistently
the continuous problem.

Keypoint of the analysis : Estimation of the perturbed velocity
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Stability Analysis In�uence of surface tension

Sketch of the proof 2/4

Stability problem if standard CFL is used

t=0
t=5dt

t={10, 15, 20}dt

wall

oscillations
in time

interface at t n

interface at t n+1

~    x∆

asymptotic shape

u n

un+1

Droplet is globally immobile in the channel
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Stability Analysis In�uence of surface tension

Sketch of the proof 3/4

An explicit time discretization of the source term obliges to consider
su�ciently small time step so that the displacement (during the time step)
of the interface is smaller than the size δ of the perturbation of the
interface. Oscillations are removed if :

u pert

asymptotic interface

perturbed interface

δ

L
∆tσ = δ

‖w‖L∞(Ω)
, i.e.

Energy estimate + Hypothesis : ‖∇w‖L2(Ω) ∼ 1
L‖w‖L2(Ω) ➜ velocity

∆tσ ≤ c ′
η

σ

L

1 + ‖∂τκ0‖L∞(Γ0)
L3
ε

, (5)

where c ′ does not depend on the physical parameters.
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Stability Analysis In�uence of surface tension

Sketch of the proof 4/4

As the wavelength L is upper bounded and ε is chosen of size ∆x , this
condition is restrictive for the smaller wavelength admissible in the
numerical process. We are then concerned with L ∼ ∆x , and it reads :

∆tσ ∼
η

σ
∆x . (6)

Remark 1 :
If the �ow velocity is very low then the previous condition on the time step
is very restrictive since ∆tc � ∆tσ (e.g. in micro�uidics : ∆tc = 100∆tσ ).

Remark 2 :
Other way to relax the stability constraint

I semi-implicit treatment of surface tension term, cf. Hysing 2006
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Stability Analysis In�uence of surface tension

Numerical con�rmation

Existence of the constant : c2 = 8 (left) et c2 = 9 (right)

X

Y

4E-05 6E-05 8E-05 0.0001 0.00012 0.00014
6E-05

8E-05

1E-04

0.00012

0.00014

0.00016
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Speed up & results Splitting approach

Another approach to reduce numerical cost 1/2

Observation :

Micro�uidics : in straight channel, asymptotical interfaces are obtained
fastly and exist on �long� time

Idea :

Make the most of stationary shape of droplets

How ?

By working in the drop's frame of reference, with a splitting
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Speed up & results Splitting approach

Another approach to reduce numerical cost 2/2

Splitting : work in the drop's frame of reference

Algorithm :

(a) Find the speed of translation of the droplet : ud

(b) Iterative step : shape correction of the interface{
Stokes⇒ utot
Transport : φt + (utot − udU) .∇φ = 0 with ∆t = min(∆tσ,∆tc)

(c) �One shot� step : translation of the droplet

φt + udU .∇φ = 0 with ∆tinj = ∆x/max(uinj)
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Speed up & results Various mixing states

Numerical results

Wall

movie : No instability
Global �ow
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Speed up & results Various mixing states

Numerical results

Wall

movie : No instability
Drop's frame of reference
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Speed up & results Various mixing states

Various mixing states : con�ned, slow

Frame OR : global, ... ... droplet
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Speed up & results Various mixing states

Trains of droplets & collision

Train

movie

Collision

movie
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Conclusions

Conclusions

I Level Set method : well adapted to Micro�uidics where surface tension
is predominant

I Proposition of a new stability condition

I Agreement between simulations and physical experiments

➜ study of mixing inside the droplets

Current and future work

I full axisymetric 3D
I study near the channel's wall

I which �uid dynamics ?
I other boundary condition ?
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