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1. Quantum cryptography :

   from basic principles to practical realizations.

2. Quantum computing :

   a conceptual revolution hard to materialize
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Classical bit  :   2 states 0 and 1

Quantum bit  :  2 states | 0 〉  and | 1 〉  , plus arbitrary superpositions :

     | ψ 〉   = cos(θ) e iϕ | 0 〉   + sin(θ) e -iϕ  | 1 〉

Simple exemples :

Polarised photon

"Split photon"

-> very useful for quantum cryptography

QUBITS

| 0 〉     | 1 〉   cos(θ) | 0 〉   + sin(θ) | 1 〉

θ



QUANTUM COMPUTING  : REGISTERS

"Analog"  classical computing ? (continuous values) : no

N bits with possible values  0 and 1

Register :   | ε(1) | ε(2) | ε(3) | ε(4) |.... | ε(N) |    (ε=0 ou 1)

State of a classical analog computer : N continuous variables ε(i)

Possible state of the computer : | ε(1), ε(2),  ε(3), ε(4).... ε(N) 〉     (ε=0 or 1)

General state of the computer  : Σ  cx  | ε(1), ε(2), ε(3), ε(4).... ε(N) 〉

State of a quantum computer : 2N continuous (complex) variables cx !!!

 The computer states live in a huge 2N-dimensional Hilbert space

Most of these states are "entangled" (individual qubits have no state)



QUANTUM COMPUTING  : REGISTERS

General state of the computer  : Σ  cx  | ε(1), ε(2), ε(3), ε(4).... ε(N) 〉

  (linear superposition of all possible register states)

- During the computer evolution, all 2N states  |ε(1).... ε(N) 〉  are involved

 -> "quantum parallelism"

- When the state of the computer is "measured", a single binary state  is
detected (the probabilities for all other ones cancel out)

-> one keeps all the advantages of a binary calculation.

Very peculiar mixture of analog and binary ingredients !

"Doors can be open and closed at the same time"



CALCULATING  FUNCTIONS

Classical function : Input register   –>  Output register

The value x of the register becomes f(x); generally not reversible

Quantum function  : Input state  –> Output state
| x > =  | ε1, ε2, ε3, ... εΝ >     :  N bits, 2N  possible values
| x > → | f(x) >      :  non-unitary !
| x > ⊗  | 0 >  → | x > ⊗  | f(x) >  : ok !

More interesting  : superposition | ψ > = 1/√2N ∑x | x >
| ψ > ⊗  | 0 >  →  1/√2N ∑x (| x > ⊗  | 0 >)
     →  1/√2N ∑x ( | x > ⊗  | f(x) >)

2N  values of the  function are calculated in a single step !

Any function can be realized using one-qubit and two-qubit gates



QUANTUM LOGICAL GATES

Classical logical gates : Input register  –> Output register

NOT gate:  In     Out   XOR gate   :  In     Out
(1 bit)   0  1   (2 bits)      0, 0  0
(flip)   1  0   ("controlled not",    0, 1  1
          or "cnot")    1, 0  1
                1, 1  0
Generally not  reversible !

Classical logical gates : Input state  –> Output state

"√NOT" : In   Out        In    Out
(1 bit)   |0〉   (eiϕ  |0〉  +e-iϕ |1〉)/√2 =  |u〉 (eiϕ |u〉  + e-iϕ |v〉)/√2 =  |1〉
ϕ = π/4   |1〉   (e-iϕ |0〉 + eiϕ |1〉)/√2 =  |v〉 (e-iϕ |u〉 + eiϕ |v〉)/√2  =  |0〉

CNOT :     In  Out
(2 bits)      0, 0  0, 0   Hamiltonian Evolution   :
       0, 1  0, 1   Unitarity et Reversibility !
       1, 0  1, 1
       1, 1  1, 0



QUANTUM COMPUTING

Symmetric superposition

How to get the completely symmetric state  | ψ > = 1/√2N ∑x   | x > ?

( √not ⊗ √ not ⊗ √ not ⊗... ) |0, 0, 0 ... >  =
1/√2 ( | 0 > + | 1 >) ⊗ 1/√2 ( | 0 >+ | 1 >) ⊗ 1/√2 ( | 0 >+ | 1 >)... =

1/√2N ( | 0, 0, ... 0> + | 0, 0,  ... 1> + ...+ | 1, 1,  ... 0> + | 1, 1,  ... 1>) = | ψ > !

N bits
| ψ >

This requires N  √not gates  : ok

√no

√no
√no

√no
√no



QUANTUM COMPUTING

Discrete Fourier transform

| x  > →   DFT(| x  >) = 1/√L ∑u  e2iπ u x / L | u  >  L = 2N values for x

Ex :  | x = 0  > →   1/√L ∑u   | u  >   : superposition with equal weights

  | x = 1  > →   1/√L ∑u   e2iπ u/L | u  >  :  weights = roots of unity...

  | x = 2  > →   1/√L ∑u   e4iπ u/L | u  >  :  ...

√n Φ Φ Φ Φ
√n Φ Φ Φ

√n Φ Φ
√n Φ

N bits
| x >

N bits
DFT(| x >)

This requires N gates √n et N(N-1)/2  gates Φ : ok



FACTORIZATION  ALGORITHM
(PETER SHOR 1994)

A - Mathematical Principle

B - Quantum Calculation

C - It works, but...



QUANTUM COMPUTING

Factoring algorithm  :  mathematical side

Let n to be factorised      n = 35

1 - Choose  a coprime with n    a = 13

Th1  : the function fa,n(x) = ax mod n  1, 2, 3, 4, 5, 6, 7,  8 ...

is periodic         13, 29,  27, 1,  13,  29, 27, 1 ...

2 - Find the period, denoted as T   T = 4

3 - Calculate g+ = gcd(n,  aT/2  + 1)   gcd(35 , 132 + 1)  = 5

      g-  = gcd(n,  aT/2  - 1)  gcd(35 , 132  - 1)  = 7

Th2 : If g±  ≠ -1 mod n, then g+  et g-

are  the factors of n       ok !

Efficiency ? Poor for a classical computer : step 2 requires a number of

operations increasing exponentially with Log(n) (multiple evaluations of  fa,n)



SHOR'S ALGORITHM

Number to be factorized:   n encoded on N bits -> numbers from 0 to 2N-1

2 Registers with resp.   2N bits (denoted X) and  N bits (denoted Y)

1 - Prepare the superposition :  (1/√22N ∑x | x >X ) ⊗ | 0 >Y

2 - Apply  fa,n  →   1/√22N ∑x (| x >X ⊗ | ax mod n  >Y )

3 - Perform a quantum measurement  on the register Y

    → find one among the possible values of y

The register X is projected on the quantum state  C ∑∑∑∑k | d + k T  >

 where d : shift depending of the value of  y, k :integer , T : period

X Y

X

Y

Exemple : Calculation of
f13, 35(x) = 13x mod 35
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4 - Perform a discret Fourier transform

C ∑k | d + k T  > →   C/√M ∑k∑u  e2iπ u (d+k T) /M | u  >   M = 22N

But : ∑k  e2ikπ  u T /M  = M/T   if   u T/M = j integer, thus u = j M/T

      = 0    otherwise

Thus C ∑k | d + k T  > →   C√M / T  ∑j  e2iπ j  d/T | j M/T  >

5 - By repeating the whole process several times, extract the period !

P(x)

3 7 11   15  19   23 ...

x u

P(u)

0     M/4    2M/4   3M/4 ....

T M/T M/TM/TT TTTd

SHOR'S ALGORITHM



QUANTUM COMPUTING

A quantum computer can perform some calculations very efficiently...

- factorization algorithm (Shor 1994) : exponential gain

- search algorithm (Grover 1996) : quadratic gain

... but it is very difficult to implement

- the quantum states  Σ  ci  | ε(1), ε(2), ε(3), ε(4).... ε(N) 〉   with N large are
extremely sensitive to all interactions with environment : "decoherence"

- the interaction of the qubits between themselves and with the outer world must
be extremely well controlled, to perform calculations and to avoid decoherence

Some encouraging results ...

- all calculations can be performed on the basis of 1 and 2 qubits gates

- errors are unavoidable, but "quantum error correcting codes" are possible



Classical approach   Error probability  for one 1 bit = p << 1

* Encoding :     1 →  [1 1 1]   0 → [0 0 0]

* Error correction   :   "majority voting"

* Errors for 3 bits ?    (1-p)3    no error   ok

       3p (1-p)2  1 wrong bit   ok

       3p2 (1-p)  2 wrong bits  error

       p3    3 wrong bits  error

* Total error probability :  3p2 (1-p) + p3 ≈ 3p2 << p  OK !

Quantum approach

* One can neither read the state of the qubit, nor copy it (no-cloning)

* There are various types of errors ("flip", "phase", or both)

* How to do it?

ERROR CORRECTING CODES



Quantum approach : encoding

b1 = a |0〉〉〉〉  + b |1〉〉〉〉  →      decoherence!    →  ?

b1 = a |0〉  + b |1〉            w = xor = cnot gate

  b1 w b2  →   b12=a |0,0〉  + b |1,1〉
b2 = |0〉
         b1 w b3→ b123=a |0,0,0〉  + b |1,1,1〉
b3 = |0〉         b3 = |0〉          Entangled state !

b123=a |0,0,0〉〉〉〉  + b |1,1,1〉〉〉〉    →     decoherence!    →  ????

ERROR CORRECTING CODES



* Processing b123 after decoherence : run the encoding backwards !

 b1  w  b3 = b1  (still there !) and c3 (measured, destroyed)

 b1  w  b2 = b1  (still there !) and c2 (measured, destroyed)

* Assume zero or one bit flip error :

a |0 0 0〉 + b |1 1 1〉   →  (c2, c3) = (0, 0) → ok

a |1 0 0〉 + b |0 1 1〉   →  (c2, c3) = (1, 1) → flip b1    → ok

a |0 1 0〉 + b |1 0 1〉   →  (c2, c3) = (1, 0) → error on b2  → ok

a |0 0 1〉 + b |1 1 0〉   →  (c2, c3) = (0, 1) → error on b3  → ok

 Final result : b1 = a |0〉〉〉〉    ++++    b |1〉〉〉〉  ,  error probability of order     p2

* Correct flip errors on one qubit with probability  O(p2) << p  OK !

* Phase errors : encoding on more than 3 bits (5 min, 7 or 9 ok)

* General idea : "syndrome measurement" + suitable correction

ERROR CORRECTING CODES



QUANTUM COMPUTING

Implementations ? Most obvious : Photons

Advantages : Simplicity (useful for building "models"), good isolation
from environment ...

Drawbacks : A CNOT gate requires a phase shift π per photon : difficult
to implement  (coupling increased by using high finesse cavities)

| 0 〉

| 1 〉

1/√2 (  | 0 〉 + | 1 〉 )

1/√2 (- | 0 〉 + | 1 〉  )

  | 1 〉

  | 0 〉 √not !{bit

| 0 〉

| 1 〉

controlled not!  | 0 〉

  | 1 〉

| 0 〉

| 1 〉

Φ=π

Φ=0
or

Φ=π

| 0 〉

| 1 〉

  | 1 〉

  | 0 〉

{

bit b

bit a

{



EXPERIMENTAL PROPOSALS

  Qubits     Gates   Main difficulty

1994  Photons     Bistables   Available energy :  h νννν !

        optiques  Very difficult to implement

1995 Semiconductors    ?   Strong decoherence

  "quantum dots"

1996 Trapped ions   Coulomb  Thermal motion

         interaction

1997 Molecular spins  Spin    Complexity of the molecule

  + RMN    coupling  Macroscopic sample !



B. E. Kane, "A silicon-based  nuclear spin quantum computer",
Nature, Vol. 393, p. 133, 1998

Qubit : magnetic moment
of phosphorus atoms

individually implanted
below electrodes

"A" : 1 qubit gates
"J" : 2 qubits gates

* Technically  possible

* Decoherence ???

T=100 mK

A-Gates J-Gates

B (= 2 Tesla)

Barrier

 Silicium

Substrate

~ 200 Å

QUANTUM COMPUTER IN SILICON

31P+31P+
e- e-



EXPERIMENTAL PROPOSALS

  Qubits     Gates   Main difficulty

1994  Photons     Bistables   Available energy :  h νννν !

        optiques  Very difficult to implement

1995 Semiconductors    ?   Strong decoherence

  "quantum dots"

1996 Trapped ions   Coulomb  Thermal motion

         interaction

1997 Molecular spins  Spin    Complexity of the molecule

  + RMN    coupling  Macroscopic sample !

CHCl3

 Individual
Spins

Implanted in  silicon ?
Carbon nanotubes ?

1998 First "calculations" (3 qubits)

1998
1999

1999 Laser cooling in linear traps



Fluorescence

imaging

of 7 trapped

ions

LINEAR ION TRAPS
(Innsbruck University)

* Calcium ions trapped using electromagnetic fields  ->  "rows" of  ions

* Laser cooling -> regular arrays (Coulomb repulsion).

Ions isolated in vacuum :
decoherence much smaller than in solid-state materials



EXPERIMENTAL PROPOSALS

  Qubits     Gates   Main difficulty

1994  Photons     Bistables   Available energy :  h νννν !

        optiques  Very difficult to implement

1995 Semiconductors    ?   Strong decoherence

  "quantum dots"

1996 Trapped ions   Coulomb  Thermal motion

         interaction

1997 Molecular spins  Spin    Complexity of the molecule

  + RMN    coupling  Macroscopic sample !

2000 Calculations with 5 qubits
CHCl3

2000 Microwave domain but CNOT gate realized.

Fluorine 19 (M-F5)

 Individual
Spins

Implanted in  silicon ?
Carbon nanotubes ?

1998 First "calculations" (3 qubits)

1998
1999

1999 Laser cooling in linear traps
2001 "Optical tweezers"Trapped atoms



Two atoms at your fingertips
N. Schlosser et al, Nature 411,  1024 (2001)

PRL 89, 023005 (2002)

4 µm

Resolution of the
imaging system:
1 micron / pixel

Beam 1

Beam 2



EXPERIMENTAL PROPOSALS

  Qubits     Gates   Main difficulty

1994  Photons     Bistables   Available energy :  h νννν !

        optiques  Very difficult to implement

1995 Semiconductors    ?   Strong decoherence

  "quantum dots"

1996 Trapped ions   Coulomb  Thermal motion

         interaction

1997 Molecular spins  Spin    Complexity of the molecule

  + RMN    coupling  Macroscopic sample !

2002 Factorization of 15 !
CHCl3

2000 Microwave domain but CNOT gate realized.

Fluorine 19 (M-F5)

 Individual
Spins

Implanted in  silicon ?
Carbon nanotubes ?

1998 First "calculations" (3 qubits)

1998
1999

1999 Laser cooling in linear traps
2002 Optical tweezers and latticesTrapped atoms Collisions



* Chain of trapped ions moved from storing to interaction areas.

* Qubits : 2 atomic levels (spin states - laser-controlled)

* Extraction of any two ions to the interaction area :
   -> quantum gate between any 2 qubits  !

"QUANTUM CCD "
D. Kielpinsky, C. Monroe, D. Wineland.  Nature (2002)

Quantum gate
(laser - induced)

"Scalable" proposal, but not yet implemented  !



CONCLUSION

 * Quantum cryptography appears to evolve slowly but
straightforwardly towards practical implementations.

 * Quantum computing is a much bigger scientific challenge :
by principle it cannot work at a macroscopic scale, microscopic
systems are difficult to control ... -> "mesoscopic scale enginering"

 * Objectively,  a useful quantum computer is very far away :
-> 1-10 quantum gates : repeaters for quantum cryptography...
-> 10-100 quantum gates : implement quantum simulation...
-> 100-1000  quantum gates : efficient error correction possible...

 * On the way  ... exploration of  many open problems in
  -> quantum mechanics (theory and experiment...)
  -> information theory (algorithms, error corrections ...)


