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Abstract

Upper bounds are derived for codes in Stiefel and Grassmann manifolds with given minimum chordal distance.

They stem from upper bounds for codes in the product of unit spheres and projective spaces. The new bounds are

asymptotically better than the previously known ones.

I. I NTRODUCTION

Use of multiple transmit and receive antennas essentially increases the spectral efficiency of wireless systems (see

[1] and references therein). Analysis of Rayleigh flat-fading multiple-input multiple-output (MIMO) scenarios with

m transmit antennas andn transmitted symbols, reveals that relevant coding schemes can be designed as collections

of elements (points) in the complex Grassmann manifold - the set ofm-dimensional linear subspaces inCn, if the

channel is unknown to the receiver, and in the complex Stiefel manifold - the set ofm orthonormal vectors inCn,

if the channel is known to the receiver. An appropriately defined distance measure between the points characterizes

diversity of the designed scheme. Following standard coding theory considerations, we study the relation between

the number of points (the size of a code) and the minimum distance between distinct code points. Our aim in this

paper is to obtain new upper bounds for the size of codes in Grassmann and Stiefel manifolds.

The most powerful technique for this kind of problems is the linear programming method (called also the poly-

nomial method), initiated by Delsarte [2]. The method is very well understood in the case of2-point homogeneous

spaces (defined in the next section), where very explicit bounds, and also good asymptotic bounds on the rate of

codes have been derived. Examples are the Hamming and Johnson schemes, treated in [3], the unit sphere ofRn

[4], and the projective spaces [4], [5].

When the underlying space is homogeneous and symmetric but not2-point homogeneous, the situation is much

more complicated, although the principles of the linear programming method remain valid. The difficulties come

from the fact that the zonal functions defined for these spaces are not functions of one variable, but rather of

several variables. The Grassmann spaces considered in this paper fall into this category. An attempt to overcome
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this problem was carried out in [6]. An asymptotic bound for the rate of Grassmannian codes was obtained, involving

the asymptotics of the largest eigenvalue of some symmetric endomorphism. This bound however is not optimal

since it was improved form > 1 by some volume-type arguments for a large range of values of the minimum

distance [7].

There is one trivial case of symmetric spaces of rankm > 1 for which the classical treatment of the linear

programming method is easily extended: it is the direct product of2-point homogeneous spaces, such as the direct

product ofm copies of the unit sphere. An example of a similarly easy case is provided by the non-binary Johnson

space [8], [9], [10], that is the product of the Hamming and the binary Johnson scheme.

The approach developed in this paper is to relate Grassmann and Stiefel spaces and their associated codes to

various products of 2-point homogeneous spaces, and hence to derive upper bounds for these codes in a rather

easy way. The asymptotic versions of the new bounds (Theorems 2.7 and 2.8) provide the best currently known

asymptotic bounds.

The paper is organized as follows. Definitions and results are given in Section II. Section III describes various

relations between the spaces and their codes. The simplest one connects Grassmann and Stiefel spaces to the

unit sphere of an asymptotically equal dimension; this yields, for example, to a bound for the asymptotic rate of

Grassmannian codes that already improves upon the previous ones. Section IV develops the Delsarte polynomial

method for the products of spaces under consideration, including the classical method that involves the Christoffel-

Darboux formula, and derives upper bounds for the size of the associated codes. A bound for the asymptotic rate of

these codes is obtained. Section V discusses the consequences for the Grassmannian and Stiefel codes. In particular,

we show that the bound obtained on the asymptotic rate of Grassmannian codes from the product of projective

spaces is sometimes better than the one obtained in Section III. We conclude in Section VI.

II. D EFINITIONS AND RESULTS

We shall use the following notations and definitions. We say thatf(n) . g(n), f(n) ' g(n), f(n) & g(n)

if limn→∞
f(n)
g(n) ≤ 1, limn→∞

f(n)
g(n) = 1, limn→∞

f(n)
g(n) ≥ 1, respectively. A code in a metric space(X, d) is a

finite set contained in the space, and a codeword is an element of the code. The size of a codeC is its cardinality,

denoted|C|. The rate of a code isR(C) := 1
n ln |C|, whereln denotes the natural logarithm, andn will be defined

separately for each space. The minimum distance of a code is the minimum distance (induced by the relevant

metric) between a pair of distinct codewords. A metric space(X, d) is called 2-point homogeneous, ifX affords

the transitive action of a groupG, such that the orbits of the action ofG on X × X are characterized by the

distanced. In other words, for all(x, y) ∈ X and g ∈ G, d(g(x), g(y)) = d(x, y), and moreover, for all pairs

(x, y), (x′, y′) ∈ G, there existsg ∈ G such thatg(x) = x′ and g(y) = y′ if and only if d(x, y) = d(x′, y′).

It is a well-known fact that the compact Riemannian manifolds that are two-point homogeneous are exactly: the

unit sphereSn−1, the projective spacesPn−1(K) whereK = R,C,H and the projective plane over the octonions

P2(O) (see [11], and [12] for more about the octonions andP2(O)).
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A. The real compact two-point homogeneous spaces

The unit sphere of the Euclidean spaceRn is denotedSn−1, namely,

Sn−1 :=

{
(x1, . . . , xn) ∈ Rn |

n∑

i=1

x2
i = 1

}
. (1)

The standard scalar product inRn, given by(u ·v) =
∑n

i=1 uivi, defines the Euclidean distance between two points

of Sn−1:

‖u− v‖ =

√√√√
n∑

i=1

(ui − vi)2 =
√

2
√

1− (u · v). (2)

The angular distance betweenu and v is defined by the angleθ = θ(u, v) ∈ [0, π] such thatcos θ = (u · v). We

have of course

‖u− v‖ =
√

2
√

1− cos θ. (3)

The best known asymptotic bound on the rate of spherical codes as a function of the minimum distance is given

in the following theorem. It will be extensively used in the derivation of the new results.

Theorem 2.1 ([4]):Let C be a spherical code inSn−1 with minimum angular distance0 ≤ θ ≤ π/2 and rate

R(C) = 1
n ln |C|. Then, whenn →∞,

R(C) . RS(θ) := min{RLP (θ), RY (θ)}, (4)

where

RLP (θ) := (1 + ρ) ln(1 + ρ)− ρ ln ρ, (5)

ρ =
1− sin θ

2 sin θ
, (6)

and

RY (θ) := − ln
√

1− cos θ − 0.0686 (7)

(the numerical value 0.0686 is approximated).

Remark 2.2: • The asymptotic rate of spherical codes with minimum angular distance at leastπ/2 is known

to be equal to zero. This is a consequence of the Rankin bound ([18], see also [13] or [14]).

• For small values ofθ (approximatelyθ < 63◦), we haveRS(θ) = RY (θ). Otherwise,RS(θ) = RLP (θ).

The other real compact manifolds which are two-point homogeneous can be treated in a similar way. These are

the projective spacesPn−1(K) whereK = R,C,H (the field of real quaternions) andn ≥ 3, and the projective

plane over the octonionsP2(O). In order to treat the fields of coefficients in a uniform way, we extend the definition

of (x · y) so that, for allx, y ∈ Kn, (x · y) =
∑n

i=1 xiyi, where the conjugationx → x is the standard one over

K = C,H,O and is the identity overR. Also we conventionally assume thatn = 3 when K = O. The group
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G under which these spaces are two-point homogeneous is respectively the orthogonal groupO(Rn), the unitary

groupsU(Kn) with K = C,H, and the Lie groupF4 (see [12] for this last case).

The angular distance betweenp and q in Pn−1(K) is defined by the angleθ = θ(p, q) ∈ [0, π/2] such that

cos θ(p, q) = |(e · f)| where e, f are arbitrary chosen unit vectors of the linesp, q. It is shown in [4] and [5]

that the linear programming method applies to these spaces. The derived asymptotic bound for the rate can also be

obtained from the bounds for spherical codes, because to a codeC in Pn−1(K) one can associate a code inScn−1

with the same size and a minimum angular distance at least equal to the one ofC, selecting a unit vector in each

element ofC. One obtains:

Theorem 2.3 ([4]):Let C be a code inPn−1(K) with minimum angular distance0 ≤ θ ≤ π/2 and rate

R(C) := 1
n ln |C|. Let c := 1, 2, 4 respectively whenK = R,C,H (so thatc = [K : R]). Then, whenn →∞,

R(C) . cRS(θ) (8)

B. The Grassmann space

Let K be the real or the complex field. The Grassmann spaceGm,n(K) is the set of all subspaces of dimension

m in Kn. It is a homogeneous space under the action of either the orthogonal groupO(Rn) or the unitary group

U(Cn). We will denoteGm,n whenK is arbitrary. It is worth noticing that whenm = 1 we recover the projective

space. Several metrics have been defined inGm,n, see [19], [20]. In this paper we consider thechordal distance,

which was introduced in [21] and studied in [19], [7], [6], [21], [20]. The chordal distancedc(p, q) is defined as

follows.

Definition 2.4: Given the planesp, q ∈ Gm,n, apply the following procedure. Initialize the sets of unit vectors

A = ∅ andB = ∅. In the ith step, choose the vectorsai, bi such that:

(i) ai is contained inp andbi is contained inq.

(ii) ai is orthogonal to all the vectors inA andbi is orthogonal to all the vectors inB.

(iii) Among all the vectors satisfying the conditions in (i) and (ii), the angle betweenai and bi is minimal (i.e.,

their inner / Hermitian product module is maximal).

Setθi to be the angle betweenai andbi, insertai to A andbi to B, and proceed to the next step, untilm angles

0 ≤ θ1 ≤ θ2 ≤ . . . ≤ θm ≤ π/2, called the principal angles betweenp andq, have been defined. Then the chordal

distance is

dc(p, q) :=

√√√√
m∑

i=1

sin2 θi =

√√√√m−
m∑

i=1

cos2 θi.

The following lemma provides an equivalent definition, which is more convenient.
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Lemma 2.5 ([21]):For a planep ∈ Gm,n, let Ap be ap × n matrix whose rows form an orthonormal basis of

p, and letπp := A∗pAp be the matrix of the orthogonal projection onp (A∗p denotes the Hermitian conjugate of

Ap). Then, the projection matrixπp does not depend on the choice ofAp, and, given two planesp, q ∈ Gm,n, the

chordal distance is

dc(p, q) :=
√

m− trace(πp ◦ πq). (9)

Bounds on the size of codes in Grassmann spaces were considered in [21], [19], [7], [6], [22]. The best known

asymptotic upper bounds are given in the following theorem.

Theorem 2.6 ([7], [6]): Let C be a code inGm,n(K) with minimum chordal distanced and rateR(C) :=
1
n ln |C|. Then, whenn →∞,

R(C) . −cm ln
(√

1−
√

1− d2/m

)
(10)

and

R(C) . cm[(1 + ρ) ln(1 + ρ)− ρ ln ρ], (11)

where

ρ =
1
2
m(
√

m/d− 1). (12)

The bound (10) was derived by Barg and Nogin, using Blichfeldt’s density method [7]. The bound (11) is a linear

programming bound due to Bachoc [6]. Both works considered only the real Grassmann space, but can be easily

extended to the complex case.

The main contribution of this paper is the following theorem.

Theorem 2.7:Let C be a code inGm,n(K) with minimum chordal distanced =
√

m− s, and letθ = arccos(
√

s/m).

Then, whenn → +∞,

R(C) . min {R1(d), R2(d)} , (13)

where

R1(d) = cmRS(θ) (14)

and

R2(d) = min
(θ1,...,θm)∈[0,π/2]m∑m

i=1 cos2 θi=m cos2 θ

c
(
RLP (θ1) + · · ·+ RLP (θm)

)
(15)

(RS andRLP are defined in Theorem 2.1).

Our method will be to establish relations between the Grassmann space and other spaces, and then apply bounds

for codes in these spaces. A reduction from Grassmannian to spherical codes is given in Theorem 3.2, implying
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the boundR1(d). The boundR2(d) follows from a reduction to codes in products of projective spaces (Theorem

3.7) and Theorem 4.9. The boundR1(d) is better than the bounds of Theorem 2.6 for all values ofd andm (see

Lemma 3.3). We show in Section IV-F that for some values ofd andm, it is further improved byR2(d).

C. The Stiefel manifold

The Stiefel manifoldVm,n(K) is the set ofm-tuples of orthonormal vectors inKn, or equivalently

Vm,n(K) = {X ∈ Mm×n(K) | XX∗ = Idm},

where Idm is the m × m identity matrix. The orthogonal groupO(Rn) if K = R, respectively the unitary

group U(Cn) if K = C acts transitively onVm,n(K), and this space can be identified with the set of classes

O(Rn)/O(Rn−m), respectivelyU(Cn)/U(Cn−m).

The distance considered in coding theory is

d(X, Y ) := ‖X − Y ‖ =
√

trace((X − Y )(X∗ − Y ∗)).

In other words,d(X, Y ) is the Euclidean distance betweenX andY , whenX andY are regarded as one-dimensional

vectors of lengthmn.

In [22], estimates for the volume of balls in the Stiefel manifold are given, approximated by the geodesic distance,

and Gilbert-Varshamov and sphere packing bounds are derived for small distances.

The following theorem will be proved in Section III-B. It follows from a relation between codes in the Stiefel

space and spherical codes (Theorem 3.6).

Theorem 2.8:Let C be a code inVm,n(K) with minimum distanced =
√

2
√

m− s, and letθ = arccos(s/m).

Then, whenn → +∞,

R(C) . cmRS(θ) (16)

whereRS is defined in (4).

III. M ORE SPACES AND THEIR INTERCONNECTIONS

The simplest of these connections relate Grassmann and Stiefel spaces to a single unit sphere, and allow to apply

directly the known bounds for spherical codes to the Grassmannian and Stiefel codes. We start with them, then we

introduce the products of spheres and projective spaces and their relations with Grassmann and Stiefel spaces.

A. Gm,n and Scmn−1

We define a mapping

β : Gm,n(K) → Scmn−1

in the following way. We select for allp ∈ Gm,n(K), an orthonormal basis(e1, . . . , em) of p whose elements

belong toKn. With the usual identification ofC andR×R through the mappingz = x+ iy → (x, y), we consider
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these elements inRcn. Thenβ(p) is chosen to be the element ofRcmn obtained by the concatenation ofe1, . . . , em,

divided by
√

m. Obviously,β(p) ∈ Scmn−1.

For all p, q ∈ Gm,n(K), we set

σ(p, q) :=
m∑

i=1

cos2 θi = trace(πp ◦ πq).

Let us recall that the principal anglesθ1, . . . , θm associated to(p, q) are related to the construction of orthonormal

basis(a1, . . . , am) and(b1, . . . , bm) for p andq respectively, such thatcos θi = |(ai·bi)| andσ(p, q) =
∑m

i=1 cos2 θi.

However, these orthonormal basis obviously depend on the pair(p, q) and not onp andq individually. There is no

hope in the above construction ofβ to choose orthonormal basis that would satisfy the equalitycos θi = |(ei · e′i)|
for all pairs (p, q). Still, and this is the main point of our construction, we do have a relation betweenσ(p, q) and

the arbitrary chosenorthonormal basis(e1, . . . , em) of p and (e′1, . . . , e
′
m) of q, leading to the inequality

σ(p, q) ≥
m∑

i=1

|(ei · e′i)|2.

In other words, if one defines an alternative set of “principal angles”θ′1, . . . , θ
′
m by θ′i = arccos |(ei · e′i)|, then

σ(p, q) ≥ ∑m
i=1 cos2 θ′i, leading to an upper bound on the chordal distance betweenp andq.

In the next lemma we prove the above assertions and settle the inequality we aim at in terms of the embedding

β.

Lemma 3.1:For all p, q ∈ Gm,n(K),

cos θ(β(p), β(q)) ≤
√

σ(p, q)
m

.

Proof: Let β(p) = e, obtained from an orthonormal basis(e1, e2, . . . , em) of p andβ(q) = e′, obtained from

an orthonormal basis(e′1, . . . , e
′
m) of q. We computeσ(p, q) = trace(πp ◦ πq). Let Ap, Aq denote them × n

matrices whose rows are the basis elementsei, e′i respectively. Then

σ(p, q) = trace(πp ◦ πq) = trace(A∗pApA
∗
qAq) = trace(ApA

∗
qAqA

∗
p).

The entries of the matrixApA
∗
q are the hermitian products(ei · e′j). So we obtain:

σ(p, q) =
∑

1≤i,j≤m

|(ei · e′j)|2 (17)

and hence

σ(p, q) ≥
m∑

i=1

|(ei · e′j)|2.

If K = R, we obtain from Cauchy-Schwartz inequality

cos θ(e, e′) = (e · e′) =
∑m

i=1(ei · e′i)
m

≤
√∑m

i=1(ei · e′i)2
m

≤
√

σ(p, q)
m

. (18)

If K = C, let us denote by<(z) the real part of a complex numberz. In the identificationCn = R2n recalled

above, the standard scalar product onR2n is given by<((x ·y)). With the obvious inequality(<(x ·y))2 ≤ |(x ·y)|2,

we obtain the same inequalitycos θ(e, e′) ≤
√

σ(p,q)
m (wheree ande′ are considered in the unit sphere ofR2mn.)
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Fig. 1. Upper bound on the asymptotic rate of real Grassmannian codes with minimum chordal distanced, m = 3. From top to bottom: a

linear programming bound (11), a Blichfeldt-type bound (10), and the new bound (19)

The following theorem is an immediate consequence of Lemma 3.1. It states that bounds for spherical codes can

be applied to codes in Grassmann spaces.

Theorem 3.2:Any upper bound on the size of codes inScmn−1 with minimum angular distanceθ = arccos(
√

s/m)

is also an upper bound for codes in the Grassmann spaceGm,n(K) with minimum distanced =
√

m− s.

As a corollary, we obtain the bound

R(C) . R1(d) (19)

of Theorem 2.7.

Figure 1 compares (19) with the best known asymptotic bounds, given in Theorem 2.6. It can be readily checked

that for m = 1, (19) is equal to (11) and is smaller than (10). Form > 1, we have the following lemma (note that

by definition, the chordal distance is always upper-bounded by
√

m).

Lemma 3.3:The bound (19) is smaller than the bounds of Theorem 2.6 for all values ofm > 1 andd ≤ √
m.

Proof: Denote byRB(θ) the Rankin-Blichfeldt upper bound on spherical codes with minimum angular distance

θ [18]. Then the bound (10) can be expressed as

R(C) . cmRB(θ) (20)

for θ = arccos(
√

s/m), wheres = m−d2. The comparison between (19) and (10) is thus reduced to a comparison

betweenRS andRB . It is easy to check thatRB is larger thanRS for all values ofθ.
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It remains to compare (19) with (11). By definition,RS(θ) ≤ RLP (θ) (RLP is defined in (5)). Therefore, it is

sufficient to show that (19) withRLP instead ofRS is always smaller than (11). We note thatθ = arccos(
√

s/m) =

arcsin(d/
√

m). Hence, applying (19) withRLP instead ofRS , we obtain:

R(C) . cm[(1 + ρ) ln(1 + ρ)− ρ ln ρ] (21)

with

ρ =
1
2
(
√

m/d− 1). (22)

The difference between this bound and (11) is only in the definition ofρ. The claim now follows from the fact that

f(ρ) = (1 + ρ) ln(1 + ρ)− ρ ln ρ is an increasing function inρ.

Remark 3.4:We have defined an embedding ofGm,n(K) into the unit sphereScmn−1. The dimensions of these

two spaces,cm(n−m) andcmn− 1, are asymptotically equivalent. This can be compared to another embedding

of Gm,n(R) into a unit sphere, introduced in [21]. The dimension of this sphere isn(n + 1)/2− 2, which is much

larger than the one of the Grassmann space. However, unlike our embedding, the embedding from [21] is also an

isometry.

B. Vm,n and Scmn−1

Lemma 3.5:Let X, Y ∈ Vm,n(K), K = R,C. Let (e1, . . . em) denote the rows ofX, respectively(e′1, . . . e
′
m)

for the rows ofY . Then

d(X,Y ) =
√

2

√√√√m−
m∑

i=1

<((ei · e′i)).

Proof: We calculate

‖X − Y ‖2 = trace((X − Y )(X∗ − Y ∗)) = trace(XX∗ −XY ∗ − Y X∗ + Y Y ∗)

= 2m− 2<(trace(XY ∗))

sinceXX∗ = Y Y ∗ = Idm and trace(XY ∗) = trace(XY ∗) = trace(Y X∗). We conclude with

trace(XY ∗) =
m∑

i=1

(ei · e′i).

Again with the identification ofCn with R2n, we viewVm,n(C) as a submanifold ofVm,2n(R) endowed with

the distance

d(X, Y ) = ‖X − Y ‖ =
√

2

√√√√m−
m∑

i=1

(ei · e′i).
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We see that the obvious mapping:

γ : Vm,n(K) → Scmn−1

X 7→ γ(X) =
1√
m

(e1, . . . , em)

is this time, up to a suitable scaling of the distances, an isometry. Hence the bounds for spherical codes also apply

to Vm,n(K), probably in a quite efficient way. Still, one constraint is not encoded in it: the fact that the vectorsei

are pairwise orthogonal and of norm1. We resume these observations in the following theorem.

Theorem 3.6:Any upper bound on the size of codes inScmn−1 with minimum angular distanceθ = arccos(s/m)

is also an upper bound for codes in the Stiefel spaceVm,n(K) with minimum distanced =
√

2
√

m− s.

Theorem 2.8 now easily follows as a corollary of Theorem 3.6.

C. Gm,n, Vm,n and products of spaces

So far we have established a relation between codes inGm,n and Vm,n and codes inScmn−1. We note that

the ranges of the mappingsβ and γ contain normalized vectors from
(
Scn−1

)m
(concatenations of unit vectors

e1, . . . , em divided by
√

m). Hence bounds for codes in
(
Scn−1

)m
will imply bounds for codes inGm,n andVm,n.

This is the motivation to the generalization of the linear programming method to the product of unit spheres, and

more generally to the product of 2-point homogeneous spaces, which is proposed in the next section. As we shall

see, the asymptotic bound for the rate of codes in
(
Scn−1

)m
is not better than forScmn−1, hence does not improve

on (19) and (16). A better result is obtained for Grassmann spaces with the product of projective spaces.

We now define more precisely the products of spaces and their associated distances that will be studied in the

next section. We start with the product ofm copies of the unit sphere ofRn:

(
Sn−1

)m = {e = (e1, . . . , em) | ei ∈ Sn−1}.

We consider on
(
Sn−1

)m
the distance given by

d(e, e′) =

√√√√
m∑

i=1

‖ei − e′i‖2

=
√

2m

√
1−

∑m
i=1 cos θi

m
,

wherecos θi = (ei · e′i). We attach to a paire, e′ ∈ (
Sn−1

)m
an angleθ = θ(e, e′) ∈ [0, π] such that

cos θ =
∑m

i=1 cos θi

m
(23)

and we callθ the angular distancebetweene ande′. The angleθ is also the angle between the vectorse/
√

m and

e′/
√

m, viewed as elements ofSmn−1.

We define, for the remaining 2-point homogeneous spaces recalled above, and without specifying the fieldK,

(
Pn−1)m = {p = (p1, . . . , pm) | pi ∈ Pn−1}.
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We attach to a pairp, p′ ∈ (
Pn−1)m

an angleθ = θ(p, p′) ∈ [0, π/2] such that

cos2 θ =
∑m

i=1 cos2 θi

m

whereθi = θ(pi, qi) and we callθ the angular distancebetweenp andp′. We consider on
(
Pn−1)m

the “chordal”

distance given by

d(p, p′) =

√√√√m−
m∑

i=1

cos2 θi =
√

m sin θ.

In order to derive bounds for codes in Grassmann spacesGm,n(K), we shall make use of the mapping:

ν : Gm,n(K) → (
Pn−1(K)

)m

defined in the following way: for allp ∈ Gm,n(K), we choose am-tuple (p1, . . . , pm) of pairwise orthogonal lines

of p. We setν(p) = (p1, . . . , pm).

Because of the equation (17), we have similarly:

cos2 θ(ν(p), ν(q)) ≤ σ(p, q)
m

hence the bounds for codes in
(
Pn−1(K)

)m
apply to codes in Grassmann spaces. We summarize in the following

theorem:

Theorem 3.7:Any upper bound on the size of codes in
(
Pn−1(K)

)m
with minimum angular distanceθ =

arccos(
√

s/m) is also an upper bound for codes in the Grassmann spaceGm,n(K) with minimum distanced =
√

m− s.

IV. B OUNDS FOR CODES IN THE PRODUCT OF2-POINT HOMOGENEOUS SPACES

In this section,X denotes one of the spacesSn−1, Pn−1(K) whereK = R,C,H, or the projective plane over

the octonionsP2(O). We derive bounds for codes inXm with a given minimum distance, following Delsarte’s

linear programming method as performed in [4]. As a reference on orthogonal polynomials, we refer to [23].

A. Review of the necessary material on the spacesX

We recall that, to each of these spaces is associated a family of orthogonal polynomials of one variable, which are

the zonal polynomials relative to the action of the groupG (see [4], [5], [24]). ForX = Sn−1, these polynomials

are the Gegenbauer polynomials with parametern/2−1 and associated orthogonal measure(1−x2)(n−3)/2 on the

interval [−1, 1]. For X = Pn−1(K), these polynomials are Jacobi polynomials with parameters(α, β) defined by:

α =
c

2
(n− 1)− 1, β =

c

2
− 1.
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More precisely, the values of(α, β) are as follows:

c α β

R 1 (n− 3)/2 −1/2

C 2 n− 2 0

H 4 2n− 3 1

O 8 7 3

The orthogonal measure associated to the parameters(α, β) is xβ(1− x)α over the interval[0, 1]. We generically

denote byPk(x) these polynomials, withdeg(Pk) = k andPk(1) = 1. We letµ(x) denote their normalized associ-

ated orthogonal measure and[P, Q] the corresponding scalar product onR[x] (so that[P, Q] =
∫

P (x)Q(x)µ(x)dx

and[1, 1] = 1). Moreover, we have[Pk, Pk] = d−1
k wheredk denotes the dimension of the irreducible representation

of G associated toPk (e.g. whenX = Sn−1, dk = dimHarmk =
(
n+k−1

k

)− (
n+k−3

k−2

)
, whereHarmk is the kernel

of the laplacian operator, see [13]).

The three-term relation expressesxPk(x) as a linear combination of the polynomialsPi:

xPk(x) = akPk+1(x) + bkPk(x) + ckPk−1(x)

for some sequences of rational numbers(ak), (bk), (ck). It is enough for our purpose to know that(ak) is bounded

whenn andk tend to+∞ with n/k tending to a finite limit. For example, whenX = Sn−1,

ak =
n− 2 + k

n− 2 + 2k
.

For all (u, v) ∈ X, we define

t(u, v) =





(u · v) = cos θ(u, v) if X = Sn−1

cos2 θ(u, v) if X = Pn−1(K).

The zonal function onX associated toPk is given by:

(u, v) → Pk(t(u, v)).

The so-called ’positivity property’, related to these polynomials, is the basic principle underlying the linear

programming method inX: for all codeC ⊂ X, and for allk ≥ 0,

∑

u∈C

∑

v∈C

Pk(t(u, v)) ≥ 0.

B. The linear programming method onXm

Now we consider the product spacesXm. The positivity property generalizes to the following:

Lemma 4.1:Let C ⊂ Xm. Let us denote elements ofC by u = (u1, . . . , um) with ui ∈ X. For all(k1, . . . , km) ∈
Nm,

∑

u∈C

∑

v∈C

m∏

i=1

Pki(t(ui, vi)) ≥ 0.
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Proof: This is the positivity property in the product spaceXm. The groupGm acts transitively onXm; the

Gm-irreducible components ofL2(Xm) are the tensor products of theG-irreducible components of eachL2(X)

and the associated zonal functions are given by the polynomials in them variablesx1, . . . , xm

m∏

i=1

Pki
(xi), (k1, . . . , km) ∈ Nm

in the way:

(u, v) 7→
m∏

i=1

Pki
(t(ui, vi)).

Remark 4.2:In a sense, the polynomials
∏m

i=1 Pki
(xi) are fake multivariate polynomials since them variables

are separated. As we shall see, for this reason it is much easier to deal with them, compared with the zonal

polynomials for the Grassmann space (see [6]).

The polynomials
∏m

i=1 Pki(xi) generate the polynomial algebraC[x1, . . . , xm], and are orthogonal for the product

measure

λ

m∏

i=1

µ(xi)dxi

with support[−1, 1]m when X = Sn−1, respectively[0, 1]m otherwise, and whereλ is chosen so that the total

measure is equal to1. The associated scalar product onR[x1, . . . , xm] is denoted by[, ]. We take the following

notations: a multi-index inNm is denoted byk = (k1, . . . , km) and we define forx = (x1, . . . , xm), Pk(x) =

Pk(x1, . . . , xm) :=
∏m

i=1 Pki(xi), anddk :=
∏m

i=1 dki . Obviously we have, for allk and l,

[
Pk, Pl

]
= δk,ld

−1
k . (24)

Moreover, we define

σ(x) :=
m∑

i=1

xi.

For any angleθ we denote 



t = cos θ if X = Sn−1

t = cos2 θ if X = Pn−1(K)

Now we can formulate the usual associated linear programming bound:

Proposition 4.3:AssumeF ∈ R[x1, . . . , xm] satisfies the conditions:

(i) F =
∑

k

fkPk with fk ≥ 0 for all k, andf0 > 0

(ii)





If X = Sn−1, F (x1, . . . , xm) ≤ 0 for all (x1, . . . , xm) ∈ [−1, 1]m such thatσ(x) ≤ m cos θ = mt

If X 6= Sn−1, F (x1, . . . , xm) ≤ 0 for all (x1, . . . , xm) ∈ [0, 1]m such thatσ(x) ≤ m cos2 θ = mt

August 15, 2007 DRAFT
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Then, any codeC in Xm with minimum angular distanceθ satisfies

|C| ≤ F (1, . . . , 1)
f0

Proof: We reproduce the standard argument. Let

S :=
∑

u∈C

∑

v∈C

F (t(u1, v1), . . . , t(um, vm)).

The contribution in this sum of the pairs(u, v) with u = v is of |C|F (1, . . . , 1). From condition (ii) and the

assumption that foru 6= v ∈ C, cos θ(u, v) ≤ cos θ, the other terms are non positive. Hence,S ≤ |C|F (1, . . . , 1).

On the other hand, we have

S =
∑

k

fk

∑

u,v∈C

Pk(t(u1, v1), . . . , t(um, vm)).

The term corresponding tok = 0 = (0, . . . , 0) gives f0|C|2 while the other terms are non-negative from the

positivity property of the polynomialsPk (Lemma 4.1). HenceS ≥ f0|C|2. The two inequalities lead to the

announced bound.

Remark 4.4:Note thatF (1, . . . , 1) =
∑

k fkPk(1, . . . , 1) =
∑

k fk is indeed always positive forfk ≥ 0 and

f0 > 0.

C. Examples of small degree

Let us work out the case of polynomials of small degree.

(i) X = Sn−1

a) Degree1: we takeF = (x1+ · · ·+xm)−mt. SinceP1(x) = x, F satisfies the hypothesis of Proposition

4.3 if and only if t < 0. We obtain:

If cos θ = t < 0, |C| ≤ 1− 1
t
. (25)

b) Degree2: we takeF =
(
(x1 + · · ·+ xm) + m

)(
(x1 + · · ·+ xm)−mt). We have

F = (x1 + · · ·+ xm)2 + m(1− t)(x1 + · · ·+ xm)−m2t

=
∑

x2
i + 2

∑

i<j

xixj + m(1− t)
∑

xi −m2t

=
∑

(x2
i −

1
n

) + 2
∑

i<j

xixj + m(1− t)
∑

xi +
m

n
−m2t

Since P2(x) = (x2 − 1/n)/(1 − 1/n), F satisfies the hypothesis of Proposition 4.3 if and only if

m
n −m2t > 0. We obtain:

If cos θ = t <
1

mn
, |C| ≤ 2mn(1− t)

1−mnt
. (26)
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The crossing point of the two curves corresponds tot = −1/mn, where the two bounds take the value

1 + mn.

(ii) X = Pn−1(K), Degree1: we have, up to a multiplicative factor,P1(x) = x − β+1
α+β+2 = x − 1

n . We take

F = (x1 + · · ·+xm)−mt = (x1− 1
n )+ · · ·+(xm− 1

n )+ m
n −mt. F satisfies the hypothesis of Proposition

4.3 if and only if t < 1/n. We obtain:

If cos2 θ = t <
1
n

, |C| ≤ 1− t

1/n− t
. (27)

D. Christoffel-Darboux formula and an explicit bound

It remains to apply the standard method with Christoffel-Darboux formula. Fork = (k1, . . . , km) and l =

(l1, . . . , lm), the notationl ≤ k stands for:li ≤ ki for all 1 ≤ i ≤ m.

Proposition 4.5:Let y = (y1, . . . , ym) ∈ Rm andk = (k1, . . . , km) ∈ Nm, and define

Kk(x, y) :=
∑

l≤k

dlPl(x)Pl(y) =
m∏

j=1

( kj∑

i=0

diPi(xj)Pi(yj)
)

and

Nk(x, y) :=
m∑

t=1

dktaktQkt(xt, yt)
∏

j 6=t

( kj∑

i=0

diPi(xj)Pi(yj)
)

where

Qkt(xt, yt) := Pkt+1(xt)Pkt(yt)− Pkt(xt)Pkt+1(yt).

Then we have the Christoffel-Darboux type formula:

Kk(x, y) =
Nk(x, y)

σ(x)− σ(y)
.

Proof: Sinceσ(x)− σ(y) =
∑m

t=1 xt −
∑m

t=1 yt =
∑m

t=1(xt − yt),

(σ(x)− σ(y))Kk(x, y) =
( m∑

t=1

(xt − yt)
) m∏

j=1

( kj∑

i=0

diPi(xj)Pi(yj)
)

=
m∑

t=1

(
(xt − yt)

kt∑

i=0

diPi(xt)Pi(yt)
) ∏

j 6=t

( kj∑

i=0

diPi(xj)Pi(yj)
)

The Christoffel-Darboux formula for the polynomialsPk gives:

(xt − yt)
kt∑

i=0

diPi(xt)Pi(yt) = dktaktQkt(xt, yt)

with the notations of the proposition, hence the result.

Following the standard method, we apply Proposition 4.3 to the function

Nk(x, y)2

σ(x)− σ(y)
.
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Proposition 4.6:Let y = (y1, . . . , ym) ∈ Rm andk ∈ Nm, and define

F (x) :=
Nk(x, y)2

σ(x)− σ(y)
= (σ(x)− σ(y))Kk(x, y)2 = Kk(x, y)Nk(x, y).

If y satisfies the conditions:

(i) Pi(yt) ≥ 0 for all 0 ≤ i ≤ kt and for all1 ≤ t ≤ m

(ii) Pkt+1(yt) ≤ 0 for all 1 ≤ t ≤ m

thenF satisfies the hypothesis of Proposition 4.3 for allθ such thatmt ≤ σ(y). Consequently, for any codeC in

Xm with minimum angular distanceθ,

|C| ≤

( ∑m
t=1 dkt

akt

(
Pkt

(yt)− Pkt+1(yt)
)∏

j 6=t

(∑kj

i=0 diPi(yj)
))2

−(m− σ(y))
∑m

t=1 dkt
akt

Pkt
(yt)Pkt+1(yt)

∏
j 6=t

(∑kj

i=0 di(Pi(yj))2
) . (28)

Proof: Clearly, under the assumptions (i) and (ii),Kk(x, y) andNk(x, y) have non-negative coefficients on the

Pl. This is enough to ensure that it is also the case for the productKk(x, y)Nk(x, y) (recall that the product of two

polynomials with non-negative coefficients on thePk also has non-negative coefficients on thePk. This property

transfers straightforwardly to thePk; it is anyway general to any family of zonal polynomials).

Obviously the sign ofF (x) is the sign ofσ(x)− σ(y) so the conditions of Proposition 4.3 are fulfilled.

It remains to computef0 = [F, 1] andF (1, . . . , 1).

[F, 1] = [K, N ]

=
[ m∏

j=1

( kj∑

i=0

diPi(xj)Pi(yj)
)
,

m∑
t=1

dktaktQkt(xt, yt)
∏

j 6=t

( kj∑

i=0

diPi(xj)Pi(yj)
)]

=
m∑

t=1

dktakt

[ m∏

j=1

( kj∑

i=0

diPi(xj)Pi(yj)
)
, Qkt(xt, yt)

∏

j 6=t

( kj∑

i=0

diPi(xj)Pi(yj)
)]

=
m∑

t=1

dktakt

[ kt∑

i=0

diPi(xt)Pi(yt), Qkt(xt, yt)
] ∏

j 6=t

[ kj∑

i=0

diPi(xj)Pi(yj),
kj∑

i=0

diPi(xj)Pi(yj)
]

=
m∑

t=1

dktakt

(− Pkt(yt)Pkt+1(yt)
) ∏

j 6=t

( kj∑

i=0

di(Pi(yj))2
)

where the last equality follows from (24).

Let us now computeF (1, . . . , 1). We have:

F (1, . . . , 1) =
Nk(1, y)2

m− σ(y)

and

Nk(1, y) =
m∑

t=1

dktakt

(
Pkt(yt)− Pkt+1(yt)

) ∏

j 6=t

( kj∑

i=0

diPi(yj)
)
.

Applying the resulting bound of Proposition 4.3 leads to the announced bound.
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We proceed to choose the parametersy andk such that the conditions of Proposition 4.6 will be satisfied. We

follow the standard method. Leta(k)
1 < . . . < a

(k)
k be the zeros of the polynomialPk. They admit the following

interlacing properties [23]:a(k)
i < a

(k−1)
i < a

(k)
i+1 for all 1 ≤ i < k. We choose the multi-indexk such that

mt ≤ ∑m
t=1 zkt , wherezkt = a

(kt)
kt

is the largest zero ofPkt . It follows from the interlacing property that there

existsy such thatzkt ≤ yt ≤ zkt+1 and

Pkt
(yt) + Pkt+1(yt) = 0

for all 1 ≤ t ≤ m. Thus,Pi(yt) > 0 andPkt+1(yt) < 0 for all 0 ≤ i ≤ kt and1 ≤ t ≤ m.

Now we have:

f0 = [F, 1] =
m∑

t=1

dkt
akt

(
Pkt(yt)

)2 ∏

j 6=t

( kj∑

i=0

di(Pi(yi))2
)

=
m∑

t=1

akt

∑

l≤k
lt=kt

dl

(
Pl(y)

)2

and

Nk(1, y) = 2
m∑

t=1

dktaktPkt(yt)
∏

j 6=t

( kj∑

i=0

diPi(yj)
)

= 2
m∑

t=1

akt

∑

l≤k
lt=kt

dlPl(y).

With Cauchy-Schwartz inequality (applied twice),

F (1, . . . , 1) =
4

(m− σ(y))

( m∑
t=1

akt

∑

l≤k
lt=kt

dlPl(y)
)2

≤ 4
(m− σ(y))

( m∑
t=1

akt

)( m∑
t=1

akt

( ∑

l≤k
lt=kt

dlPl(y)
)2

)

≤ 4
(m− σ(y))

( m∑
t=1

akt

)( m∑
t=1

akt

( ∑

l≤k
lt=kt

dl

)( ∑

l≤k
lt=kt

dl

(
Pl(y)

)2))

≤ 4
(m− σ(y))

( m∑
t=1

akt

)( ∑

l≤k

dl

)( m∑
t=1

akt

∑

l≤k
lt=kt

dl

(
Pl(y)

)2
)

=
4

(m− σ(y))

( m∑
t=1

akt

) m∏
t=1

( kt∑

i=0

di

)
f0

DenoteDkt :=
∑kt

i=0 di. We obtain

|C| ≤ 4
(∑m

t=1 akt

)∏m
t=1 Dkt

m− σ(y)
.

We summarize the above result in the following statement:
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Proposition 4.7:For any codeC in Xm with minimum angular distanceθ, for any multi-indexk such that

mt ≤ ∑m
t=1 zkt , let yt satisfyzkt ≤ yt ≤ zkt+1 and

Pkt
(yt) + Pkt+1(yt) = 0,

then

|C| ≤ 4
(∑m

t=1 akt

)∏m
t=1 Dkt

m− σ(y)
. (29)

Remark 4.8:Using the so-called adjacent polynomials instead of the Gegenbauer polynomials, an enhancement

of (29) was derived form = 1 [5], [13]. It is very likely that this can be generalized for allm.

E. A bound for the asymptotic rate

Now we consider the limit whenn → +∞ of the rateR(C) := 1
n ln |C| (of course the spaceP2(O) is not

concerned anymore) of the codesC of Xm. We derive an upper bound for this limit from (29). The next theorem

settles the result obtained that way only in the caseX = Pn−1(K) because this bound, in the case ofX = Sn−1,

turns out to be the same as the one obtained from the trivial isometric embedding
(
Sn−1

)m → Smn−1 (see Remark

4.10).

Theorem 4.9:Let C be a code inXm, X = Pn−1(K), with minimum angular distanceθ, and let(θ1, . . . , θm) ∈
[0, π/2]m satisfy

∑m
t=1 cos2 θt = m cos2 θ. Then, whenn →∞,

R(C) . c(RLP (θ1) + . . . + RLP (θm)), (30)

whereRLP is defined in (5).

Proof: Same as in [4], involving the asymptotic estimate ofzk. We reproduce it here: Consider an infinite

sequencek(n) such that2k(n)/cn tends to a finite limitρ asn tends to infinity. Then [4]

lim
n→∞

zk(n) = 4
ρ−1 + 1

(ρ−1 + 2)2

and, since from [5],

Dk '
( c

2n + k − 1
k

)2

we have

lim
n→∞

1
n

ln Dk(n) = lim
n→∞

2
n

ln
( c

2n + k(n)− 1
k(n)

)
= c

(
(1 + ρ) ln(1 + ρ)− ρ ln ρ

)
.

Inverting the conditions

cos2 θt = 4
ρ−1

t + 1
(ρ−1

t + 2)2

leads to

ρt =
1− sin θt

2 sin θt
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Let kt = bρtnc, and letyt satisfy zkt
≤ yt ≤ zkt+1 and Pkt

(yt) + Pkt+1(yt) = 0 (the existence ofyt is

guaranteed by the interlacing property of the zeros of the Jacobi polynomials). Then from (29),

|C| ≤ 4
(∑m

t=1 akt

)∏m
t=1 Dkt

m− σ(y)
.

Sinceσ(y) ' m cos2 θ and the expression4
∑m

t=1 akt

m−σ(y) has a finite limit whenkt/n tends toρt, the rateR(C)

satisfies

R(C) . 1
n

m∑
t=1

ln Dkt
'

m∑
t=1

c
(
(1 + ρt) ln(1 + ρt)− ρt ln(ρt)

)
.

Remark 4.10: • It is worth noticing that the choiceθt = θ in (30) yields to the bound

R(C) . cmRLP (θ). (31)

This bound can be derived more easily, since every code inXm is also a code in thecmn-th dimensional

unit sphere (combining the mappingβ for m = 1 and the obvious mapping
(
Sn−1

)m → Smn−1). It turns out

that, since the functionRLP (θ) as a function oft = cos2 θ is not convex, the bound (30) slightly improves

on (31). We discuss this in more details in the next subsection.

• The same method applied toX = Sn−1 would lead to:

R(C) . RLP (θ1) + . . . + RLP (θm), for all θt such that
m∑

t=1

cos θt = m cos θ.

But the functionRLP (θ) as a function oft = cos θ is convex, therefore the choice of(θ1, . . . , θm) that

minimizes the right hand side isθ1 = · · · = θm = θ, yielding (31).

F. Analysis of(30) versus(31)

Let C2 be the set of continuous, twice differentiable functions with continuous second derivative. For a function

f defined on[0, 1[, of classC2, we denote:

f (m)(t) := min
t1,...,tm∈[0,1[∑m

i=1 ti=mt

f(t1) + · · ·+ f(tm)
m

.

Clearly, if f is convex on[0, 1[, we havef (m) = f , and, if f ≤ g, f (m) ≤ g(m). It is also easy to see that

f (m′) ≤ f (m) whenm dividesm′.

The function we are interested in isf(t) = RLP (θ) wheret = cos2 θ. We have

f(t) = (1 + ρ(t)) ln(1 + ρ(t))− ρ(t) ln(ρ(t))

where

ρ(t) =
1
2
(− 1 + (1− t)−1/2

)
.
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One can check that the second derivative off takes negative values on some interval[0, t0], t0 ' 0.208, and then

takes positive values on[t0, 1[. The functionf is an increasing function, withf(0) = 0, first concave then convex.

We consider the functiong on [0, 1[, whose graphCg determines the convex hull of the portion of plane above the

graphCf of f . The functiong is uniquely determined by the conditions:




g ≤ f

g is convex

g is maximal with these properties

Let us denote byt1 the unique value for which the tangent at(t1, f(t1)) to Cf contains the origin(0, 0). The value

t1 ' 0.379 is the unique solution to

f(t) = f ′(t)t

and the slope of the tangent toCf at t1 equalsf ′(t1) ' 1.089. Then the functiong is defined by:




g(t) = f ′(t1)t ' 1.089t for all t ∈ [0, t1]

g(t) = f(t) for all t ∈ [t1, 1[

Sinceg is convex, we have for allm and all t ∈ [0, 1[, g(m)(t) = g(t) ≤ f (m)(t). In other words, on[0, t1], f (m)

is somewhere betweeng andf , and on[t1, 1[, f (m) = f . Clearly, whenm → +∞, f (m) → g. Also, the maximum

δ of f(t) − g(t) is an upper bound for the maximum off(t) − f (m)(t). Numerical calculation givesδ ' 0.016.

Considering our primary goal, i.e., to compare (30) and (31), this means that the improvement of (31) upon (30)

is upper-bounded by0.016m.

It seems difficult to determine the optimal choice of(t1, . . . , tm) that minimizes the quotientf(t1)+···+f(tm)
m .

A natural choice is(t1, . . . , tm) = (0, 0, .., mt/r, . . . ,mt/r) with r non-zero and equal coordinates. In that case,
f(t1)+···+f(tm)

m = r
mf(mt

r ) and requirest < r/m. If t = rt1
m , it is certainly the best choice since then the resulting

point lies onCg. Numerical experiments seem to show that, form = 2, 3, andt < 1/m, r = 1 does minimize the

quotient f(t1)+···+f(tm)
m .

V. BOUNDS FOR CODES IN THEGRASSMANN AND STIEFEL MANIFOLDS

In this section, we summarize the consequences of the above results for Grassmann and Stiefel codes. Following

a standard notation in coding theory, we denote byA(X, d), the maximal number of elements of a codeC of the

spaceX with minimum distanced.

We have proved in Theorem 3.7 that the size of Grassmannian codes with minimum chordal distanced =
√

m− s

is upper-bounded by the size of codes inPn−1(K)m with minimum angular distanceθ, wherecos2 θ = s/m. Thus

we have proved that:

A(Gm,n(K), d) ≤ A(Pn−1(K)m, θ) with θ = arccos(
√

1− d2/m). (32)

Linear programming bounds onA(Pn−1(K)m, θ) were derived in Section IV. Applying them, we obtain the bound

R2(d) from Theorem 2.7. The boundsR1(d) andR2(d) are depicted in Figure 2.
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Fig. 2. Upper bounds on the asymptotic rate of real Grassmannian codes with minimum chordal distanced, m = 3. The dashed line isR1(d),

and the solid line isR2(d) (see Theorem 2.7)

We believe that these bounds are not good in general for finite values of the parameters, because we use only a

rough estimate ofσ(p, q) = trace(πp ◦πq) in the inequality (18) (we replace
∑

1≤i,j≤m(ei ·e′j)2 with
∑

1≤i≤m(ei ·
e′i)

2). If we compare the bounds obtained with the zonal polynomials of small degree, (27) is worse than the simplex

bound, obtained from the zonal polynomial of degree1 of Gm,n(R). Moreover, numerical experiments for small

parametersm andn (with the package LRS, by David Avis, http://cgm.cs.mcgill.ca/˜ avis/C/lrs.html), confirms that

the bounds obtained from the zonal polynomials ofGm,n(R) are sharper than the ones obtained from Proposition

4.3 for X = Pn−1(R)m.

Surprisingly, the consideration ofPn−1(K)m allows us to obtain better bounds for the asymptotic rate than the

ones obtained previously by either the isometric embedding given in [21] ofGm,n into a unit sphere of the dimension

n(n+1)/2−2 (see also Remark 3.4), or the spectral method developed in [6] with the zonal polynomials ofGm,n.

We have proved in Theorem 3.6 that the size of Stiefel codes with minimum chordal distanced =
√

2
√

m− s

is upper-bounded by the size of codes in
(
Scn−1

)m
with minimum angular distanceθ, wherecos θ = s/m. Thus

we have proved that:

A(Vm,n(K), d) ≤ A(
(
Scn−1

)m
, θ) with θ = arccos(1− d2/2m). (33)

In Section IV, we derived linear programming bounds for codes in
(
Scn−1

)m
, thus implying bounds for Stiefel

codes. These bounds are, up to our knowledge, the first general bounds for Stiefel codes, and we believe that they

are rather sharp. For the asymptotic rate, the best result is given in Theorem 2.8.

VI. CONCLUSIONS

Using relations between Grassmann and Stiefel manifolds and other spaces, we derive new bounds on the size of

Grassmannian codes (Theorem 2.7) and Stiefel codes (Theorem 2.8). These are the best known asymptotic bounds
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on the rate of Grassmannian and Stiefel codes.
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