An introduction to symmetric cryptography


## Outline



## Process approach to security

prevention

response




An introduction to symmetric cryptography


An introduction to symmetric cryptography

## Symmetric cryptology: confidentiality

- old cipher systems:
- transposition, substitution, rotor machines
- the opponent and her power
- the Vernam scheme
- A5/1, Bluetooth, RC4
- DES and triple-DES
- AES


## Old cipher systems (pre-1900)

- Caesar cipher: shift letters over k positions in the alphabet ( k is the secret key)

```
THIS IS THE CAESAR CIPHER
```

WKLV LV WKH FDHVDU FLSKHU

- Julius Caesar never changed his key ( $\mathrm{k}=3$ ).


## Cryptanalysis example:

HJAEG JAWFW FNGQW JMKMJ
IKBFH KBXGX GOHRX KNLNK JLCGI LCYHY HPISY LOMOL KMDHJ MDZIZ IQJTZ MPNPM LNEIK NEAJA JRKUA NQOQN MOFGL OFBKB KSLVB ORPRO NPGHM PGCLC LTMWC PSQSP OQHLN OHDMD MUNXD QTRTQ PRIMO RIENE NVOYE RUSUR QSJNP SJFOF OWPZF SVTVS RTKOQ TKGPG PXQAG TWUWT

Old cipher systems (pre-1900) (2)

- Substitutions
- ABCDEFGHIJKLMNOPQRSTUVWXYZ
- MZNJSOAXFQGYKHLUCTDVWBIPER
- Transpositions

| TRANS | ORI S |
| :--- | :--- |
| POSIT | NOTIT |
| IONS | OSANP |

## Assumptions on Eve (the opponent)

- Cryptology = cryptography + cryptanalysis
- Eve knows the algorithm, except for the key (Kerckhoffs's principle)
- increasing capability of Eve:
- knows some information about the plaintxt (e.g., in English)
- knows part of the plaintext
- can choose (part of) the plaintext and look at the ciphertext
- can choose (part of) the ciphertext and look at the plaintext


## Assumptions on Eve (the opponent)

- A scheme is broken if Eve can deduce the key or obtain additional plaintext
- Eve can always try all possible keys till "meaningful" plaintext appears:
a brute force attack
- solution: large key space
- Eve will try to find shortcut attacks (faster than brute force)
- history shows that designers are too optimistic about the security of their cryptosystems


## New assumptions on Eve

- Eve may have access to side channels
- timing attacks
- simple power analysis
- differential power analysis
- differential fault analysis
- electromagnetic interference


## Side channel analysis




An introduction to symmetric cryptography


## Congolese history 101

- Independence of Congo: 30 June 1960
- first president: Kasa Vubu
- first prime minister: Patrice Lumumba
- Tshombé (Katanga)
- Belgium: government, king, industry (UM)
- United Nations, Dag Hammerskjöld
- USA
- USSR


## Congolese history 101 (2)

- 5 September 1960: L fired
- 10 October 1960: L arrested
- 17 January 1961: L transported to Katanga and executed
- US Congress (Church report, 1975)
- No US involvement
- Belgian Parliament: investigation - May 2nd 2000-October 312001
"historians refuse to decipher cryptograms, as this may reveal compromising information"


## Problem (17-09-01)

- 15 telexes of $12 / 1960-2 / 1961$
- Minaf - Rusur: 4 telexes in OTPL
- Minaf -Brazzaville and Minaf -E'ville:
- 11 telexes in "Printex"
- for 5 (part of) the cleartext is known
- for 1 incorrect cleartext is available
- a few "real keys" were known
- "please decrypt within 3 weeks"


## Example (2) \#14

- Brazza 28b (stamp: 15-2-1961)
- Jacques to Nicolas
- Cleartext:
- CONTINUE INTRIGUES INQUIETANTES TANT LEO QU EVILLE JACQUES BISSECT VOUS PRIE VOUS INFORMER DISCR?TEMENT MISSION EXACTE CONFIEE HUBERT STOP INTERESSEYX

Problem: what is this? \#5

- Cryptogram [=14 January 196111.00 h ]
- <AHQNE XVAZW IQFFR JENFV OUXBD LQWDB BXFRZ NJVYB QVGOZ KFYQV GEDBE HGMPS GAZJK RDJQC VJTEB XNZZH MEVGS ANLLB DQCGF PWCVR UOMWW LOGSO ZWVVV LDQNI YTZAA OIJDR UEAAV RWYXH PAWSV CHTYN HSUIY PKFPZ OSEAW SUZMY QDYEL FUVOA WLSSD ZVKPU ZSHKK PALWB SHXRR MLQOK AHQNE 11205 141100>



## How does it work (C-38)

- 6 pins form a 6-bit word
- when a rotor pin encouters a lug, the bar is moved to the left and it shifts the plaintext over one position (non-linear)
- the total number of active bars is k
- the ciphertext is computed as $25-\mathrm{p}+\mathrm{k}$ = involution


## How to identify the right variant?

- 5 characters for false key suggest C-35 or C-36 with 5 rotors
- cryptanalysis was tried but failed
- rotors provide 5-bit address
- weights: 10-8-4-2-1
- very easy to go back from displacement to input address

How to identify the right variant?

- there was some particular behaviour for plaintext/ciphertext pairs with distances 26-25-23-21-19-17

Encryption (1): set up main key

- 131 pins on rotors
- drum: 2 lugs on 27 bars
- once every 2-3 months


## Encryption (2): cleartext \#11

- <tres secret contact pris ce jour avec MANKOVKA ET RUDNICKI COUSIN DE
MANKOWSKI STOP ACCORD PRINCIPE AIDE SEMBLE ACQUIS STOP SUBORDONNE CEPENDANT A EXAMEN SITUATION A EVILLLE PAR RUDNICKI STOP AI SENTIMENT CE DEPLACEMENT PAS OPPORTUN STOP N'ETANT QUE INTERMEDIAIRE JE VOUS DEMANDE SI ACCORD CE VOYAGE STOP DEMANDE REPONSE URGENTE INTERESSE ATTENDANT ICI STOP RAPPELLE DISCRETION NECESSAIRE STOP JULES>

An introduction to symmetric cryptography

## Encrypt (3): prepare cleartext

- repon sewur gente winte resse watte ndant WICIW XXWRA PPELL EWDIS CRETI OWNEC ESSAI REWXX WJULE SWBIS ECTWX XWTRE SECWC ONTAC TKWPI SWCEW JOURW AVECW MANKO VVKAW ETKWX UDNIC KIWCO USINW DEWMA NKOVV SKIWX XWACC ORDWP RINCI PEKWA IDEWS EMBLE WACQU ISWXX WSUBO RDONN EWCEP ENDDA NTWWA WEXAM ENWSI TULTI ONKWA WEVIL LEWPA RWRUD NICKI WXXWA IWSEN TIMEN TWCEW DEPLA CEMEN TWPAS WOPPO RTUNK WXXWN WETAN NTWQU EWINT ERMED IAIRE WJEWV OUSWD EMAND EKWSI WACCO RDWCE WVOYA GEWXX WDEMA NDEWK


## Encryption (4): choose starting

 positions of rotors- choose 5 random letters: EXATF
- real key $=$ starting position rotors (session key)
- encrypt with Playfair [1854]

| G | $X$ | L | N | S |
| :--- | :--- | :--- | :--- | :--- |
| K | H | T | W | O |
| Q | D | E | F | A |
| M | V | I | C | R |
| $Z$ | $B$ | $P$ | U | J |

yields false key: DLEOE (encrypted session key)

## Encryption (4a)

- cleartext EX

| G |  |  |  | S |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| K | H | T | W | O |  |
| Q |  | E | F | A |  |
| M | V | I | C | R |  |
| Z | B | P | U | J |  |

- ciphertext DL


## Encryption (4b)

- cleartext AT

- ciphertext EO

Encryption (4c)

- cleartext F

| G | X | L | N | S |
| :--- | :--- | :--- | :--- | :--- |
| K | H | T | W | O |
| Q | D | E | F | A |
| M | V | I | C | R |
| Z | B | P | U | J |

- ciphertext E

Encryption (4d)

- cleartext AO

| $G$ | $X$ | $L$ | $N$ | $S$ |
| :--- | :--- | :--- | :--- | :--- |
| $K$ | $H$ | $T$ | $W$ | $O$ |
| $Q$ | $D$ | $E$ | $F$ | $A$ |
| $M$ | $V$ | $I$ | $C$ | $R$ |
| $Z$ | $B$ | $P$ | $U$ | $J$ |

- ciphertext OS


## Encryption (4e): alternative

 (1958)- agree beforehand on a session key of 5 random letters: EXATF
- set rotors to this position
- encrypt the letters AAAAA
- the false key (encrypted session key) is the corresponding ciphertext


## Encryption (5): use Printex

- <DLEOE EPEUZ DJWEX HBAAJ TNWRJ AQUCM VJPVI VPWHQ UGIQW THNEO THBXA BVSJE JIOBQ ZMEQH QTNQG WQIUU RFXLF SSTDD QLLTY TPCIF ZNPJN HIMSJ WAUFO RPKFX MHQIM TURPS SKELV AUVQY SMICQ RFAHD YOZKD KXGJY KDYJM HCLSO CHX e e e CHWBP PUVUN LEONF OEYMO FBBMS OSNTV EBLFQ QKCXZ FDYOQ YBSIE HLUAR MNTQW LSMRT BQNAQ VPLOG EIZUH SYDYJ AQLAJ MGUHA NNTCF SSYBM AFJHM TRMQQ AQVQE FHBBZ BBJLN HQKNV XJXHJ VWAPA YVITU ZMXAG ZSPVF XGWQJ YZNTL OSPHP FTFLS EPLDB VQLUZ BORAJ LLOFE MYWUN DLFOG ELVKF ZYDSO HPHZQ YFABT ASDWL DLEDE 11400 021800>


## Decryption

- set up main key in Printex (rotors and drum)
- determine manually real key from the false key
- set rotors of Printex in starting position
- decrypt
- clean up the cleartext (BISECT, XX, KW, ...)


## How to decrypt without knowing

 the key?
cryptanalysis

- determine main key based on known ciphertexts (and plaintexts)
- determine starting position of the rotor
- decrypt


## Determine main key

- $26+25+23+21+19+17=131$ pins $\left(10^{40}\right)$
- 22 positions for lugs on 27 bars $\left(10^{36}\right)$, but effectively only 27 bits
- exhaustive search:
- transform every atom of the earth $\left(10^{50}\right)$ to a supercomputer
- trying all keys takes 3 billion years....


## Determine main key (2)

- Need a better idea



## Ciphertext only attack

- attack needs about 2000-3000 ciphertexts + statistics on the plaintext
- we had only ciphertexts of length < 370 available
- the relation between the rotor positions was unknown (use of session keys)

Values of pins: historgram of average difference between plaintext and ciphertext for rotor 2 (23 pins)


## Progress

- lugs and rotor pins recovered for message \#14 (22 September)
- an "easy" test confirmed that a different key was used for earlier messages (23 Sept.)
- cryptanalysis attempts yielded only partial results (29 September)
- ... what if the same key had been used anyway?


## Why not try the key of \#14?

- Just try exhaustively the $26 \times 25 \times 23 \times 21 \times 19 \times 17 \sim 110$ million starting positions of the rotors
- takes 5-15 minutes on a 1 GHz PC
- identify correct solution from number of spaces (W) and BISECT (or BISSECT or BISOCT)
- extra trick: beginning position of rotor 6 is equal to that of rotor 5 (weakness in use)


## Known plaintext attack [Morris 78]

- need 75-100 plaintext/ciphertext characters
- based on the fact that the number of lugs for the rotors is of the form:
- 12-10-8-4-2-1
- idea: divide and conquer:
- guess first the pins on the rotor with most active lugs
- subtract the effect of this rotor
- more complex: partial guess and forward/backward


## It worked!!!

- October 1st: all plaintexts decrypted at 3:30am
- Why did displacements 1-3 and 7 occur?
- many more errors than expected

An introduction to symmetric cryptography

Real key -> false key (Oct. 06)

- known plaintext pairs
- IQ -> ME, CA -> FJ, LF -> NE, OP -> TJ
- EU -> FP, SZ -> GJ, QT -> EK, CL -> IN
- find secret square (some keys wrong!)
- can now decrypt in a few microseconds

| G | X | L | N | S |
| :--- | :--- | :--- | :--- | :--- |
| K | H | T | W | O |
| Q | D | E | F | A |
| M | V | I | C | R |
| Z | B | P | U | J |

## Problem: what is this?

- Cryptogram [=14 January 196111.00 h$]$
- $\angle A H Q N E$ XVAZW IQFFR JENFV OUXBD LQWDB BXFRZ NJVYB QVGOZ KFYQV GEDBE HGMPS GAZJK RDJQC VJTEB XNZZH MEVGS ANLLB DQCGF PWCVR UOMWW LOGSO ZWVVV LDQNI YTZAA OIJDR UEAAV RWYXH PAWSV CHTYN HSUIY PKFPZ OSEAW SUZMY QDYEL FUVOA WLSSD ZVKPU ZSHKK PALWB SHXRR MLQOK AHQNE 11205 141100>

The answer

- Plaintext [=14 January 196111.00 h ]
- DOFGD VISWA WVISW JOSEP HWXXW TERTI OWMIS SIONW BOMBO KOWVO IRWTE LEXWC EWSUJ ETWAM BABEL GEWXX WJULE SWXXW BISEC TWTRE SECVX XWRWV WMWPR INTEX WXXWP RIMOW RIENW ENVOY EWRUS URWWX XWPOU VEZWR EGLER WXXWS ECUND OWREP RENDR EWDUR GENCE WPLAN WBRAZ ZAWWC

The answer (in readable form)

- Plaintext [=14 January 196111.00 h ]
- tresecv. R V m Printex. primo RIEN ENVOYE RUSUR. POUVEZ REGLER. SECUNDO REPRENDRE DURGENCE PLAN BRAZZA VIS A VIS JOSEP H. TERTIO MISSION BOMBOKO VOIR TELEX CE SUJET AMBABELGE. JULES.

Resume urgently plan Brazzaville w.r.t. P. Lumumba


## Vernam scheme

- perfect secrecy: ciphertext gives opponent no additional information on the plaintext or $\mathrm{H}(\mathrm{P} \mid \mathrm{C})=\mathrm{H}(\mathrm{P})$
- impractical: key is as long as the plaintext
- but this is optimal: for perfect secrecy $\mathrm{H}(\mathrm{K}) \geq \mathrm{H}(\mathrm{P})$


## Three approaches in cryptography

- information theoretic security
- ciphertext only
- part of ciphertext only
- noisy version of ciphertext
- system-based or practical security
- also known as "prayer theoretic" security
- complexity theoretic security:
model of computation, definition, proof
- variant: quantum cryptography



## LFSR based stream cipher



+ good randomness properties
+ mathematical theory
+ compact in hardware
- too linear: easy to predict after 2 L output bits



## A5/1 stream cipher (GSM)

A5/1 attacks

- exhaustive key search: $2^{64}$ (or rather $2^{54}$ )
- search 2 smallest registers: $2^{45}$ steps
- [BWS00] 2 seconds of plaintext: 1 minute on a PC
$-2^{48}$ precomputation, 146 GB storage

Bluetooth stream cipher


- best known shortcut attack: $2^{70}$ rather than $2^{128}$


## A simple cipher: RC4 (1987)

- designed by Ron Rivest (MIT)
- leaked in 1994
- S [0..255]: secret table derived from user key K

```
for i=0 to 255 S[i]:=i
j:=0
for i=0 to 255
    j:=(j + S[i] + K[i]) mod 256
    swap S[i] and S[j]
i:=0, j:=0
```


## RC4: weaknesses

- often used with 40-bit key
- US export restrictions until Q4/2000
- best known general shortcut attack: $2^{600}$
- weak keys and key setup (shuffle theory)
- some statistical deviations
- e.g., 2nd output byte is biased
- solution: drop first 256 bytes of output
- problem with resynchronization modes (WEP)


## Cryptanalysis of stream ciphers

- exhaustive key search (key of $k$ bits)
- $2^{k}$ encryptions, about $k$ known plaintext bits
- time-memory trade-off (memory of $m$ bits)
$-2^{t}$ short output sequences
$-2^{m-t}$ precomputation and memory
- linear complexity
- divide and conquer
- fast correlation attacks (decoding problem)


## A simple cipher: RC4 (1987)

Generate key stream which is added to plaintext

```
i:=i+1
j:=(j + S[i]) mod 256
swap S[i] and S[j]
t:=(S[i] + S[j]) mod 256
output S[t]
```




- larger data units: $64 \ldots 128$ bits
- memoryless
- repeat simple operation (round) many times


## Cryptanalysis of block ciphers

- exhaustive key search (key of $k$ bits)
- $2^{k}$ encryptions, $k / n$ known plaintexts
- code book attack (block of $n$ bits)
- collect $2^{n}$ encryptions
- with $k / n$ chosen plaintexts : $2^{k}$ memory and time
- time-memory trade-off:
- $k / n$ chosen plaintexts
$-2^{k}$ encryptions (precomputation)
- on-line: $2^{2 k / 3}$ encryptions and $2^{2 k / 3}$ memory
- shortcut attacks: dc, lc,.....


## DES properties

- design: IBM + NSA (1977)
- 64-bit block cipher with a 56-bit key
- 16 iterations of a relatively simple mapping
- optimized for mid 1970ies hardware
- FIPS 41: US government standard for sensitive but unclassified data
- worldwide de facto standard since early 80ies
- surrounded by controversy: key length



## Solution to DES key length

- Moore's "law": speed of computers doubles every 18 months
- Conclusion: key lengths need to grow in time
- Use new algorithms with longer keys
- Or replace DES by triple-DES (168-bit key):



## AES (Advanced Encryption Standard)

- Open competition launched by US government ('97)
- 21 contenders, 15 in first round, 5 finalists
- decision October 2, 2000
- 128-bit block cipher with long key (128/192/256 bits)
- five finalists:
- MARS (IBM, US)
- RC6 (RSA Inc, US)
- Rijndael (KULeuven/PWI, BE)
- Serpent (DK/IL/UK)
- Twofish (Counterpane, US)


## And the winner is...Rijndael

- Joan Daemen (pronounced Yo'-ahn Dah'-mun)
- Vincent Rijmen (pronounced Rye'-mun).

Joan Daemen
PhD in COSIC in 1995
now at Proton World International

Vincent Rijmen
PhD in COSIC in 1997
now at Cryptomathic


## AES properties

- Rijndael: design by V. Rijmen (COSIC) and J.

Daemen (Proton World, ex-COSIC)

- 128-bit block cipher with a 128/192/256-bit key
- 10/12/14 iterations of a relatively simple mapping
- optimized for software for $8 / 16 / 32 / 64$-bit machines, also suitable for hardware

A machine that cracks a DES key in 1 second would take 149 trillion years to crack a 128-bit key

## O'Connor versus Massey

- Luke O'Connor
"most ciphers are secure after sufficiently many rounds"
- James L. Massey
"most ciphers are too slow after sufficiently many rounds"


## Rijndael

- history: Shark (1996) and Square (1997)
- security and efficiency through
- simplicity
- symmetry
- modularity
- MDS codes for optimal diffusion
- efficient on many platforms, including smart cards
- easier to protect against side channel attacks


## Rijndael: a key iterated block cipher



An introduction to symmetric cryptography


AES: hardware performance

|  | $\mathrm{Gb} / \mathrm{s}$ | MHz | kgates | Bits/ <br> kgates |
| :--- | :--- | :--- | :--- | :--- |
| lookup | 1.82 | 100 | 173 | 0.11 |
| Local-1 | 0.12 | 100 | 5.7 | 0.21 |
| Local-2 | 0.3 | 131 | 5.4 | 0.42 |
|  | 2.6 | 224 | 21 | 0.55 |
|  | 0.8 | 137 | 8.8 | 0.66 |
| Global | 7.5 | 32 | 256 | 0.92 |

AES/Rijndael: 1 round

$$
\begin{array}{|l|l|l|l|}
\hline \mathrm{p}_{0} & \mathrm{p}_{4} & \mathrm{p}_{8} & \mathrm{p}_{12} \\
\hline \mathrm{p}_{1} & \mathrm{p}_{5} & \mathrm{p}_{9} & \mathrm{p}_{13} \\
\hline \mathrm{p}_{2} & \mathrm{p}_{6} & \mathrm{p}_{10} & \mathrm{p}_{14} \\
\hline \mathrm{p}_{3} & \mathrm{p}_{7} & \mathrm{p}_{11} & \mathrm{p}_{15} \\
\hline
\end{array}
$$

1 round consists of
SubBytes
4 operations
ShiftRows
MixColumn
AddRoundKey

## Rijndael round: SubBytes

## 256 byte table

mapping $\mathrm{x}^{-1}$ over $\mathrm{GF}\left(2^{8}\right)$, plus some affine transformation over GF(2)

Rijndael round: ShiftRows

$$
\begin{array}{|l|l|l|l|}
\hline \mathrm{p}_{0} & \mathrm{p}_{4} & \mathrm{p}_{8} & \mathrm{p}_{12} \\
\hline \mathrm{p}_{1} & \mathrm{p}_{5} & \mathrm{p}_{9} & \mathrm{p}_{13} \\
\hline \mathrm{p}_{2} & \mathrm{p}_{6} & \mathrm{p}_{10} & \mathrm{p}_{14} \\
\hline \mathrm{p}_{3} & \mathrm{p}_{7} & \mathrm{p}_{11} & \mathrm{p}_{15} \\
\hline
\end{array} \quad \begin{array}{|c|c|c|c|c|}
\hline \mathrm{p}_{0} & \mathrm{p}_{4} & \mathrm{p}_{8} & \mathrm{p}_{12} \\
\hline \mathrm{p}_{13} & \mathrm{p}_{1} & \mathrm{p}_{5} & \mathrm{p}_{9} \\
\hline \mathrm{p}_{10} & \mathrm{p}_{14} & \mathrm{p}_{2} & \mathrm{p}_{6} \\
\hline \mathrm{p}_{7} & \mathrm{p}_{11} & \mathrm{p}_{15} & \mathrm{p}_{3} \\
\hline
\end{array}
$$

## Rijndael round: MixColumn



$$
\begin{array}{|l|}
\hline \mathrm{p}_{4}^{\prime} \\
\hline \mathrm{p}_{5}^{\prime} \\
\hline \mathrm{p}_{6}^{\prime} \\
\hline \mathrm{p}_{7}^{\prime} \\
\hline
\end{array}=\begin{array}{|l|l|l|l|}
\hline 02 & 03 & 01 & 01 \\
\hline 01 & 02 & 03 & 01 \\
\hline 01 & 01 & 02 & 03 \\
\hline 03 & 01 & 01 & 02 \\
\hline
\end{array} \cdot \begin{array}{|l|l|}
\hline \mathrm{p}_{4} \\
\hline \mathrm{p}_{5} \\
\hline \mathrm{p}_{6} \\
\hline \mathrm{p}_{7} \\
\hline
\end{array}
$$

Rijndael round: AddRoundKey


Differential cryptanalysis [Biham Shamir90]


## Linear and differential cryptanalysis

- hard to find good linear or differential attacks
- it is even harder to prove that it is impossible to find good linear or differential attacks
- for some ciphers, this proof exists
- there exist many optimizations and generalizations
- it is even harder to show that none of these work for a particular cipher
- analysis requires some heuristics
- DES: linear analysis needs $2^{43}$ known texts and differential analysis needs $2^{47}$ chosen texts


## Linear cryptanalysis [Matsui93]



## Rijndael design strategy

- simple and elegant
- no integer arithmetic
- wide trail strategy:
- strong resistance against linear and differential attacks
- over 4 rounds, sum of number of "active" input and output bytes equals 25
- diffusion based on $(8,4)$ MDS code with minimum distance 5
[p1 p2 p3 p4 | $\mathrm{p}^{\prime} \mathrm{p} 2^{\prime} \mathrm{p} 3^{\prime} \mathrm{p} 4^{\prime}$ ]



## Recent "attacks" on Rijndael

- affine equivalence between bits of S-boxes
- algebraic structure in the $S$-boxes leads to simple quadratic equations
- simple overall structure leads to embedding in larger block cipher BES
- more research is needed...


## AES Status

- FIPS 197 published on 6 December 2001
- Revised FIPS on modes of operation
- Rijndael has more options than AES
- fast adoption in the market (early 2003)
- 51 products are FIPS 197 validated
- > 100 products in the market
- standardization: ISO, IETF, ...
- slower adoption in financial sector


## Symmetric cryptology: data authentication

- the problem
- hash functions without a key
- MDC: Manipulation Detection Codes
- hash functions with a secret key
- MAC: Message Authentication Codes

Data authentication: MDC

- MDC (manipulation
- (MD5) detection code)
- SHA-1
- Protect short hash value rather than long text
- SHA-256, -512
- RIPEMD-160



## Data authentication: the problem

- encryption provides confidentiality:
- prevents Eve from learning information on the cleartext/plaintext
- but does not protect against modifications (active eavesdropping)
- Bob wants to know:
- the source of the information (data origin)
- that the information has not been modified
- (optionally) timeliness and sequence
- data authentication is typically more complex than data confidentiality




## How to invert a one-way function?

- exhaustive search
$-\Theta\left(e 2^{n}\right)$ steps, $\Theta(n)$ bits memory
- recovering preimage for one out of $s$ instances: $\Theta\left(e 2^{n} / \mathrm{s}\right)$ steps, $\Theta(\mathrm{s} n)$ bits memory
- tabulation
$-\Theta\left(e 2^{n}\right)$ steps and $\Theta\left(n 2^{n}\right)$ memory (precomputation)
- solve 1 instance: 1 table lookup
- time-memory trade-off:
$-\Theta\left(e 2^{n}\right)$ steps and $\Theta\left(n 2^{2 n / 3}\right)$ memory (precomputation)
- solve 1 instance: $\Theta\left(e 2^{2 n / 3}\right)$ steps
- problem: how to compare attacks with different processing time and memory?

How to find collisions for a function? (2)

- Numerical:
-S large, $\mathrm{r}=\sqrt{ } \mathrm{S}, \mathrm{p}=0.39$
$-S=365, r=23, p=0.50$
- surprising or paradoxical that finding collisions is much easier than inverting a function


## One-way function: definition

- $f(x)$ is a one-way function: $\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}^{\mathrm{n}}$
- easy to compute, but hard to invert
- $f(x)$ has $(\varepsilon, t)$ preimage security iff
- choose $x$ uniformly in $\{0,1\}^{n}$
- let $M$ be an adversary that on input $f(x)$ needs time $\leq \mathrm{t}$ and outputs $\mathrm{M}(\mathrm{f}(\mathrm{x}))$ in $\{0,1\}^{\mathrm{n}}$
$-\operatorname{Prob}\{f(M(f(x)))=f(x)<\varepsilon\}$,
where the probability is taken over $x$ and over all the random choices of M
- $t / \varepsilon$ should be large


## How to find collisions for a function?

- collision $=$ two different inputs x and x ' to f for which $\mathrm{f}(\mathrm{x})=\mathrm{f}\left(\mathrm{x}^{\prime}\right)$ ?
- requires $\Theta\left(e 2^{n / 2}\right)$ steps, $\Theta\left(n 2^{n / 2}\right)$ memory
- birthday paradox
- given a set with S elements
- choose $r$ elements at random (with replacements) with r « S
- the probability $p$ that there are at least 2 equal elements is $1-\exp (-\mathrm{r}(\mathrm{r}-1) / 2 \mathrm{~S})$



## Time-memory trade-off (2)

- Choose b different starting points and iterate for a steps

$$
\text { ! problem: collisions: } \mathrm{mt}<2^{\mathrm{n}}
$$



## Time-memory trade-off (4)

- success probability $=1-\exp \left(-a \mathrm{D} / 2^{\mathrm{n}}\right)$
with $D$ the expected number of different points

$$
\begin{aligned}
& \mathrm{D}=\left(2^{\mathrm{n}} / \mathrm{b}\right) \cdot \mathrm{G}\left(\mathrm{a} \cdot \mathrm{~b}^{2} / 2^{\mathrm{n}}\right) \\
& \mathrm{G}(\mathrm{y})=\int_{0}^{\mathrm{y}}(1-\exp (-\mathrm{x})) / \mathrm{x} d x \\
& \text { for } 2^{\mathrm{n}} » 1, \mathrm{~b} » 1, \mathrm{ab}<2^{\mathrm{n}}
\end{aligned}
$$

- optimization: use distinguished points to reduce memory accesses


## Time-memory trade-off (5) with distinguished points

- precomputation: start chains in distinguished points until a new distinguished point is reached (or a certain bound is exceeded)
- recovery: iterate until a distinguished point is reached
- advantage: reduced memory access - only required to store and look up distinguished points; this makes the attack much cheaper


## Time-memory trade-off (3)

Use $c$ different variants of $f$ by introducing the function $g$


- result:
- precomputation: a.b.c
- memory: b . c
- on-line inverting of one value: a .c
- good choice: $a=b=c=2^{n / 3}$
- success probability 0.55

How to find collisions for a function - part 2 distinguished points [Pollard78][Quisquater89]

- define "dinstinguished" point, say a point that ends with d zero bits
- start from a distinguished point d and iterate f
- store the distinguished points along the way
if you find a collision in the distinguished points, "trace back" from the distinguished points before the collision

$\Theta\left(e 2^{n / 2}+e 2^{d+l}\right)$ steps $\quad 1=\mathrm{c}=(\pi / 8) 2^{\mathrm{n} / 2}$
$\Theta\left(n 2^{n / 2-d}\right)$ memory


## Full cost measure [Wiener02]

- full cost of hardware = product of number of components with the duration of their use
- motivation: hardware = ALUs, memory chips, wires, switching elements
- question: if an algorithm requires $\Theta\left(2^{n}\right)$ steps and $\Theta\left(2^{n}\right)$ memory, what is the full cost: $\Theta\left(2^{2 n}\right)$ or $\Theta\left(2^{n}\right)$ or $\Theta\left(2^{3 n / 2}\right)$ ?
- answer: it depends on inherent parallelism and memory access rate
- for 1 processor with $\Theta\left(2^{n}\right)$ steps and 1 big memory of size $\Theta\left(2^{n}\right)$, full cost is $\Theta\left(2^{2 n}\right)$
- for $\Theta\left(2^{n / 2}\right)$ processors with $\Theta\left(2^{n / 2}\right)$ steps and 1 big memory of size $\Theta\left(2^{n}\right)$, full cost is $\Theta\left(2^{3 n / 2}\right)$

Full cost of connecting many processors to a large memory

- easy case: wiring cost to connect q processors to q blocks of memory equals $\Theta\left(\mathrm{q}^{3 / 2}\right)$


Full cost of connecting many processors to a
large memory (3): general case

- $r=$ memory access rate per processor (\# bits requested every unit of time)
- $\mathrm{p}=$ number of processors
- $\mathrm{m}=$ number of memory elements
- The total number of components to allow each of $p$ processors uniformly random access to $m$ memory elements at a memory access rate of $r$ equals $\Theta\left(p+m+(p r)^{3 / 2}\right)$
,

Full cost of connecting many processors to a large memory (2)

- cost of wires

$$
\begin{aligned}
& - \text { for } \mathrm{q}=8=2^{3}: \quad 4+8=12 \\
& - \text { for } \mathrm{q}=16=2^{4}: 8+16+32=56 \\
& - \text { for } \mathrm{q}=2^{\mathrm{t}}: \quad 2^{\mathrm{t}-1}\left(2^{\mathrm{t}-1}-1\right)=\Theta\left(q^{2}\right)
\end{aligned}
$$

- more than half of the cost is between 2 last stages: q wires of length $\mathrm{q} / 2$
- 2D packing reduces length of wires to $\Theta\left(\mathrm{q}^{1 / 2}\right)$
- total volume is $\Theta\left(q^{3 / 2}\right)$ (need in fact 3D packing)
- this can also shown to be optimal

Full cost of connecting many processors to a large memory (4): general case

- For an algorithm where p processors access a memory of size $m$ at rate $r$, and the total number of steps is $T$, the full cost is equal to $\mathrm{F}=\Theta\left((\mathrm{T} / \mathrm{p})\left(\mathrm{p}+\mathrm{m}+(\mathrm{pr})^{3 / 2}\right)\right)$
- $\mathrm{F}=\Theta(\mathrm{T})$ iff $\mathrm{p}=\Omega(\mathrm{m})$ and $\mathrm{r}=\mathrm{O}\left(\mathrm{p}^{-1 / 3}\right)$
- processors may access small individual memory at high rate
- If $r$ is high and $m$ is independent of $p$, then $\mathrm{F}=\Theta\left(\operatorname{Tr~m}^{1 / 3}\right)$, with $\mathrm{p}=\Theta\left(\mathrm{m}^{2 / 3} / \mathrm{r}\right)$
- Be careful in practice with the constants!

Full cost of inverting a one-way function (1)

- exhaustive search $\mathrm{F}=\Theta\left(\mathrm{e} 2^{n}\right)$
- tabulation: $\mathrm{F}=\Theta\left(e n 2^{2 n}\right)$
- but if we are recovering $\mathrm{s}=\Theta\left(2^{n}\right)$ preimages using tabulation
- $\mathrm{r}=\Theta(\mathrm{n} / \mathrm{e})$ (high); $\mathrm{T}=\Theta\left(\mathrm{e} 2^{n}\right)$;
- $\mathrm{F}=\Theta\left(\mathrm{Trm}^{1 / 3}\right)=\Theta\left(\left(\mathrm{n} 2^{\mathrm{n}}\right)^{4 / 3}\right)$ with $\mathrm{p}=\Theta\left(\mathrm{e} 2^{2 \mathrm{n} / 3} / \mathrm{n}^{1 / 3}\right)$
- Full cost per key: $\Theta\left(2^{\mathrm{n} / 3} \mathrm{n}^{4 / 3}\right)$


## Full cost of inverting a one-way function (2)

- time-memory trade-off with $\mathrm{c}=\mathrm{a}$ or $\mathrm{b}=2^{\mathrm{n}} / \mathrm{a}^{2}$
- precomputation
$-\mathrm{m}=\Theta(\mathrm{abn})=\Theta\left(\mathrm{n} 2^{\mathrm{n}} / \mathrm{a}\right)$
$-\mathrm{r}=\Theta(\mathrm{n} /(\mathrm{ae})) \quad \mathrm{T}=\Theta\left(\mathrm{e} 2^{\mathrm{n}}\right)$
$-\mathrm{F}=\Theta(\mathrm{T} / \mathrm{p}) . \Theta\left(\mathrm{p}+\mathrm{m}+(\mathrm{pr})^{3 / 2}\right)$ with $\mathrm{p}_{\max }=\Theta\left(2^{\mathrm{n}} / \mathrm{a}\right)$
$-\mathrm{F}=\Theta\left(\right.$ ne $\left.2^{\mathrm{n}}\right)$ with $\mathrm{a}=\Omega\left(\mathrm{n}^{1 / 4} 2^{\mathrm{n} / 4} / \mathrm{e}^{3 / 4}\right)$
- key recovery
- memory $m=\Theta(a b n)=\Theta\left(n 2^{\mathrm{n}} / \mathrm{a}\right)$
$-r=\Theta(n / e) \quad T=\Theta\left(e a^{2}\right)$
- F per key $=\Theta\left(2^{n / 3} n^{4 / 3} \mathrm{a}^{5 / 3}\right), \mathrm{p}=\Omega\left(\mathrm{e}^{2 \mathrm{n} / 3 /\left(n^{1 / 3} \mathrm{a}^{2 / 3}\right)}\right.$

Full cost of inverting a one-way function (3)

- precomputation and key recovery each have a full cost of $F=\Theta\left(\right.$ ne $\left.2^{n}\right)$
- but need to work on many problems: $p \leq \Theta(a)$
- precomputation does NOT reduce the full cost to find a single key
- total number of keys that can be found for the cost of exhaustive search is $s=\Theta\left(2^{n / 4} e^{9 / 4} / n^{3 / 4}\right)$; the full cost per key decreases from $\Theta\left(e 2^{\mathrm{n}}\right)$ to $\Theta\left(\mathrm{e} 2^{3 \mathrm{n} / 4}\right)$
- variant with distinguished points: $s=\Theta\left(2^{3 n / 5} \mathrm{e}^{6 / 5} / \mathrm{n}^{2 / 5}\right)$ and full cost per key decreases to $\Theta\left(\mathrm{e} 2^{2 \mathrm{n} / 5}\right)$
- table lookup: $\mathrm{s}=\Theta\left(2^{\mathrm{n}}\right)$ and cost per key $\Theta\left(\mathrm{e} 2^{\mathrm{n} / 3}\right)$


## Full cost (summary)

- full cost of an algorithm that requires $\Theta\left(2^{n}\right)$ steps and $\Theta\left(2^{n}\right)$ memory
- if no parallelism possible: $\Theta\left(2^{2 n}\right)$
- if arbitrary parallelism: between $\Theta\left(2^{n}\right)$ and $\Theta\left(2^{4 n / 3}\right)$ depending on the memory access rate
- For an algorithm where p processors access a memory of size $m$ at rate $r$, and the total number of steps is $T$, the full cost is equal to $\mathrm{F}=\Theta\left((\mathrm{T} / \mathrm{p})\left(\mathrm{p}+\mathrm{m}+(\mathrm{pr})^{3 / 2}\right)\right)$
- In practice, constants are important!
- M. Wiener, The full cost of cryptanalytic attacks, J. Cryptology, to appear



How to use a block cipher: CBC mode

need random IV


## Secure encryption

- What is a secure block cipher anyway?
- What is secure encryption anyway?
- Definition of security
- security assumption
- security goal
- capability of opponent

Security assumption:
the block cipher is a pseudo-random permutation

- It is hard to distinguish a block cipher from a random permutation
- Advantage of a distinguisher $\operatorname{Adv}_{\mathrm{AES} / \operatorname{PRP}}=\operatorname{Pr}\left[\mathrm{b}^{\prime}=1 \mid \mathrm{b}=1\right]-\operatorname{Pr}\left[\mathrm{b}^{\prime}=1 \mid \mathrm{b}=0\right]$


$$
\mathrm{b}=\bigcirc \quad \mathrm{b}^{\prime}=0 / 1 ?
$$

## Security goal: "encryption"

- semantic security: adversary with limited computing power cannot gain any extra information on the plaintext by observing the ciphertext
- indistinguishability (real or random) [INDROR]: adversary with limited computing power cannot distinguish the encryption of a plaintext $P$ from a random string of the same length
- IND-ROR $\Rightarrow$ semantic security



## Capability of opponent

- ciphertext only
- known plaintext
- chosen plaintext
- adaptive chosen plaintext
- adaptive chosen ciphertext
[Bellare+97] CBC is IND-ROR secure against chosen plaintext attack
- consider the block cipher AES with a block length of $n$ bits; denote the advantage to distinguish it from a pseudo-random permutation with $\operatorname{Adv}_{\text {AES }}$
- consider an adversary who can ask q chosen plaintext queries to a CBC encryption
$\operatorname{Adv}_{\text {ENC/CBC }} \leq 2 \operatorname{Adv}_{\text {AES }}+\left(q^{2} / 2\right) 2^{-\mathrm{n}}+\left(\mathrm{q}^{2}-\mathrm{q}\right) 2^{-\mathrm{n}}$
reduction is tight as long as $\mathrm{q}^{2 / 2}<2^{\mathrm{n}}$ or $\mathrm{q} \ll 2^{\mathrm{n} / 2}$


## [Bellare+97] CBC security

- matching lower bound:
- collision $\mathrm{C}_{\mathrm{i}}=\mathrm{C}_{\mathrm{j}}$ implies $\mathrm{C}_{\mathrm{i}-1} \oplus \mathrm{P}_{\mathrm{i}}=\mathrm{C}_{\mathrm{j}-1} \oplus \mathrm{P}_{\mathrm{j}}$
- collision expected after $q=2^{n / 2}$ blocks
- CBC is very easy to distinguish with chosen ciphertext attack:
- decrypting C \| $\mathrm{C} \| \mathrm{C}$ yields $\mathrm{P}^{\prime}\|\mathrm{P}\| \mathrm{P}$


## The birthday paradox

- Given a set with S elements
- Choose q elements at random (with replacements) with q < S
- The probability $p$ that there are at least 2 equal elements is $1-\exp (-\mathrm{q}(\mathrm{q}-1) / 2 \mathrm{~S})$
- S large, $\mathrm{q}=\sqrt{ } \mathrm{S}, \mathrm{p}=0.39$
- $\mathrm{S}=365, \mathrm{q}=23, \mathrm{p}=0.50$


## Some books on cryptology

- B. Schneier, Applied Cryptography, Wiley, 1996. Widely popular and very accessible - make sure you get the errata.
- D. Stinson, Cryptography: Theory and Practice, CRC Press, 1995. Solid introduction, but only for the mathematically inclined.
- 2nd edition, part 1 available in 2002.
- A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography, CRC Press, 1997. The bible of modern cryptography. Thorough and complete reference work - not suited as a first text book. All chapters can be downloaded for free at http://www.cacr.math.uwaterloo.ca/hac


## Books on network security and more

- W. Stallings, Network and Internetwork Security: Priniples and Practice, Prentice Hall, 1998. Solid background on network security. Explains basic concepts of cryptography. Tends to confuse terminology for decrypting and signing with RSA.
- Nagand Doraswamy, Dan Harkins, IPSEC - The New Security Standard for the Internet, Intranets, and Virtual Private Networks, Prentice Hall, 1999. A well written overview of the IPSEC protocol.
- W. Diffie, S. Landau, Privacy on the line. The politics of wiretapping and encryption, MIT Press, 1998. The best book so far on the intricate politics of the field.


## More information: some links

- IACR (International Association for Cryptologic Research): www.iacr.org
- IETF web site: www.ietf.org
- Cryptography faq: www.faqs.org/faqs/cryptography-faq
- links: Ron Rivest, David Wagner, Counterpane www.counterpane.com/hotlist.html
- Digicrime (www.digicrime.org) - not serious but informative and entertaining

