QUANTUM CRYPTOGRAPHY

QUANTUM COMPUTING

Philippe Grangier, Institut d'Optique, Orsay

1. Quantum cryptography :

from basic principles to practical realizations.

2. Quantum computing :

a conceptual revolution hard to materialize

Classical bit : 2 states 0 and 1

Quantum bit : 2 states $|0\rangle$ and $|1\rangle$, plus arbitrary superpositions :

$$|\psi\rangle = \cos(\theta) e^{i\phi} |0\rangle + \sin(\theta) e^{-i\phi} |1\rangle$$

-> very useful for quantum cryptography

QUANTUM COMPUTING : REGISTERS

"Analog" classical computing ? (continuous values) : no

N bits with possible values 0 and 1

Register : $\epsilon(1)$ $\epsilon(2)$ $\epsilon(3)$ $\epsilon(4)$ $\epsilon(N)$ ($\epsilon=0$ ou 1)

State of a classical analog computer : N continuous variables $\varepsilon(i)$

Possible state of the computer : $| \epsilon(1), \epsilon(2), \epsilon(3), \epsilon(4), \ldots, \epsilon(N) \rangle$ ($\epsilon=0 \text{ or } 1$)

General state of the computer : $\sum c_X | \epsilon(1), \epsilon(2), \epsilon(3), \epsilon(4)..., \epsilon(N) \rangle$

State of a quantum computer : 2^N continuous (complex) variables c_X !!!

The computer states live in a huge 2^N-dimensional Hilbert space Most of these states are "entangled" (individual qubits have no state) General state of the computer : $\sum c_X | \epsilon(1), \epsilon(2), \epsilon(3), \epsilon(4)..., \epsilon(N) \rangle$

(linear superposition of all possible register states)

- During the computer evolution, all 2^N states $|\epsilon(1)...,\epsilon(N)\rangle$ are involved

-> "quantum parallelism"

- When the state of the computer is "measured", **a single binary state** is detected (the probabilities for all other ones cancel out)

-> one keeps all the **advantages of a binary calculation.**

Very peculiar mixture of analog and binary ingredients ! ''Doors can be open and closed at the same time''

Classical function : Input register -> **Output register**

The value x of the register becomes f(x); generally not reversible

Quantum function : Input state \rightarrow Output state $|x > = | \epsilon_1, \epsilon_2, \epsilon_3, \dots \epsilon_N >$: N bits, 2^N possible values $|x > \rightarrow | f(x) >$: non-unitary ! $|x > \otimes | 0 > \rightarrow | x > \otimes | f(x) >$: ok !

 $\begin{array}{ll} \text{More interesting} &: \text{superposition} \mid \psi > = 1/\sqrt{2^N} \sum_x \mid x > \\ \mid \psi > \otimes \mid 0 > & \rightarrow 1/\sqrt{2^N} \sum_x \left(\mid x > \otimes \mid 0 > \right) \\ & \rightarrow 1/\sqrt{2^N} \sum_x \left(\mid x > \otimes \mid f(x) > \right) \end{array}$

 2^{N} values of the function are calculated in a single step !

Any function can be realized using one-qubit and two-qubit gates

QUANTUM LOGICAL GATES

Classical logical gates : Input register -> Output register

NOT gate: (1 bit) (flip)

XOR gate (2 bits) ("controlled not", or "cnot")

Generally not reversible !

Classical logical gates : Input state -> **Output state**

1,0

							-	
\sqrt{NOT}	•	In		Out			In	Out
(1 bit)		$ 0\rangle$	(e ⁱ	$\varphi 0\rangle + \epsilon$	$e^{-i\phi} 1\rangle)/2$	$\sqrt{2} = 1$	$ u\rangle$	$(e^{i\phi} u\rangle + e^{-i\phi} v\rangle)/\sqrt{2} = 1\rangle$
$\phi = \pi/4$		$ 1\rangle$	(e-	$ 0\rangle + \langle 0 \phi$	$e^{i\phi} 1\rangle)/$	$\sqrt{2} =$	$ v\rangle$	$(e^{-i\phi} u\rangle + e^{i\phi} v\rangle)/\sqrt{2} = 0\rangle$
CNOT :				In	Out			
(2 bits)				0, 0	0,0		Ha	miltonian Evolution :
				0, 1	0,1		Un	itarity et Reversibility !

1, 1

1,0

Symmetric superposition

How to get the completely symmetric state $|\psi\rangle = 1/\sqrt{2^{N} \sum_{x}} |x\rangle$? $(\sqrt{not} \otimes \sqrt{not} \otimes \sqrt{not} \otimes ...) |0, 0, 0 ... \rangle =$ $1/\sqrt{2} (|0\rangle + |1\rangle) \otimes 1/\sqrt{2} (|0\rangle + |1\rangle) \otimes 1/\sqrt{2} (|0\rangle + |1\rangle) ... =$ $1/\sqrt{2^{N}} (|0, 0, ... 0\rangle + |0, 0, ... 1\rangle + ... + |1, 1, ... 0\rangle + |1, 1, ... 1\rangle) = |\psi\rangle$!

This requires N \sqrt{not} gates : ok

Discrete Fourier transform

 $\begin{array}{ll} |x\rangle \rightarrow & DFT(|x\rangle) = 1/\sqrt{L} \sum_{u} e^{2i\pi \, u \, x \, / \, L} \, | \, u \rangle & L = 2^{N} \text{ values for } x \\ Ex: & |x = 0 \rangle \rightarrow & 1/\sqrt{L} \sum_{u} \, | \, u \rangle & : \text{ superposition with equal weights} \\ & |x = 1 \rangle \rightarrow & 1/\sqrt{L} \sum_{u} \, e^{2i\pi \, u/L} \, | \, u \rangle & : \text{ weights = roots of unity...} \\ & |x = 2 \rangle \rightarrow & 1/\sqrt{L} \sum_{u} \, e^{4i\pi \, u/L} \, | \, u \rangle & : \dots \end{array}$

This requires N gates \sqrt{n} et N(N-1)/2 gates Φ : ok

FACTORIZATION ALGORITHM (PETER SHOR 1994)

- **A Mathematical Principle**
- **B** Quantum Calculation
- C It works, but...

QUANTUM COMPUTING

Factoring algorithm : mathematical side

Let n to be factorised	n = 35
1 - Choose a coprime with n	a = 13
Th1 : the function $f_{a,n}(x) = a^x \mod n$	1, 2, 3, 4, 5, 6, 7, 8
is periodic	13, 29, 27, 1, 13, 29, 27, 1
2 - Find the period, denoted as T	T = 4
3 - Calculate $g_+ = gcd(n, a^{T/2} + 1)$	$gcd(35, 13^2 + 1) = 5$
$g_{-} = gcd(n, a^{T/2} - 1)$	$gcd(35, 13^2 - 1) = 7$
Th2 : If $g_{\pm} \neq -1 \mod n$, then g_+ et g	
are the factors of n	ok !

Efficiency ? Poor for a classical computer : step 2 requires a number of operations increasing exponentially with Log(n) (multiple evaluations of $f_{a,n}$)

SHOR'S ALGORITHM

Number to be factorized: n encoded on N bits -> numbers from 0 to $2^{N}-1$ 2 Registers with resp. 2N bits (denoted X) and N bits (denoted Y) 1 - Prepare the superposition : $(1/\sqrt{2^{2N} \sum_{x} |x|}) \otimes |0|_{Y}$ Y 2 - Apply $f_{a,n} \rightarrow 1/\sqrt{2^{2N} \sum_{x} (|x >_{X} \otimes |a^{x} \mod n >_{Y})}$ Y 30 25Exemple : Calculation of 20 $f_{13,35}(x) = 13^x \mod 35$ 15 10 5 <u>.</u> X 0 20 25 15 5 10 3 - Perform a quantum measurement on the register Y \rightarrow find one among the possible values of y The register X is projected on the quantum state $C \sum_{k} |d + k|T > C \sum_{k} |d + k|T >$ where d : shift depending of the value of y, k :integer, **T : period**

SHOR'S ALGORITHM

Number to be factorized: n encoded on N bits -> numbers from 0 to 2^{N} -1 2 Registers with resp. 2N bits (denoted X) and N bits (denoted Y)

Y

- 1 Prepare the superposition : $(1/\sqrt{2^{2N} \sum_{x} |x >_{X}}) \otimes |0 >_{Y}$
- 2 Apply $f_{a,n} \rightarrow 1/\sqrt{2^{2N} \sum_{x} (|x >_X \otimes |a^x \mod n >_Y)}$

3 - Perform a quantum measurement on the register Y

 \rightarrow find one among the possible values of y

The register X is projected on the quantum state $C \sum_k |d + kT >$ where d : shift depending of the value of y, k :integer, **T : period**

SHOR'S ALGORITHM

5 - By repeating the whole process several times, extract the period !

QUANTUM COMPUTING

A quantum computer can perform some calculations very efficiently...

- factorization algorithm (Shor 1994) : exponential gain
- search algorithm (Grover 1996) : quadratic gain
- ... but it is very difficult to implement

- the quantum states $\sum c_i | \epsilon(1), \epsilon(2), \epsilon(3), \epsilon(4)..., \epsilon(N) \rangle$ with N large are extremely sensitive to all interactions with environment : "decoherence"

- the interaction of the qubits between themselves and with the outer world must be extremely well controlled, to perform calculations and to avoid decoherence

Some encouraging results ...

- all calculations can be performed on the basis of 1 and 2 qubits gates
- errors are unavoidable, but "quantum error correcting codes" are possible

ERROR CORRECTING CODES

Classical approach	Error proba	ability for o	ne 1 bit	= p <<
* Encoding :	$1 \rightarrow [1]$	1 1]	$0 \rightarrow [0$	0 0]
* Error correction :	"majority v	voting"		
* Errors for 3 bits ?	(1 - p) ³	no error		ok
	3p (1-p) ²	1 wrong bit	t	ok
	3p ² (1-p)	2 wrong bit	ts	error
	p ³	3 wrong bit	ts	error
* Total error probability :	3p ² (1-p) +	$p^3 \approx 3p^2 \ll$	< p	OK !

Quantum approach

- * One can neither read the state of the qubit, nor copy it (no-cloning)
- * There are various types of errors ("flip", "phase", or both)
- * How to do it?

ERROR CORRECTING CODES

Quantum approach : encoding

 $b1 = a |0\rangle + b |1\rangle \rightarrow (b1 = a |0\rangle + b |1\rangle) \qquad \qquad \Rightarrow ?$

$$b1 = a |0\rangle + b |1\rangle$$

$$b1 w b2 \rightarrow b12 = a |0,0\rangle + b |1,1\rangle$$

$$b2 = |0\rangle$$

$$b3 = |0\rangle$$

$$b3 = |0\rangle$$

$$w = xor = cnot gate$$

$$b123 = a |0,0,0\rangle + b |1,1,1\rangle$$

$$b3 = |0\rangle$$

$$Entangled state !$$

b123=a
$$|0,0,0\rangle$$
 + b $|1,1,1\rangle$ \rightarrow

ERROR CORRECTING CODES

* Processing b123 after decoherence : run the encoding backwards !					
b1 w b3 = b1 (still there !) and c3 (measured, destroyed)					
b1 w b2 = b1 (still there !) and c2 (measured, destroyed)					
* Assume zero or one bit flip error :					
$a 0 0 0\rangle + b 1 1 1\rangle \rightarrow (c2, c3) = (0, 0)$	\rightarrow ok				
$a 1 0 0\rangle + b 0 1 1\rangle \rightarrow (c2, c3) = (1, 1)$	\rightarrow flip b1	\rightarrow ok			
$a 0 1 0\rangle + b 1 0 1\rangle \rightarrow (c2, c3) = (1, 0)$	\rightarrow error on b2	\rightarrow ok			
$a 0 0 1\rangle + b 1 1 0\rangle \rightarrow (c2, c3) = (0, 1)$	\rightarrow error on b3	\rightarrow ok			

Final result : $b1 = a |0\rangle + b |1\rangle$, error probability of order p^2

- * Correct flip errors on one qubit with probability $O(p^2) \ll p$ OK !
- * Phase errors : encoding on more than 3 bits (5 min, 7 or 9 ok)
- * General idea : "syndrome measurement" + suitable correction

QUANTUM COMPUTING

Implementations ? Most obvious : Photons

Advantages : Simplicity (useful for building "models"), good isolation from environment ...

Drawbacks : A CNOT gate requires a phase shift π per photon : difficult to implement (coupling increased by using high finesse cavities)

EXPERIMENTAL PROPOSALS

	Qubits	Gates	Main difficulty
1994	Photons	Bistables optiques	Available energy : h v ! Very difficult to implement
1995	Semiconductors "quantum dots"	?	Strong decoherence
1996	Trapped ions	Coulomb interaction	Thermal motion
1997	Molecular spins + RMN	Spin coupling	Complexity of the molecule Macroscopic sample !

B. E. Kane, "A silicon-based nuclear spin quantum computer", Nature, Vol. 393, p. 133, 1998

EXPERIMENTAL PROPOSALS

	Qubits	Gates	Main difficulty
1994	Photons	Bistables	Available energy : h v !
		optiques	Very difficult to implement
1995	Semiconductors	?	Strong decoherence
1998 1999	"quantum dots"	Individual Spins	Implanted in silicon ? Carbon nanotubes ?
1996	Trapped ions	Coulomb	Thermal motion
1999		interaction	Laser cooling in linear traps
1997	Molecular spins	Spin	Complexity of the molecule
	+ RMN	coupling	Macroscopic sample !
1998	CHCl ₃		First "calculations" (3 qubits)

LINEAR ION TRAPS (Innsbruck University)

* Calcium ions trapped using electromagnetic fields -> "rows" of ions

* Laser cooling -> regular arrays (Coulomb repulsion).

Ions isolated in vacuum : decoherence much smaller than in solid-state materials

EXPERIMENTAL PROPOSALS

	Qubits	Gates	Main difficulty
1994	Photons	Bistables	Available energy : h v !
		optiques	Very difficult to implement
2000	Microwave domain		but CNOT gate realized.
1995	Semiconductors	?	Strong decoherence
1998 1999	"quantum dots"	Individual Spins	Implanted in silicon ? Carbon nanotubes ?
1996	Trapped ions	Coulomb	Thermal motion
1999		interaction	Laser cooling in linear traps
2001	Trapped atoms		''Optical tweezers''
1997	Molecular spins	Spin	Complexity of the molecule
	+ RMN	coupling	Macroscopic sample !
1998	CHCl ₃		First "calculations" (3 qubits)
2000	Fluorine 19 (M-F ₅)	₹	Calculations with 5 qubits

Two atoms at your fingertips N. Schlosser et al, Nature <u>411</u>, 1024 (2001) PRL <u>89</u>, 023005 (2002)

Resolution of the imaging system: 1 micron / pixel

EXPERIMENTAL PROPOSALS

	Qubits	Gates	Main difficulty
1994	Photons	Bistables	Available energy : h v !
		optiques	Very difficult to implement
2000	Microwave domain		but CNOT gate realized.
1995	Semiconductors	?	Strong decoherence
1998 1999	"quantum dots"	Individual Spins	Implanted in silicon ? Carbon nanotubes ?
1996	Trapped ions	Coulomb	Thermal motion
1999		interaction	Laser cooling in linear traps
2002	Trapped atoms	Collisions	Optical tweezers and lattices
1997	Molecular spins	Spin	Complexity of the molecule
	+ RMN	coupling	Macroscopic sample !
1998	CHCl ₃		First "calculations" (3 qubits)
2002	Fluorine 19 (M-F ₅)	Ŕ, ↓	Factorization of 15 !

"QUANTUM CCD "

D. Kielpinsky, C. Monroe, D. Wineland. Nature (2002)

- * Chain of trapped ions moved from storing to interaction areas.
- * **Qubits** : 2 atomic levels (spin states laser-controlled)
- * Extraction of any two ions to the interaction area : -> quantum gate between any 2 qubits !

"Scalable" proposal, but not yet implemented !

CONCLUSION

* **Quantum cryptography** appears to evolve slowly but straightforwardly towards practical implementations.

* **Quantum computing** is a much bigger scientific challenge : by principle it cannot work at a macroscopic scale, microscopic systems are difficult to control ... -> "mesoscopic scale enginering"

* Objectively, a useful quantum computer is very far away :
-> 1-10 quantum gates : repeaters for quantum cryptography...
-> 10-100 quantum gates : implement quantum simulation...
-> 100-1000 quantum gates : efficient error correction possible...

* On the way ... exploration of many open problems in
-> quantum mechanics (theory and experiment...)
-> information theory (algorithms, error corrections ...)