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Abstract

Upper bounds are derived for codes in Stiefel and Grassmann manifolds with given minimum chordal distance.
They stem from upper bounds for codes in the product of unit spheres and projective spaces. The new bounds are
asymptotically better than the previously known ones.

I. INTRODUCTION

Use of multiple transmit and receive antennas essentially increases the spectral efficiency of wireless systems (see
[1] and references therein). Analysis of Rayleigh flat-fading multiple-input multiple-output (MIMO) scenarios with
m transmit antennas andtransmitted symbols, reveals that relevant coding schemes can be designed as collections
of elements (points) in the complex Grassmann manifold - the set-dimensional linear subspaces@t, if the
channel is unknown to the receiver, and in the complex Stiefel manifold - the setasthonormal vectors ",
if the channel is known to the receiver. An appropriately defined distance measure between the points characterizes
diversity of the designed scheme. Following standard coding theory considerations, we study the relation between
the number of points (the size of a code) and the minimum distance between distinct code points. Our aim in this
paper is to obtain new upper bounds for the size of codes in Grassmann and Stiefel manifolds.

The most powerful technique for this kind of problems is the linear programming method (called also the poly-
nomial method), initiated by Delsarte [2]. The method is very well understood in the c&spodfit homogeneous
spaces (defined in the next section), where very explicit bounds, and also good asymptotic bounds on the rate of
codes have been derived. Examples are the Hamming and Johnson schemes, treated in [3], the unitiBphere of
[4], and the projective spaces [4], [5].

When the underlying space is homogeneous and symmetric b@tmaint homogeneous, the situation is much
more complicated, although the principles of the linear programming method remain valid. The difficulties come
from the fact that the zonal functions defined for these spaces are not functions of one variable, but rather of

several variables. The Grassmann spaces considered in this paper fall into this category. An attempt to overcome
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this problem was carried out in [6]. An asymptotic bound for the rate of Grassmannian codes was obtained, involving
the asymptotics of the largest eigenvalue of some symmetric endomorphism. This bound however is not optimal
since it was improved formn > 1 by some volume-type arguments for a large range of values of the minimum
distance [7].

There is one trivial case of symmetric spaces of ramk> 1 for which the classical treatment of the linear
programming method is easily extended: it is the direct produétpdint homogeneous spaces, such as the direct
product ofm copies of the unit sphere. An example of a similarly easy case is provided by the non-binary Johnson
space [8], [9], [10], that is the product of the Hamming and the binary Johnson scheme.

The approach developed in this paper is to relate Grassmann and Stiefel spaces and their associated codes to
various products of 2-point homogeneous spaces, and hence to derive upper bounds for these codes in a rather
easy way. The asymptotic versions of the new bounds (Theorems 2.7 and 2.8) provide the best currently known
asymptotic bounds.

The paper is organized as follows. Definitions and results are given in Section Il. Section Il describes various
relations between the spaces and their codes. The simplest one connects Grassmann and Stiefel spaces to the
unit sphere of an asymptotically equal dimension; this yields, for example, to a bound for the asymptotic rate of
Grassmannian codes that already improves upon the previous ones. Section IV develops the Delsarte polynomial
method for the products of spaces under consideration, including the classical method that involves the Christoffel-
Darboux formula, and derives upper bounds for the size of the associated codes. A bound for the asymptotic rate of
these codes is obtained. Section V discusses the consequences for the Grassmannian and Stiefel codes. In particular,
we show that the bound obtained on the asymptotic rate of Grassmannian codes from the product of projective

spaces is sometimes better than the one obtained in Section Ill. We conclude in Section VI.

II. DEFINITIONS AND RESULTS

We shall use the following notations and definitions. We say ffat) < g(n), f(n) ~ g(n), f(n) 2 g(n)
if lim,,— e % <1, lim,_eo % =1, lim,_ o % > 1, respectively. A code in a metric spac&,d) is a
finite set contained in the space, and a codeword is an element of the code. The size offaigddecardinality,
denotedC|. The rate of a code i&®(C) := 1 In|C|, whereln denotes the natural logarithm, andwill be defined
separately for each space. The minimum distance of a code is the minimum distance (induced by the relevant
metric) between a pair of distinct codewords. A metric sp@ked) is called 2-point homogeneous, X affords
the transitive action of a grouf, such that the orbits of the action 6f on X x X are characterized by the
distanced. In other words, for all(z,y) € X andg € G, d(g(z),g(y)) = d(z,y), and moreover, for all pairs
(z,y), (',y') € G, there existyy € G such thatg(z) = 2/ andg(y) = ¢ if and only if d(z,y) = d(2',v).
It is a well-known fact that the compact Riemannian manifolds that are two-point homogeneous are exactly: the
unit sphereS™ 1, the projective spaceB”~!(K) where K = R, C,H and the projective plane over the octonions
P2(0) (see [11], and [12] for more about the octonions &3d0)).
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A. The real compact two-point homogeneous spaces

The unit sphere of the Euclidean spake is denotedS™ !, namely,

snl= {(wl,...,xn)ER" | Zx?:l}. (1)
i=1

The standard scalar productlf, given by(u-v) = 3", u,;v;, defines the Euclidean distance between two points
of 71

n

le =l = | D (us —vi)? = V2y/T= (u- ). )

i=1
The angular distance betweenandv is defined by the anglé = 6(u,v) € [0, 7] such thatcosf = (u - v). We

have of course

|u—v|| = vV2V1 — cos . 3)

The best known asymptotic bound on the rate of spherical codes as a function of the minimum distance is given
in the following theorem. It will be extensively used in the derivation of the new results.

Theorem 2.1 ([4]):Let C be a spherical code i§”~! with minimum angular distanceé < § < 7/2 and rate
R(C) = L 1n|C|. Then, whem — o,

R(C) < Rs(0) := min{R.p(0), Ry (0)}, 4)

where
Rpp(0) :== (1+ p)In(1 +p) — plnp, ©)

1 —sinf
P T osing (©)
and

Ry (0) :== —Inv/1 — cosf — 0.0686 @)
(the numerical value 0.0686 is approximated). 0

Remark 2.2: « The asymptotic rate of spherical codes with minimum angular distance atrdgass known
to be equal to zero. This is a consequence of the Rankin bound ([18], see also [13] or [14]).

« For small values ofl (approximatelyd < 63°), we haveRs(0) = Ry (#). Otherwise,Rs(0) = Rpp(6).

O

The other real compact manifolds which are two-point homogeneous can be treated in a similar way. These are
the projective space®”!(K) where K = R, C, H (the field of real quaternions) and > 3, and the projective
plane over the octoniori&®(Q). In order to treat the fields of coefficients in a uniform way, we extend the definition
of (x - y) so that, for allz,y € K", (z-y) = > ., x;5;, where the conjugation — 7 is the standard one over

K = C,H, 0 and is the identity oveR. Also we conventionally assume that= 3 when K = Q. The group

August 15, 2007 DRAFT



G under which these spaces are two-point homogeneous is respectively the orthogonal @kdupthe unitary
groupsU (K™) with K = C,H, and the Lie groupFy (see [12] for this last case).

The angular distance betweenand ¢ in P"~!(K) is defined by the anglé = 6(p,q) € [0,7/2] such that
cosf(p,q) = |(e- f)| wheree, f are arbitrary chosen unit vectors of the lingsg. It is shown in [4] and [5]
that the linear programming method applies to these spaces. The derived asymptotic bound for the rate can also be
obtained from the bounds for spherical codes, because to a¢adé®” ! (K) one can associate a code§f* !
with the same size and a minimum angular distance at least equal to the éheseliecting a unit vector in each
element ofC. One obtains:

Theorem 2.3 ([4]):Let C be a code inP"~!(K) with minimum angular distancé < § < 7/2 and rate
R(C) := 1lln|C\. Let c:=1,2,4 respectively whenk = R, C, H (so thatc = [K : R]). Then, whem — oo,

R(C) < cRs(0) 8)

O

B. The Grassmann space

Let K be the real or the complex field. The Grassmann sgace (K) is the set of all subspaces of dimension
m in K™. It is @ homogeneous space under the action of either the orthogonal @(@ip or the unitary group
U(C™). We will denoteg,, ,, when K is arbitrary. It is worth noticing that whem = 1 we recover the projective
space. Several metrics have been defined,in,, see [19], [20]. In this paper we consider tbieordal distance
which was introduced in [21] and studied in [19], [7], [6], [21], [20]. The chordal distafi€g, ¢) is defined as
follows.

Definition 2.4: Given the plane9, ¢ € G,, ,, apply the following procedure. Initialize the sets of unit vectors
A =0 andB = (. In theith step, choose the vectods, b; such that:

(i) a; is contained inp andb; is contained iry.

(i) a; is orthogonal to all the vectors iA andb; is orthogonal to all the vectors .
(i) Among all the vectors satisfying the conditions in (i) and (ii), the angle betwgemdb; is minimal (i.e.,
their inner / Hermitian product module is maximal).
Set#, to be the angle between andb;, inserta; to A andb; to B, and proceed to the next step, until angles
0<6, <60, <...<0, <7/2, called the principal angles betwegrand ¢, have been defined. Then the chordal

distance is

de(p,q) = \l Z sin?§; = J m — Z cos? 0);.
i=1 i=1

The following lemma provides an equivalent definition, which is more convenient.
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Lemma 2.5 ([21]): For a planep € G, », let A, be ap x n matrix whose rows form an orthonormal basis of
p, and letm, := A7 A, be the matrix of the orthogonal projection en(A4; denotes the Hermitian conjugate of
Ap). Then, the projection matrix,, does not depend on the choice 4f, and, given two planes, g € G,, », the

chordal distance is

de(p,q) == \/m — trace(mp 0 my). 9)

O

Bounds on the size of codes in Grassmann spaces were considered in [21], [19], [7], [6], [22]. The best known
asymptotic upper bounds are given in the following theorem.
Theorem 2.6 ([7], [6]): Let C' be a code inG,, ,(K) with minimum chordal distance and rateR(C) :=

L1n|C]. Then, whem — oo,

R(C)g—cmhl( 1—\/1—d2/m> (10)

and
R(C) S em[(1+ p)In(1+ p) — plnp], (11)
where
p=gm(vm/d—1). (12)
O

The bound (10) was derived by Barg and Nogin, using Blichfeldt's density method [7]. The bound (11) is a linear
programming bound due to Bachoc [6]. Both works considered only the real Grassmann space, but can be easily
extended to the complex case.

The main contribution of this paper is the following theorem.

Theorem 2.7:Let C be a code irG,,, ,,(K') with minimum chordal distancé = /m — s, and let) = arccos(y/s/m).

Then, whenn — +oo,

where
and
fald) = ' Rup(0)+ -+ Ryp(6,, .
2d)= iy C(REp(O1) 4+ Brp(Om)) (15)
Z;’;l cos? 0;,=m cos2 0
(Rs and Ry p are defined in Theorem 2.1). O

Our method will be to establish relations between the Grassmann space and other spaces, and then apply bounds

for codes in these spaces. A reduction from Grassmannian to spherical codes is given in Theorem 3.2, implying
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the boundR; (d). The boundR(d) follows from a reduction to codes in products of projective spaces (Theorem
3.7) and Theorem 4.9. The boutt (d) is better than the bounds of Theorem 2.6 for all valued ahdm (see

Lemma 3.3). We show in Section IV-F that for some valued @indm, it is further improved byRy(d).

C. The Stiefel manifold

The Stiefel manifoldV,, ., (K) is the set ofm-tuples of orthonormal vectors iK™, or equivalently
Vi (K) ={X € M™*"(K) | XX* =1d,,,},

where Id,,, is the m x m identity matrix. The orthogonal grou@p(R"™) if K = R, respectively the unitary
group U(C™) if K = C acts transitively onV,, ,(K), and this space can be identified with the set of classes
O(R™)/O(R™ ™), respectivelyU (C™)/U(C"*~™).

The distance considered in coding theory is

d(X,Y):=||X = Y| = /trace((X —Y)(X* —Y*)).

In other wordsd(X,Y) is the Euclidean distance betwe&nandY’, whenX andY are regarded as one-dimensional
vectors of lengthmn.

In [22], estimates for the volume of balls in the Stiefel manifold are given, approximated by the geodesic distance,
and Gilbert-Varshamov and sphere packing bounds are derived for small distances.

The following theorem will be proved in Section IlI-B. It follows from a relation between codes in the Stiefel
space and spherical codes (Theorem 3.6).

Theorem 2.8:Let C be a code inV,, ,,(K) with minimum distancel = v/2v/m — s, and letd = arccos(s/m).
Then, whenn — +o0,

R(C) < emRs(0) (16)

where Rg is defined in (4). 0

[11. M ORE SPACES AND THEIR INTERCONNECTIONS

The simplest of these connections relate Grassmann and Stiefel spaces to a single unit sphere, and allow to apply
directly the known bounds for spherical codes to the Grassmannian and Stiefel codes. We start with them, then we

introduce the products of spheres and projective spaces and their relations with Grassmann and Stiefel spaces.

A. gm’n and Scmn—l

We define a mapping
,6' . gm,n(K) _ Scmn—l

in the following way. We select for alb € G, ,,(K), an orthonormal basie,...,e,) of p whose elements

belong toK™. With the usual identification of andR x R through the mapping = = +iy — (z,y), we consider
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these elements iR“". Thenj(p) is chosen to be the elementRf™” obtained by the concatenationaf, . .., e,,,
divided by /m. Obviously, 3(p) € Semn—1,
For all p,q € gm,n(K), we set

m
a(p,q) == Z cos? 0; = trace(ﬂ'p o 7Tq).
i=1

Let us recall that the principal anglés, . . . , 6,, associated tdp, ¢) are related to the construction of orthonormal
basis(a, ..., a) and(by, ..., by,) for p andq respectively, such thabs 6; = |(a;-b;)| ando(p, q) = >/, cos® 6;.
However, these orthonormal basis obviously depend on the(pajy and not onp andgq individually. There is no
hope in the above construction Gfto choose orthonormal basis that would satisfy the equadity; = |(e; - €})]
for all pairs (p, q). Still, and this is the main point of our construction, we do have a relation betwgen) and

the arbitrary chosenorthonormal basige,, ..., e,,) of p and(ef,...,e.,) of ¢, leading to the inequality
o(pq) =D |(ei-e)).
i=1

In other words, if one defines an alternative set of “principal ang§s’. ., 0., by 6, = arccos|(e; - €})|, then
o(p,q) > >, cos® ), leading to an upper bound on the chordal distance betwesrd g.

In the next lemma we prove the above assertions and settle the inequality we aim at in terms of the embedding
G.

Lemma 3.1:For all p, ¢ € G, n(K),

g b
cos 0(3(p). 5(a)) <y 7L,
Proof: Let 5(p) = e, obtained from an orthonormal basis, o, . . ., e,,) of p and 3(q) = ¢/, obtained from
an orthonormal basige!, ..., e),) of ¢. We computeo(p,q) = trace(m, o m,). Let A,, A, denote them x n

matrices whose rows are the basis elements, respectively. Then
a(p, q) = trace(m, o my) = trace(A, A, A} A,) = trace(A,A; A A7)
The entries of the matrixl, A; are the hermitian productg; - €}). So we obtain:

op.g)= > lei el 17)

1<i,j<m

and hence

o(p.q) = (e ).
i=1
If K =R, we obtain from Cauchy-Schwartz inequality

cosf(e,e’) = (e-¢) = 22117(7? - €;) < \/Z;n_l(:; -€;)? < \/U(p» ‘J). (18)

m

If K =C, let us denote byR(z) the real part of a complex number In the identificationC" = R?" recalled
above, the standard scalar productRit is given byR((x-y)). With the obvious inequalityR(z-y))? < |(z-y)|?,

we obtain the same inequalitys §(e, e’) < o(p.a) (wheree ande’ are considered in the unit sphere @)

m

August 15, 2007 DRAFT



17.5
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Fig. 1. Upper bound on the asymptotic rate of real Grassmannian codes with minimum chordal distanee 3. From top to bottom: a
linear programming bound (11), a Blichfeldt-type bound (10), and the new bound (19)

The following theorem is an immediate consequence of Lemma 3.1. It states that bounds for spherical codes can
be applied to codes in Grassmann spaces.

Theorem 3.2:Any upper bound on the size of codesdfi"”~* with minimum angular distana® = arccos(+/s/m)
is also an upper bound for codes in the Grassmann spacg k) with minimum distancel = /m — s. 0

As a corollary, we obtain the bound

R(C) S Ri(d) (19)

of Theorem 2.7.
Figure 1 compares (19) with the best known asymptotic bounds, given in Theorem 2.6. It can be readily checked
that form = 1, (19) is equal to (11) and is smaller than (10). Feor> 1, we have the following lemma (note that
by definition, the chordal distance is always upper-bounded/by).
Lemma 3.3:The bound (19) is smaller than the bounds of Theorem 2.6 for all values »fl andd < \/m.
Proof: Denote byR () the Rankin-Blichfeldt upper bound on spherical codes with minimum angular distance

6 [18]. Then the bound (10) can be expressed as
R(C) S emRp(6) (20)

for § = arccos(y/s/m), wheres = m —d?. The comparison between (19) and (10) is thus reduced to a comparison

betweenRg and Rg. It is easy to check thaRp is larger thanRg for all values off.
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It remains to compare (19) with (11). By definitioRs(0) < Rpp(0) (Rrp is defined in (5)). Therefore, it is
sufficient to show that (19) witl, » instead ofRs is always smaller than (11). We note tifat arccos(y/s/m) =
arcsin(d/y/m). Hence, applying (19) wittR p instead ofRg, we obtain:

R(C) S eml(1+ p) In(1 + p) — pln ] (21)
with
p=5(Vm/d—1). (22)

The difference between this bound and (11) is only in the definition dthe claim now follows from the fact that

flp) =10+ p)In(1 + p) — plnp is an increasing function ip. O

Remark 3.4:We have defined an embedding &f, ,,(K) into the unit spher&“™"~1. The dimensions of these
two spaces¢m(n —m) andemn — 1, are asymptotically equivalent. This can be compared to another embedding
of G,, »(R) into a unit sphere, introduced in [21]. The dimension of this sphergnst 1)/2 — 2, which is much
larger than the one of the Grassmann space. However, unlike our embedding, the embedding from [21] is also an

isometry. 0O

B. V. and Semn—l

Lemma 3.5:Let X,Y € V,, ,(K), K = R,C. Let (eq,...e,) denote the rows of(, respectively(e],...e,,)

for the rows ofY. Then

d(X,Y) = ﬁJ m =Y R((e: - €)).
1=1
Proof: We calculate
|X = Y||? = trace((X — Y)(X* —Y*)) = trace( X X* — XY* — Y X* +YY™)

= 2m — 2R(trace(XY™))

since X X* =YY* =1d,, andtrace(XY*) = trace(XY*) = trace(Y X*). We conclude with

m

trace(XY™) = Z(ei -el).

i=1

O

Again with the identification ofC™ with R?", we viewV,, ,(C) as a submanifold o¥,, »,,(R) endowed with

AXY) = X = Y] = V2 [m = > (e; <))
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We see that the obvious mapping:

v Vm,n<K) N Scmn—l
1
ﬁ(@l, . ,em)

is this time, up to a suitable scaling of the distances, an isometry. Hence the bounds for spherical codes also apply

X —v(X)=

to V,,.»(K), probably in a quite efficient way. Still, one constraint is not encoded in it: the fact that the vectors
are pairwise orthogonal and of norta We resume these observations in the following theorem.
Theorem 3.6:Any upper bound on the size of codesdfi™"~! with minimum angular distana&= arccos(s/m)

is also an upper bound for codes in the Stiefel spage, (K) with minimum distancel = v/2/m — s. 0

Theorem 2.8 now easily follows as a corollary of Theorem 3.6.

C. Gmn, Vm,» and products of spaces

So far we have established a relation between code$,in andV,,, and codes inS“"~!. We note that
the ranges of the mappings and v contain normalized vectors fror(ﬁcnfl)m (concatenations of unit vectors
e1, ..., en divided by./m). Hence bounds for codes (rSC"—l)m will imply bounds for codes i1G,, ,, andV,, ..
This is the motivation to the generalization of the linear programming method to the product of unit spheres, and
more generally to the product of 2-point homogeneous spaces, which is proposed in the next section. As we shall
see, the asymptotic bound for the rate of code@SW—l)m is not better than fo6°™"~1, hence does not improve

on (19) and (16). A better result is obtained for Grassmann spaces with the product of projective spaces.

We now define more precisely the products of spaces and their associated distances that will be studied in the

next section. We start with the product f copies of the unit sphere @&":
("™ ={e=(er,...,em) | e € "1}

We consider on(S"~!)™ the distance given by

d(e,e') =

m
> llei —€fll?
i=1

_ Va1 - Yot cosb;
m

wherecos §; = (e; - €;). We attach to a paie,e’ € (S"~)™ an angled = §(e, ¢’) € [0, 7] such that

cosf =

>, cos; (23)

m
and we calld the angular distancebetweene ande’. The angled is also the angle between the vecteys/m and

e’//m, viewed as elements ¢f"" 1.

We define, for the remaining 2-point homogeneous spaces recalled above, and without specifying e field

®" " ={p=(p1,---,pm) | ps € P""1}.
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We attach to a paip,p’ € (]P”fl)m an angled = 6(p, p’) € [0,7/2] such that

m 2
> v cos?b;
m

cos?f =

"~1)™ the “chordal’

wheref; = 0(p;, ¢;) and we calld the angular distancebetweenp andp’. We consider or(IP

distance given by

d(p,p")

m— ZCOSQHZ‘ = /msiné.
=1
In order to derive bounds for codes in Grassmann sp@ges(K ), we shall make use of the mapping:

V:Gma(K)— (P”fl(K))m

defined in the following way: for alp € G,,, ,(K), we choose an-tuple (py,...,p,,) of pairwise orthogonal lines
of p. We setv(p) = (p1,- .-, Pm)-
Because of the equation (17), we have similarly:

a(p,q)

cos? 0(v(p),v(q)) < -

hence the bounds for codes Qﬁ’”—l(K))m apply to codes in Grassmann spaces. We summarize in the following
theorem:

Theorem 3.7:Any upper bound on the size of codes Qlﬁ’"—l(K))m with minimum angular distancé =
arccos(+/s/m) is also an upper bound for codes in the Grassmann s@acg(K) with minimum distancel =

m — S.

IV. BOUNDS FOR CODES IN THE PRODUCT OR-POINT HOMOGENEOUS SPACES

In this section,X denotes one of the spacfé—!, P»~!(K) where K = R, C, H, or the projective plane over
the octonionsP?(Q). We derive bounds for codes iK™ with a given minimum distance, following Delsarte’s

linear programming method as performed in [4]. As a reference on orthogonal polynomials, we refer to [23].

A. Review of the necessary material on the spac€es

We recall that, to each of these spaces is associated a family of orthogonal polynomials of one variable, which are
the zonal polynomials relative to the action of the gra@{see [4], [5], [24]). ForX = S™~!, these polynomials
are the Gegenbauer polynomials with paramet&r— 1 and associated orthogonal meas(ire- )" ~3)/2 on the

interval [—1,1]. For X = P"~1(K), these polynomials are Jacobi polynomials with paraméierg) defined by:
& &
=-(n-1-1, == —1.
a=gn—1)-1 f=2
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More precisely, the values dfv, 5) are as follows:

c « Jé]
Ri1|(n=3)/2|-1/2
C |2 n—2 0
H|{4| 2n-3 1
018 7 3

The orthogonal measure associated to the paramgterd) is z°(1 — x)® over the interval0, 1]. We generically
denote byP;(z) these polynomials, witdeg(P;) = k and P,(1) = 1. We letu(x) denote their normalized associ-
ated orthogonal measure affdl Q] the corresponding scalar product &fi] (so that[P, Q] = [ P(z (z)dx
and[1, 1] = 1). Moreover, we havéP;, P;] = d;,' whered;, denotes the dimension of the irreducible representation
of G associated t@; (e.g. whenX = "1, dj, = dim Harmy, = ("*; ") — ("1*,?), whereHarm, is the kernel

of the laplacian operator, see [13]).

The three-term relation expresseB)(z) as a linear combination of the polynomiats:
[L‘Pk(l‘) = akPk;+1(x) + b Py, ({L‘) =+ ckPk,l(:E)

for some sequences of rational numbers), (bx), (cx). It is enough for our purpose to know that) is bounded
whenn andk tend to+oo with n/k tending to a finite limit. For example, whek = S™~1,

n—2+k

= o ok

For all (u,v) € X, we define
- (u-v) =cosB(u,v) if X =871
cos? 0(u,v) if X =P 1(K).

The zonal function onX associated td>; is given by:
(u,v) = Pr(t(u,v)).

The so-called ’positivity property’, related to these polynomials, is the basic principle underlying the linear

programming method itX: for all codeC C X, and for allk > 0,

> Y Pult(u,v) > 0.

ueCvel

B. The linear programming method oX™

Now we consider the product spac&d$™. The positivity property generalizes to the following:
Lemma 4.1:LetC C X™. Let us denote elements 6fby v = (uq, ..., uy,) Withu, € X. Forall (ky,..., k) €
N,

ZZHPk (ui,v;)) > 0.

ueCvelCi=1
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Proof: This is the positivity property in the product spa&e™. The groupG™ acts transitively onX™; the
G™-irreducible components aof?(X™) are the tensor products of th&-irreducible components of eadt? (X)

and the associated zonal functions are given by the polynomials imthariablesz, ..., x,,

m

HPki(mi)7 (k17~-~7km)€Nm
i=1

in the way:

(u,v) HP;% (t(ui, v:)).

O

Remark 4.2:In a sense, the polynomiald;" , P, (z;) are fake multivariate polynomials since the variables

are separated. As we shall see, for this reason it is much easier to deal with them, compared with the zonal

polynomials for the Grassmann space (see [6]). O
The polynomialg ;" , Py, (x;) generate the polynomial algebdz, . .., z,,], and are orthogonal for the product
measure
=1
with support[—1,1]™ when X = S"~1, respectively[0, 1]™ otherwise, and whera is chosen so that the total
measure is equal td. The associated scalar product Biw4, ..., z,,] is denoted by,]. We take the following
notations: a multi-index iN" is denoted byk = (k1,...,k,) and we define forx = (z1,...,zpn), Ps(z) =

Py(z1,...,2m) = [[i~, Pk, (z;), anddy := [[;~, di,. Obviously we have, for alk and{,
[PE7 PL] = 6Eid£1‘ (24)

Moreover, we define
m
o(z) = sz
i=1

For any angleg we denote
t=cosf if X =571
t=cos?f if X =P 1K)
Now we can formulate the usual associated linear programming bound:
Proposition 4.3: AssumeF € R[zq,...,x,,] satisfies the conditions:
(i) F = fuPys with f; > 0 for all k, and fo > 0
k
If X =51 F(x,...,2,) <0 forall (z1,...,2,) € [-1,1]™ such thato(z) < mcos = mt
m

If X #8571 F(xy,...,2,) <0 forall (z1,...,2,,) € [0,1]™ such thato(z) < mcos? 0 = mt
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Then, any code” in X™ with minimum angular distance satisfies

F(1,...,1)

Cl <
1< fo

Proof: We reproduce the standard argument. Let

S=> "N F(t(ur,v1),. . t(tn, vm))-

ueCvel
The contribution in this sum of the paifs:, v) with v = v is of |C|F(1,...,1). From condition (ii) and the
assumption that for: # v € C, cos6(u, v) < cos§, the other terms are non positive. Hense< |C|F'(1,...,1).

On the other hand, we have
S = Z fE Z PE(t<u17U1)a s 7t(umvvm))'
k u,veC
The term corresponding t6 = 0 = (0,...,0) gives fy|C|?> while the other terms are non-negative from the
positivity property of the polynomial’, (Lemma 4.1). HenceS > fo|C|?>. The two inequalities lead to the

announced bound. O

Remark 4.4:Note thatF(1,...,1) = >, fuPi(1,...,1) = >, fi is indeed always positive fof, > 0 and
fo>0.

C. Examples of small degree

Let us work out the case of polynomials of small degree.
(i) X =51
a) Degreel: we takeF' = (z1+- - -+x,,) —mt. SinceP; (z) = z, I satisfies the hypothesis of Proposition
4.3 if and only ift < 0. We obtain:

1
If cosf® =t<0, \C’|§1—;. (25)
b) Degree2: we takeF = ((z1 4 -+ + @) + m) ((z1 + - - + zp) — mt). We have

F=@@+ 4zm)?+ml—t) (214 +zm) — mt
:Zx12+2zxi$j+m(1—t)z.xi—m2t

i<j

:Z(Z'ZZ—%)+22$il'j+m(1—t)zxi+%_mQt

i<j

Since Py(z) = (2? — 1/n)/(1 — 1/n), F satisfies the hypothesis of Proposition 4.3 if and only if
™ — m% > 0. We obtain:

If 0059:t<i, \C|§w (26)
mmn 1

—mnt
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The crossing point of the two curves corresponds t0 —1/mn, where the two bounds take the value

1+ mn.

(i) X = P"~!(K), Degreel: we have, up to a multiplicative factoR; (z) = = — afgb =z — +. We take

F=(x+4am)—mt=(v1— %)+ + (¥m — =)+ 2 —mt. F satisfies the hypothesis of Proposition
4.3 if and only ift < 1/n. We obtain:

If cos20—t<2, |O]<——t 27)
n 1/n—t
D. Christoffel-Darboux formula and an explicit bound
It remains to apply the standard method with Christoffel-Darboux formula. ket (ki,...,k,) andl =
(l1,...,Ln), the notationl < k stands fori; < k; for all 1 <i < m.
Proposition 4.5:Let y = (y1,...,ym) € R™ andk = (k1, ..., k») € N™, and define
m kj
Zdlpl H Zdipi(l"j)Pi(yj))
<k j=1 =0
and
Ni( det(lthkt (x4, Yt H ) Pi(y;))
t=1 j#t  i=0
where
Qe (Tt Yt) 1= Proyp1(06) Pr, (yt) — Pr, (06) Pry1(ye)-
Then we have the Christoffel-Darboux type formula:
Nk(xv y)
Ky(z,y) = ——"27
H) = 0 =)
Proof: Sinceo (z) — o(y) = Y10, @ — Doy Yo = Do (20 — 1),
m m k;
(o) — o () Ki(w,y) = (Do — ) [T (O diPiles) Pi(wy)
t=1 j=1 =0
m kit kj
= Z ((l‘t — Yt) Z@R(%)B‘(%)) H (Zdzpl(m7)Pl(yj>)
t=1 i=0 j#t  i=0
The Christoffel-Darboux formula for the polynomial, gives:
Ky
(zt —yt) Zdipi(xt)Pi(yt) = dk,ar, Qr, (Tt, Yt)
=0
with the notations of the proposition, hence the result.
O

Following the standard method, we apply Proposition 4.3 to the function

Ni(z,y)*
o(x) —oly)
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Proposition 4.6:Let y = (y1,...,ym) € R™ andk € N™, and define

Ni(z,y)?
o(x) —o(y)
If y satisfies the conditions:

F(z) = = (0(z) — o(y) Kx(x,y)* = Kp(2,5)Ni(z,y)-

() P(y:)>0forall0<i<kiandforalll<t<m
(i) Pr,+1(y:) <Oforalll<t<m
then I satisfies the hypothesis of Proposition 4.3 foréauch thatnt < o(y). Consequently, for any cod€ in
X™ with minimum angular distance,
(S disan, (Poa ) — Prr () T (S22 diP(w)))
—(m = 0 (9)) S diyan, Pe, (90) Pev 2 (90) Tl (00 di( Po(w)?)

Proof: Clearly, under the assumptions (i) and (& (z, y) and Ny (z, y) have non-negative coefficients on the

IC| <

(28)

P,. This is enough to ensure that it is also the case for the pradutt, y) N (x, y) (recall that the product of two
polynomials with non-negative coefficients on thg also has non-negative coefficients on tBg This property
transfers straightforwardly to thBy; it is anyway general to any family of zonal polynomials).

Obviously the sign ofF'(x) is the sign ofo(z) — o(y) so the conditions of Proposition 4.3 are fulfilled.

It remains to computey = [F,1] and F(1,...,1).

F,1] = [K, N]
[ﬁl ;d iPi(z;) '(yj))vidktak:ka(xtvyt)l;[t(ik_z]:odipi('rj)Pi(yj))}
=3 [T idimxna(w))m (@110 1;[ (gdimxm@j))}
=S " dy, an, {Zd Pi(w) Pilyn), Qi (20, ) | l;lt [z;d \Pi(x gdipi(xj)a(yj)}

k;

di,an, (= Pe, () Pepir () [T (OO di(Pilw))?)

NE HMs

t=1 j#t =0
where the last equality follows from (24).
Let us now compute’'(1,...,1). We have:
Ni(1,y)?
FQ,..., 1) = 2ely)
m—o(y)

and

m

Ni(Ly) = di,an, (Pe, (1) — P, 1(0) ] ( Zd P;(y;))

t=1 j#t  i=0
Applying the resulting bound of Proposition 4.3 leads to the announced bound.
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We proceed to choose the paramet@randk such that the conditions of Proposition 4.6 will be satisfied. We
follow the standard method. Lezt(lk) . < a ) be the zeros of the polynomidt,. They admit the following

(k—1)
a;

interlacing properties [23]a£k) < al +1 for all 1 < i < k. We choose the multi-index such that

mt < 37 2k, Wherezy, = a,(::t) is the largest zero of?,. It follows from the interlacing property that there
existsy such thatz, <y < z,+1 and

Py, (yt) + Pr,41(y:) =0

forall 1 <t <m. Thus,P;(y;) >0 and Py, +1(y;) <0 forall 0 <i <k, andl <t <m.

Now we have:

m kj
fo=1[F1]= Z ko @k, (Pr, (Y1) )2H(Zdi(ﬂ'(yz‘))2)
=1 j#t i=0
S Y alr
t=1 i<k
li=k¢
and
m kj
Ni(Ly) =2 di,an, P, () [[ (D diPilyy))
t=1 jAt =0
=2 ar, Y difi(y)

t=1 1<k

L=k
With Cauchy-Schwartz inequality (applied twice),

m

F,...1) = (Zakt S diP(y )

s(m_i@&%)(m ( anwy)
ly=k,
S(m_{j(y)éa )(z% > ;dma(y)ﬁ)
ly=k, li=ky
< (m_40(y)<t=ila )(;dl)(;ak, ; di(Pi(y)) >
L=k

e () T (s

=0

Denote Dy, := >_¥ d;. We obtain

‘C‘ < 4(2?:1 akt) HT:l ‘Dk't )

m—o(y)

We summarize the above result in the following statement:
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Proposition 4.7:For any codeC' in X™ with minimum angular distancé, for any multi-indexk such that

mt <Y 7" z,, lety, satisfy z,, <y < 2,41 and

Py, (y¢) + Pr,+1(ye) =0,

then
4(2111 akt) H;il Dy, .

=T

(29)

O

Remark 4.8:Using the so-called adjacent polynomials instead of the Gegenbauer polynomials, an enhancement

of (29) was derived forn = 1 [5], [13]. It is very likely that this can be generalized for all. 0

E. A bound for the asymptotic rate

Now we consider the limit whem — +oo of the rateR(C) := 1 In|C| (of course the spacB?(0Q) is not
concerned anymore) of the cod€sof X™. We derive an upper bound for this limit from (29). The next theorem
settles the result obtained that way only in the c&se- P"~1(K) because this bound, in the caseXf= 5"~ 1,
turns out to be the same as the one obtained from the trivial isometric embe@ting) ™ — S™"~! (see Remark
4.10).

Theorem 4.9:Let C be a code inX™, X = P"~!(K), with minimum angular distancg and let(01,...,0,,) €

[0,7/2]™ satisfy >~ | cos® 6; = mcos? §. Then, whem — oo,
R(C) S c(Rpp(0h) + ...+ Rrp(6m)), (30)

where Ry, p is defined in (5).
Proof: Same as in [4], involving the asymptotic estimatezpf We reproduce it here: Consider an infinite

sequence:(n) such that2k(n)/cn tends to a finite limitp asn tends to infinity. Then [4]

lm 2 =4t
e “k(n) (p~1+2)2
and, since from [5], )
Sn+k-—1
Dk ~ (2 L )
we have
1 2 < —
nh_)n;o -~ In Dy py = 7L11—>H010 -~ In <2n +klz7(17;) ) = c((l +p)In(1+p) — plnp)
Inverting the conditions
prt 41
cos? 0, =4 fl 5
(py +2)
leads to
1 —sin6,
Pt S sing,
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Let k;, = |pen], and lety, satisfy zx, < yr < zg,4+1 and Py, (y:) + Pk, +1(y:) = 0 (the existence ofy; is
guaranteed by the interlacing property of the zeros of the Jacobi polynomials). Then from (29),
‘C‘ < 4( 27;1‘”%)1_[;11 Dkt.

m—o(y)
Sinceo(y) ~ mcos?§ and the expressmﬁ%l‘ylff has a finite limit whenk; /n tends top,, the rate R(C)

satisfies
ZlnDk ~ Z (14 pe) In(1 + ps) = pr In(py)).

Remark 4.10: . It is worth noticing that the choicé; = 6 in (30) yields to the bound
R(C) < emRpp(0). (31)

This bound can be derived more easily, since every cod&'ihis also a code in themn-th dimensional
unit sphere (combining the mappirtyfor m = 1 and the obvious mappingS™—!)™ — $™»~1). It turns out
that, since the functio?;,»(#) as a function oft = cos?# is not convex, the bound (30) slightly improves
on (31). We discuss this in more details in the next subsection.

« The same method applied 6 = S™~! would lead to:

R(C)S Rrp(01)+ ...+ Rpp(0,,), for all 8, such thatz cos @, = mcosf.
t=1

But the functionRp(0) as a function oft = cosf is convex, therefore the choice ¢#,,...,0,,) that

minimizes the right hand side 5 = --- = 6,,, = 0, yielding (31).

F. Analysis of(30) versus(31)

Let C? be the set of continuous, twice differentiable functions with continuous second derivative. For a function

f defined on0, 1], of classC?, we denote:

(m) () = min
/ ( ) t1,..5tm €[0,1] m
ity ti=mt

Clearly, if f is convex on[0,1], we havef(™ = f, and, if f < g, f(™ < g™, It is also easy to see that
fm) < fm) whenm dividesm’.

The function we are interested in f§t) = Ry p(0) wheret = cos? §. We have

f() = (1 +p(t) In(1 + p(t)) — p(t) In(p(t))

where
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One can check that the second derivativef dhkes negative values on some interjéaliy], ¢o ~ 0.208, and then
takes positive values ofty, 1[. The functionf is an increasing function, witlf(0) = 0, first concave then convex.
We consider the functiop on [0, 1[, whose graplt€, determines the convex hull of the portion of plane above the

graphCy of f. The functiong is uniquely determined by the conditions:

g f
g is convex
g is maximal with these properties
Let us denote by, the unique value for which the tangent(at, f(¢1)) to C; contains the origir(0,0). The value

t1 ~ 0.379 is the unique solution to
f@)=f't)e
and the slope of the tangent @ at ¢, equalsf’(t1) ~ 1.089. Then the functiory is defined by:

g(t) = f'(t1)t ~ 1.089¢t  for all ¢t € [0, 1]
g(t) = f(¢) forall t € [t1,1]
Sinceyg is convex, we have for alln and allt € [0, 1], g™ (t) = g(t) < ™) (). In other words, or0, ], f(™
is somewhere betweenand f, and on[t;, 1], f(™) = f. Clearly, whenm — +oo, f(™ — g¢. Also, the maximum
§ of f(t) — g(t) is an upper bound for the maximum g¢ft) — £(™)(¢). Numerical calculation gives ~ 0.016.
Considering our primary goal, i.e., to compare (30) and (31), this means that the improvement of (31) upon (30)
is upper-bounded by.016m.
It seems difficult to determine the optimal choice (of, ... ,t¢,,) that minimizes the quotienf%.
A natural choice igty,...,ty,) = (0,0,..,mt/r,...,m¢/r) with r non-zero and equal coordinates. In that case,
W = L () and requireg < r/m. If ¢t = &, it is certainly the best choice since then the resulting

point lies onC,. Numerical experiments seem to show that, der= 2, 3, and¢ < 1/m, r = 1 does minimize the
quotient L)+ m)
m

V. BOUNDS FOR CODES IN THEGRASSMANN AND STIEFEL MANIFOLDS

In this section, we summarize the consequences of the above results for Grassmann and Stiefel codes. Following
a standard notation in coding theory, we denoteAfyX, d), the maximal number of elements of a codeof the
spaceX with minimum distancei.

We have proved in Theorem 3.7 that the size of Grassmannian codes with minimum chordal distagee — s
is upper-bounded by the size of codegPiti ! (K)™ with minimum angular distancé, wherecos? § = s/m. Thus

we have proved that:

A(Gmn(K),d) < AP"H(K)™,0) with § = arccos(y/1 — d2/m). (32)

Linear programming bounds af(P"~!(K )™, #) were derived in Section IV. Applying them, we obtain the bound
R>(d) from Theorem 2.7. The bound3, (d) and Rx(d) are depicted in Figure 2.
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1.1 1.2 1.3 1.4 1.5 1.6 1.7

Fig. 2. Upper bounds on the asymptotic rate of real Grassmannian codes with minimum chordal distanee3. The dashed line i®: (d),
and the solid line isR2(d) (see Theorem 2.7)

We believe that these bounds are not good in general for finite values of the parameters, because we use only a
rough estimate o (p, ¢) = trace(m, om,) in the inequality (18) (we replacElgmgm(ei-e;)2 with >, i (i
eh)?). If we compare the bounds obtained with the zonal polynomials of small degree, (27) is worse than the simplex
bound, obtained from the zonal polynomial of degieef G,, ,(R). Moreover, numerical experiments for small
parametersn andn (with the package LRS, by David Avis, http://cgm.cs.mcgill.@/is/C/Irs.html), confirms that
the bounds obtained from the zonal polynomialsGef,,(R) are sharper than the ones obtained from Proposition
4.3 for X = P"~}(R)™,

Surprisingly, the consideration @"~!(K)™ allows us to obtain better bounds for the asymptotic rate than the
ones obtained previously by either the isometric embedding given in [21},6f into a unit sphere of the dimension

n(n+1)/2—2 (see also Remark 3.4), or the spectral method developed in [6] with the zonal polynomigls,of

We have proved in Theorem 3.6 that the size of Stiefel codes with minimum chordal digtaneg2./m — s
is upper-bounded by the size of codes(i#f" )™ with minimum angular distance, wherecosf = s/m. Thus
we have proved that:

AWVpa(K),d) < A((S1)™,0) with 6 = arccos(1 — d*/2m). (33)

In Section IV, we derived linear programming bounds for codegf*~1)™, thus implying bounds for Stiefel
codes. These bounds are, up to our knowledge, the first general bounds for Stiefel codes, and we believe that they

are rather sharp. For the asymptotic rate, the best result is given in Theorem 2.8.

VI. CONCLUSIONS

Using relations between Grassmann and Stiefel manifolds and other spaces, we derive new bounds on the size of

Grassmannian codes (Theorem 2.7) and Stiefel codes (Theorem 2.8). These are the best known asymptotic bounds
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on the rate of Grassmannian and Stiefel codes.
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