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General setting

I Fluid carrier phase C ,
compressible continuum, inviscid, isentropic/isothermal,
possibly irrotational

I Disperse phase D
spherical particles with simple properties

I Examples: Spray droplets, bubbles, fluidized beds

I Aim: Well-posed systems of equations
Two aspects of modeling:
Mixture theories and averaging methods
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Mixture balance laws

Continuum mixture theory
Direct modeling of phases with conservation laws,
volume fraction,
conservation laws of overall mixture
Truesdell/Toupin 1960, Baer/Nuntiato 1986

Averaging methods
Drew 1983, Drew/Passman 1998

I Ensemble averaging Saurel 1998, Saurel/Abgrall 1999
I Time averaging Ishii 1975
I Volume averaging

Nigmatulin 1979, Stewart/Wendroff 1984
seems to be most popular approach,
justified by homogeneity and ergodicity assumptions
Nemat-Nasser/Hori 1999, Torquato 2002
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Window function

Voinov/Petrov 1975, Rydzewski 1985

ball Ba(x) = {x ′ ∈ R3 | |x ′ − x | < a },

radius a > 0, volume Va = 4π
3 a3

Window function

χ
a (x) =

{ 1
Va

x ∈ Ba(0)

0 otherwise

alternatively: smoothing by Friedrichs mollifier

Gerald Warnecke Multi-phase Mixtures



Introduction
Volume averaging

Transport equations
Microscopic balance laws
Macroscopic balance laws

Conclusions

Window function
Disperse phase
Specific volume averaging
Averaged physical variables

Disperse phase

Any bounded subset of R3 intersects at most finitely many balls

Bα(t) = {x ∈ R3 | |x − qα(t)| < rα(t)}

containing solely the dispersed phase D.

Radius rα(t) > 0 with rα(t) � a

midpoints qα(t) ∈ R3, volume Vα(t) = 4π
3 rα(t)3

Complement

ΩC (t) = R3\
⋃
α

Bα(t)

filled completely with only the carrier fluid C .
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Disperse phase cont’d

surface points qα(t) + Rα(t)

mass mα(t),

mass density ρα(t) = mα(t)/Vα(t)

midpoint velocity vα(t) = q̇α(t)

boundary velocity wα(t) = q̇α(t) + Ṙα(t)

Volume fraction of disperse phase

c(t, x) =
∑
α

χ
a (x − qα(t))Vα(t)
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Specific volume averaging

Ψ carrier fluid variable (no subscript!)

Ψα dispersed phase variable

Spatial carrier fluid average

(1− c)Ψ(t, x) =

∫
ΩC (t)

Ψ(t, x ′) χ
a (x − x ′) dx ′

Spatial dispersed phase average

cΨα(t, x) =
∑
α

Ψα(t) χ
a (x − qα(t))Vα(t)

conservative
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Averaged physical variables

Mass density ρα, velocity vα of dispersed balls,

mass density ρ, velocity v of carrier fluid

Averaged mass densities and momenta

cρα(t, x) =
∑
α

mα(t) χ
a (x − qα(t)),

cραvα(t, x) =
∑
α

mα(t)q̇α(t) χ
a (x − qα(t)),

(1− c)ρ(t, x) =

∫
ΩC (t)

ρ(t, x ′) χ
a (x − x ′) dx ′,

(1− c)ρv(t, x) =

∫
ΩC (t)

ρ(t, x ′)v(t, x ′) χ
a (x − x ′) dx ′.
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Macroscopic physical variables

Macroscopic mass densities and velocities

Disperse phase

ρD(t, x) = ρα(t, x) and vD(t, x) =
ραvα

ρα

(t, x) =
ραvα

ρD
(t, x),

Carrier phase

ρC (t, x) = ρ(t, x) and vC (t, x) =
ρv

ρ
(t, x) =

ρv

ρC
(t, x).
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Global conservation
Globally conserved variable Ψ(t, ·) ∈ L1(ΩC (t) and Ψα for finitely
many α, e.g. mass, momentum∫

R3

(1− c)Ψ(t, x) + cΨα(t, x) dx =

∫
R3

[ ∫
ΩC (t)

Ψ(t, x ′) χ
a (x − x ′) dx ′

+
∑
α

Ψα(t) χ
a (x − qα(t))Vα(t)

]
dx

=

∫
ΩC (t)

Ψ(t, x ′)

∫
R3

χ
a (x − x ′) dx dx ′

+
∑
α

Ψα(t)

∫
R3

χ
a (x − qα(t)) dx Vα(t)

=

∫
ΩC (t)

Ψ(t, x ′) dx ′ +
∑
α

Ψα(t)Vα(t)
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Disperse phase transport

Disperse phase transport equation

For any quantity Ψα(t)

averaged quantity Ψα satisfies transport equation

∂cΨα

∂t
(t, x) +∇x · (c Ψαq̇α(t, x)) = c

(
(ΨαVα)̇

Vα

)
(t, x)
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Reynolds Transport Theorem

Ψ : R× RN → R continuously differentiable

Xt : RN → RN continuously differentiable transformations

trajectories y(t) = Xt(y0), velocity field u(t, y) = ẏ(t)

Ω(t) any bounded control volume

d

dt

∫
Ω(t)

Ψ(t, y) dy =

∫
Ω(t)

[
∂Ψ

∂t
(t, y) + ∇y ·

(
Ψ(t, y) · u(t, y)

)]
dy

=

∫
Ω(t)

∂Ψ

∂t
(t, y) dy +

∮
∂Ω(t)

(
Ψ(t, y)u(t, y)

)
· ν(t) dS
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Carrier fluid transport equation

Microscopic balance law

∂

∂t
Ψ(t, x ′) +∇x ′ · F(t, x ′) = G (t, x ′)

Iα(t, x) = ∂Bα(t) ∩ Ba(x) , να outer unit normal vector

wα(t) velocity of ∂Bα(t)

∂

∂t
(1− c)Ψ(t, x) +∇x · (1− c)F(t, x)

=
∑
α

∮
Iα(t,x)

[
F(t, x ′)−Ψ(t, x ′)wα

]
· να

χ
a (x − x ′) dα′

+ (1− c)G (t, x)
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Newton’s law with mass change

Closed system: Rocket R emitting burnt gases B

mR rocket mass, mB burnt gas mass

burning rate −ṁR

v constant speed relative to rocket of gas emitted in direction of
axis parallel to movement of rocket

vR rocket speed gives vB = vR − v burnt gas speed

Mass conservation ṁR(t) + ṁB(t) = 0

Total momentum of burnt gas

mBvB = −
∫ t

t0

ṁR(τ)(vR(τ)− v) dτ
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Momentum conservation

0 =
d

dt
(mRvR + mBvB) = ṁRvR + mR v̇R −

d

dt

∫ t

t0

ṁR(τ)(vR(τ)− v) dτ

=ṁRvR + mR v̇R − ṁR(vR − v) = mR v̇R + ṁRv

Implies
mR(t)v̇R(t) = −ṁR(t)v(t)

thrust of rocket is Θ = −ṁRv and

d

dt
(mRvR) = ṁRvR + mR v̇R = ṁR(vR − v) = ṁRvB

Gerald Warnecke Multi-phase Mixtures



Introduction
Volume averaging

Transport equations
Microscopic balance laws
Macroscopic balance laws

Conclusions

Disperse phase
Carrier phase

Newton’s law of motion

Particle = rocket

Particles with mass loss or gain
j = 1, 2, 3

Momentum equation

(mα(t)q̇j
α(t))˙ = −

∮
Iα

pν j
αdα′ + mαg j +

ṁα(t)

4πrα(t)2

∮
Iα

v j(t, x ′) dα′
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Disperse phase
Carrier phase

Microscopic conservation laws, carrier phase

Compressible inviscid, ideal, polytropic, isentropic (isothermal) fluid

gravitational field

mass density ρ

pressure p

velocity field v

Five equations: Four conservation laws and one equation of state

Gerald Warnecke Multi-phase Mixtures



Introduction
Volume averaging

Transport equations
Microscopic balance laws
Macroscopic balance laws

Conclusions

Disperse phase
Carrier phase

Conservation laws

Conservation of mass

∂ρ

∂t
+∇x · (ρ v) = 0

Conservation of momentum

∂(ρv j)

∂t
+∇x · (ρv j v) +

∂p

∂xj
= ρg j j = 1, 2, 3

g j = −gδ3j gravitational force

p = p0

ργ
0
ργ with γ adiabatic constant

or p = a2ρ with local sound speed a
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Balance of volume fraction

Discrete transport equation: Ψα = 1

∂c

∂t
(t, x) +∇x · (c q̇α(t, x)) = c

(
V̇α

Vα

)
(t, x)

Cold closure assumption vC = v and vD = q̇α

∂c

∂t
(t, x) +∇x · (c vD(t, x)) = c

(
V̇α

Vα

)
(t, x)

Note that
V̇α

Vα
= 3

ṙα
rα
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Mass balances

Carrier phase: Ψ = ρ, F = ρv

∂

∂t
[(1− c)ρC ](t, x) +∇x · [(1− c)ρCvC ](t, x)

=
∑
α

∮
Iα(t,x)

ρ(t, x ′)
[
v(t, x ′)−wα(t)

]
· να

χ
a (x − x ′) dα′

Disperse phase: Ψα(t) = mα(t)/Vα(t)

∂cρD

∂t
(t, x) +∇x · (c ρDvD)(t, x) = c

(
ṁα

Vα

)
(t, x)
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Mass balance at Interface
2a > rα(t) for all α, x ′ = qα(t) + Rα(t) ∈ Iα(t, x)

c

(
ṁα

Vα

)
(t, x) =

∑
α

ṁα
χ

a (x−(qα(t)+Rα(t)) =
∑
α

ṁα
χ

a (x−x ′).

Interface mass balance∮
Iα(t,x)

ρ(t, x ′)
[
v(t, x ′)−wα(t)

]
· να

χ
a (x − x ′) dα′ = −ṁα

χ
a (x − x ′)

=− ṁα

Va

or ∮
Iα(t,x)

ρ(t, x ′)
[
v(t, x ′)−wα(t)

]
· να dα′ = −ṁα
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Momentum carrier phase

We set

(1− c)pC (t, x) =

∫
ΩC (t)

p(t, x ′) χ
a (x − x ′) dx ′.

Carrier phase Ψ = ρv j , F = ρv jv + ejp, G j = ρg j j = 1, 2, 3

∂

∂t
[(1− c)ρCv j

C ](t, x) +∇x · [(1− c)ρv jv](t, x)

+
∂(1− c)pC

∂xj
− (1− c)ρCg j

=
∑
α

(∮
Iα(t,x)

ρv j(t, x ′)[v(t, x ′)−wα] · να
χ

a (x − x ′) dα′

+

∮
Iα(t,x)

p(t, x ′)ν j
α

χ
a (x − x ′) dα′

)
.
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Mass
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Closure problem

Momentum disperse phase

Disperse phase Ψα(t) = ρα(t)q̇α(t) = ρα(t)vα(t), j = 1, 2, 3

∂cρDv j
D

∂t
(t, x) +∇x · (c ρα(t)v j

αvα)(t, x) =c

(
(ραq̇αVα)̇

Vα

)
(t, x)

=c

(
(mαq̇α)̇

Vα

)
(t, x).
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Interface balance

− ṁα(t)

4πrα(t)2

∮
Iα

v j(t, x ′)dα′ =

∮
Iα

ρv j(t, x ′)[v(T , x ′)−wα] · να dα′.
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Mass
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Terms to be determined

I Cold closure assumption vC = v and vD = q̇α

I Interfacial terms

V̇α

Vα
,

ṁα

Vα
,

(mαq̇α)̇

Vα

I Momentum fluxes disperse phase and carrier phase

ρα(t)v j
αvα, ρv jv

Frequently taken

ρα(t)v j
αvα = ρDv j

DvD , ρv jv = ρCv j
CvC
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Future work and cooperations within
DFG-CNRS research group

I Closure of system for phase transitions

I Comparison with existing models for phase transitions

I Inclusion of energy balance

I Numerical computations on test cases relevant to research
group
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