Année universitaire 2016-2017

SEMESTRE 2 SESSION 1 DE PRINTEMPS

Université

Parcours: Mathématiques/Informatique Code UE: 4TPM201U

Épreuve : Algèbre linéaire 1

15 mai 2017 : (durée : 3h)

Documents interdits

Responsables de l'épreuves : C. Bachoc et R. Coulangeon

Collège Sciences et Technologies

L'épreuve se compose de quatre exercices indépendants. Toutes les réponses doivent être justifiées.

Exercice 1.

- 1. Déterminer le noyau et le rang des matrices $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix}$.
- 2. Soit a un réel fixé. On considère la matrice

$$M = \begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}$$

ainsi que les vecteurs

$$\vec{u_1} = (1, 1, 1)$$
, $\vec{u_2} = (1, -1, 0)$ et $\vec{u_3} = (1, 0, -1)$.

Enfin, on note f l'application linéaire de \mathbb{R}^3 dans lui-même dont la matrice dans la base canonique de \mathbb{R}^3 est égale à M.

- (a) Montrer que la famille $\mathscr{B} = (\vec{u_1}, \vec{u_2}, \vec{u_3})$ est une base de \mathbb{R}^3 .
- (b) Calculer les images par f de \vec{u}_1 , \vec{u}_2 , et \vec{u}_3 et en déduire la matrice N de f dans la base \mathscr{B} .
- (c) On note \mathcal{B}_0 la base canonique de \mathbb{R}^3 . Déterminer la matrice de passage P de \mathcal{B}_0 à \mathcal{B} et calculer son inverse.

1

- (d) Quelle relation y a-t-il entre N, P, P^{-1} et M?
- (e) Déterminer, en fonction de a, la dimension du noyau de f.

Exercice 2.

Soit A une matrice carrée de taille 3 triangulaire supérieure, c'est-à-dire de la forme :

$$A = \begin{pmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{pmatrix}$$

avec $(a, b, c, d, e, f) \in \mathbb{R}^6$.

- 1. Montrez que si a, d ou f est nul, le rang de A est strictement inférieur à 3.
- 2. Montrez qu'inversement, si a, d et f sont non nuls, alors A est inversible.
- 3. Dans cette question, on suppose que a = d = f = 1. Calculez l'inverse de A.
- 4. Donnez deux matrices A_1 et D telles que $A = A_1D$, où A_1 est triangulaire supérieure avec ses coefficients diagonaux égaux à 1, et D est diagonale.
- 5. Lorsque $adf \neq 0$, calculez l'inverse de A en vous aidant des deux questions précédentes.

Exercice 3. Soit f une application linéaire de \mathbb{R}^3 dans \mathbb{R}^3 telle que $f^2 = 0$, c'est-à-dire qu'on a la propriété :

$$\forall \vec{u} \in \mathbb{R}^n, f(f(\vec{u})) = 0.$$

- 1. Montrer que $\operatorname{Im} f \subset \operatorname{Ker} f$.
- 2. En utilisant le théorème du rang, montrer que dim $\operatorname{Im} f \leq 1$ et que dim $\operatorname{Ker} f \geq 2$.
- 3. On suppose désormais que l'application f n'est pas identiquement nulle, ou autrement dit que $\operatorname{Ker} f \neq \mathbb{R}^3$.
 - (a) Montrer que dim $\operatorname{Ker} f = 2$ et dim $\operatorname{Im} f = 1$.
 - (b) Soit $\vec{u} \notin \text{Ker } f$. Montrer qu'il existe $\vec{v} \in \text{Ker } f$ tel que la famille $\mathscr{B} = (f(\vec{u}), \vec{v}, \vec{u})$ soit une base de \mathbb{R}^3 .
 - (c) Quelle est la matrice de f dans la base \mathcal{B} précédente?

Exercice 4.

- 1. Soit a = 138, b = 102, c = 110. On note d = pgcd(a, b) et d' = pgcd(d, c).
 - (a) Appliquez l'algorithme d'Euclide étendu à a et b pour calculer d ainsi qu'une relation de Bézout entre a et b.
 - (b) Faites de même avec d et c.
 - (c) En déduire des entiers u, v, w tels que d' = au + bv + cw.
 - (d) Donnez la liste des diviseurs de a, b et c, puis vérifier que leur plus grand diviseur commun est égal à d'.
- 2. Soit a, b et c trois entiers naturels non nuls quelconques. On note $D = \operatorname{pgcd}(a, b, c)$ leur plus grand diviseur commun. On note $d = \operatorname{pgcd}(a, b)$ et $d' = \operatorname{pgcd}(d, c)$.
 - (a) Montrez que D divise d, et en déduire que $D \leq d'$.
 - (b) Montrez que D = d'.
 - (c) Déduire de ce qui précède qu'il existe des entiers u, v, w tels que

$$D = au + bv + cw$$
.