QUANTUM CRYPTOGRAPHY

QUANTUM COMPUTING

Philippe Grangier, Institut d'Optique, Orsay

1. Quantum cryptography :
from basic principles to practical realizations.
2. Quantum computing :
a conceptual revolution hard to materialize

QUBITS

Classical bit : $\quad 2$ states 0 and 1

Quantum bit: 2 states $|0\rangle$ and $|1\rangle$, plus arbitrary superpositions:

$$
|\psi\rangle=\cos (\theta) \mathrm{e}^{\mathrm{i} \varphi}|0\rangle+\sin (\theta) \mathrm{e}^{-\mathrm{i} \varphi}|1\rangle
$$

Simple exemples :

Polarised photon

'Split photon"

-> very useful for quantum cryptography

QUANTUM COMPUTING : REGISTERS

"Analog" classical computing? (continuous values) : no
N bits with possible values 0 and 1
Register : $\quad \quad \varepsilon(1)|\varepsilon(2)| \varepsilon(3)|\varepsilon(4)| \ldots|\varepsilon(\mathrm{N})| \quad(\varepsilon=0$ ou 1$)$
State of a classical analog computer : N continuous variables $\varepsilon(\mathrm{i})$

Possible state of the computer : | $\varepsilon(1), \varepsilon(2), \varepsilon(3), \varepsilon(4) \ldots . \varepsilon(\mathrm{N})\rangle \quad(\varepsilon=0$ or 1$)$
General state of the computer : $\sum \mathrm{c}_{\mathrm{X}}|\varepsilon(1), \varepsilon(2), \varepsilon(3), \varepsilon(4) \ldots \varepsilon(\mathrm{N})\rangle$
State of a quantum computer : 2^{N} continuous (complex) variables $\mathrm{c}_{\mathrm{X}}!!!$
The computer states live in a huge $\mathbf{2}^{\mathbf{N}}$-dimensional Hilbert space
Most of these states are "entangled" (individual qubits have no state)

QUANTUM COMPUTING : REGISTERS

General state of the computer : $\sum \mathrm{c}_{\mathrm{x}}|\varepsilon(1), \varepsilon(2), \varepsilon(3), \varepsilon(4) \ldots \varepsilon(\mathrm{N})\rangle$

(linear superposition of all possible register states)

- During the computer evolution, all $2 \mathrm{~N}_{\text {states }}|\varepsilon(1) \ldots . \varepsilon(\mathrm{N})\rangle$ are involved

> -> "quantum parallelism"

- When the state of the computer is "measured", a single binary state is detected (the probabilities for all other ones cancel out)
-> one keeps all the advantages of a binary calculation.

Very peculiar mixture of analog and binary ingredients !
"Doors can be open and closed at the same time"

CALCULATING FUNCTIONS

Classical function : Input register -> Output register

The value x of the register becomes $\mathrm{f}(\mathrm{x})$; generally not reversible
Quantum function : Input state -> Output state
$|\mathrm{x}\rangle=\left|\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \ldots \varepsilon_{\mathrm{N}}\right\rangle \quad: \mathrm{N}$ bits, 2^{N} possible values

More interesting : superposition $|\psi\rangle=1 / \sqrt{ } 2^{N} \sum_{x}|x\rangle$
$|\psi\rangle \otimes|0\rangle \quad \rightarrow 1 / \sqrt{ } 2^{N} \sum_{\mathrm{x}}(|\mathrm{x}>\otimes| 0>)$
$\rightarrow 1 / \sqrt{ } 2^{\mathrm{N}} \sum_{\mathrm{x}}(|\mathrm{x}>\otimes| \mathrm{f}(\mathrm{x})>)$
2^{N} values of the function are calculated in a single step !
Any function can be realized using one-qubit and two-qubit gates

QUANTUM LOGICAL GATES

Classical logical gates : Input register -> Output register

NOT gate: (1 bit) (flip)

In	Out
0	1
1	0

Generally not reversible !

In	Out
0,0	0
0,1	1
1,0	1
1,1	0

Classical logical gates: Input state $->$ Output state

" $\sqrt{\text { NOT }}$ "	In	Out	In	Out
(1 bit)	$\|0\rangle$	$\left(\mathrm{e}^{\mathrm{i} \varphi}\|0\rangle+\mathrm{e}^{-\mathrm{i} \varphi}\|1\rangle\right) / \sqrt{2}=$	\|u>	$\left(\mathrm{e}^{\mathrm{i} \varphi}\|\mathrm{u}\rangle+\mathrm{e}^{-\mathrm{i} \varphi}\|\mathrm{v}\rangle\right) / \sqrt{2}=\|1\rangle$
$\varphi=\pi / 4$	\|1>	$\left(\mathrm{e}^{-\mathrm{i} \varphi}\|0\rangle+\mathrm{e}^{\mathrm{i} \varphi}\|1\rangle\right) / \sqrt{2}=$	\|v>	$\left(e^{-i \varphi}\|u\rangle+e^{i \varphi}\|v\rangle\right) / \sqrt{ } 2=\|0\rangle$

CNOT :
(2 bits)

In	Out
0,0	0,0
0,1	0,1
1,0	1,1
1,1	1,0

Hamiltonian Evolution Unitarity et Reversibility!

QUANTUM COMPUTING

Symmetric superposition

How to get the completely symmetric state $|\psi\rangle=1 / \sqrt{2^{N}} \sum_{\mathrm{x}}|\mathrm{x}\rangle$?
$(\sqrt{\overline{\mathrm{not}} \otimes \sqrt{\overline{\mathrm{not}}} \otimes \sqrt{\mathrm{not}} \otimes \ldots) \mid 0,0,0 \ldots>=}$
$1 / \sqrt{ } 2(|0\rangle+|1\rangle) \otimes 1 / \sqrt{ } 2(|0\rangle+|1\rangle) \otimes 1 / \sqrt{ } 2(|0\rangle+|1\rangle) \ldots=$ $1 / \sqrt{2} 2^{\mathrm{N}}(|0,0, \ldots 0\rangle+|0,0, \ldots 1\rangle+\ldots+|1,1, \ldots 0\rangle+|1,1, \ldots 1\rangle)=|\psi\rangle$!

This requires $\mathrm{N} \sqrt{\overline{\mathrm{not}} \text { gates : ok }}$

QUANTUM COMPUTING

Discrete Fourier transform

$\left|\mathrm{x}>\rightarrow \mathrm{DFT}(\mid \mathrm{x}>)=1 / \sqrt{L} \sum_{\mathrm{u}} \mathrm{e}^{2 i \pi \mathrm{ux} / \mathrm{L}}\right| \mathrm{u}>\quad \mathrm{L}=2^{\mathrm{N}}$ values for x
Ex: $\quad\left|\mathrm{x}=0>\rightarrow 1 / \sqrt{L} \sum_{\mathrm{u}}\right| \mathrm{u}>\quad$: superposition with equal weights $\left|\mathrm{x}=1>\rightarrow 1 / \sqrt{L} \sum_{\mathrm{u}} \mathrm{e}^{2 i \pi} \mathrm{u} / \mathrm{L}\right| \mathrm{u}>:$ weights = roots of unity \ldots $\left|\mathrm{x}=2>\rightarrow 1 / \sqrt{L} \sum_{\mathrm{u}} \mathrm{e}^{4 i \pi \mathrm{u} / \mathrm{L}}\right| \mathrm{u}>: \ldots$

This requires N gates $\sqrt{ } \mathrm{n}$ et $\mathrm{N}(\mathrm{N}-1) / 2$ gates $\Phi:$ ok

FACTORIZATION ALGORITHM (PETER SHOR 1994)

A - Mathematical Principle
B - Quantum Calculation
C - It works, but...

QUANTUM COMPUTING

Factoring algorithm : mathematical side

Let n to be factorised
$1-$ Choose a coprime with n
Th1 : the function $\mathrm{f}_{\mathrm{a}, \mathrm{n}}(\mathrm{x})=\mathrm{a}^{\mathrm{x}} \bmod \mathrm{n}$

$$
\mathrm{n}=35
$$

1 - Choose a coprime with n

$$
a=13
$$

is periodic
2 - Find the period, denoted as T
3 - Calculate $\mathrm{g}_{+}=\operatorname{gcd}\left(\mathrm{n}, \mathrm{a}^{\mathrm{T} / 2}+1\right)$

$$
\mathrm{g}_{-}=\operatorname{gcd}\left(\mathrm{n}, \mathrm{a}^{\mathrm{T} / 2}-1\right)
$$

$1,2,3,4,5,6,7,8 \ldots$
$13,29,27,1,13,29,27,1 \ldots$
$\mathrm{T}=4$
$\operatorname{gcd}\left(35,13^{2}+1\right)=5$
$\operatorname{gcd}\left(35,13^{2}-1\right)=7$
Th2: If $g_{ \pm} \neq-1 \bmod n$, then g_{+}et g_{-} are the factors of n
ok!

Efficiency? Poor for a classical computer : step 2 requires a number of operations increasing exponentially with $\log (n)$ (multiple evaluations of $f_{a, n}$)

SHOR'S ALGORITHM

Number to be factorized: n encoded on N bits $->$ numbers from 0 to $2 \mathrm{~N}_{-1}$
2 Registers with resp. 2 N bits (denoted X) and N bits (denoted Y)
1 - Prepare the superposition : $\left(1 / \sqrt{ } 2^{2 N} \sum_{\mathrm{X}} \mid \mathrm{x}>_{\mathrm{X}}\right) \otimes \mid 0>_{\mathrm{Y}}$
2 - Apply $f_{a, n} \rightarrow 1 / \sqrt{ } 2^{2 N} \sum_{x}\left(\left|x>_{X} \otimes\right| a^{x} \bmod n>_{Y}\right)$

3 - Perform a quantum measurement on the register Y
\rightarrow find one among the possible values of y
The register X is projected on the quantum state $C \sum_{k} \mid d+k T>$ where d : shift depending of the value of y, k :integer, $\mathbf{T}:$ period

SHOR'S ALGORITHM

Number to be factorized: n encoded on N bits $->$ numbers from 0 to $2 \mathrm{~N}_{-1}$
2 Registers with resp. 2 N bits (denoted X) and N bits (denoted Y)
1 - Prepare the superposition : $\left(1 / \sqrt{ } 2^{2 N} \sum_{\mathrm{X}} \mid \mathrm{X}>_{\mathrm{X}}\right) \otimes \mid 0>_{\mathrm{Y}}$
2 - Apply $\mathrm{f}_{\mathrm{a}, \mathrm{n}} \rightarrow 1 / \sqrt{ } 2^{2 N} \sum_{\mathrm{x}}\left(\left|\mathrm{x}>_{\mathrm{X}} \otimes\right| \mathrm{a}^{\mathrm{x}} \bmod \mathrm{n}>_{\mathrm{Y}}\right)$

3 - Perform a quantum measurement on the register Y
\rightarrow find one among the possible values of y
The register X is projected on the quantum state $C \sum_{k} \mid d+k T>$ where d : shift depending of the value of y, k :integer, $\mathbf{T}:$ period

SHOR'S ALGORITHM

4 - Perform a discret Fourier transform
$\mathrm{C} \sum_{\mathrm{k}}\left|\mathrm{d}+\mathrm{kT}>\rightarrow \mathrm{C} / \sqrt{ } \mathrm{M} \sum_{\mathrm{k}} \sum_{\mathrm{u}} \mathrm{e}^{2 i \pi \mathrm{u}(\mathrm{d}+\mathrm{k} \mathrm{T}) \mathrm{M}}\right| \mathrm{u}>\quad \mathrm{M}=2^{2 \mathrm{~N}}$
But : $\sum_{k} e^{2 i k \pi ~ u T / M}=M / T \quad$ if $u T / M=j$ integer, thus $u=j M / T$ $=0 \quad$ otherwise
Thus $C \sum_{k}\left|\mathrm{~d}+\mathrm{kT}>\rightarrow \mathrm{C} \sqrt{\mathrm{M}} / \mathrm{T} \sum_{\mathrm{j}} \mathrm{e}^{2 i \pi j \mathrm{~d} / \mathrm{T}}\right| \mathrm{j} \mathrm{M} / \mathrm{T}>$

5 - By repeating the whole process several times, extract the period !

QUANTUM COMPUTING

A quantum computer can perform some calculations very efficiently...

- factorization algorithm (Shor 1994) : exponential gain
- search algorithm (Grover 1996) : quadratic gain
... but it is very difficult to implement
- the quantum states $\sum \mathrm{c}_{\mathrm{i}}|\varepsilon(1), \varepsilon(2), \varepsilon(3), \varepsilon(4) \ldots . . \varepsilon(\mathrm{N})\rangle$ with N large are extremely sensitive to all interactions with environment : 'decoherence"
- the interaction of the qubits between themselves and with the outer world must be extremely well controlled, to perform calculations and to avoid decoherence

Some encouraging results ...

- all calculations can be performed on the basis of 1 and 2 qubits gates
- errors are unavoidable, but "quantum error correcting codes" are possible

ERROR CORRECTING CODES

Classical approach Error probability for one 1 bit $=\mathrm{p} \ll 1$

* Encoding :
$1 \rightarrow \quad\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$
$0 \rightarrow\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$
* Error correction :
"majority voting"
* Errors for 3 bits ?

$(1-p)^{3}$	no error	ok
$3 p(1-p)^{2}$	1 wrong bit	ok
$3 p^{2}(1-p)$	2 wrong bits	error
p^{3}	3 wrong bits	error

* Total error probability : $3 \mathrm{p}^{2}(1-\mathrm{p})+\mathrm{p}^{3} \approx 3 \mathrm{p}^{2} \ll \mathrm{p} \quad$ OK !

Quantum approach

* One can neither read the state of the qubit, nor copy it (no-cloning)
* There are various types of errors ("flip", "phase", or both)
* How to do it?

ERROR CORRECTING CODES

Quantum approach : encoding

b123=a $|0,0,0\rangle+\mathrm{b}|1,1,1\rangle \rightarrow$ आ

ERROR CORRECTING CODES

* Processing b123 after decoherence : run the encoding backwards !
b1 w b3 = b1 (still there !) and c3 (measured, destroyed)
b1 w b2 = b1 (still there !) and c2 (measured, destroyed)

$$
\begin{array}{lll}
* \text { Assume zero or one bit flip error : } & & \\
\mathrm{a}|000\rangle+\mathrm{b}|111\rangle \rightarrow(\mathrm{c} 2, \mathrm{c} 3)=(0,0) & \rightarrow \text { ok } & \rightarrow \text { ok } \\
\mathrm{a}|100\rangle+\mathrm{b}|011\rangle \rightarrow(\mathrm{c} 2, \mathrm{c} 3)=(1,1) & \rightarrow \text { flip } \mathrm{b} 1 & \rightarrow \text { ok } \\
\mathrm{a}|010\rangle+\mathrm{b}|101\rangle \rightarrow(\mathrm{c} 2, \mathrm{c} 3)=(1,0) & \rightarrow \text { error on } \mathrm{b} 2 & \rightarrow \text { ok } \\
\mathrm{a}|001\rangle+\mathrm{b}|110\rangle \rightarrow(\mathrm{c} 2, \mathrm{c} 3)=(0,1) & \rightarrow \text { error on } \mathrm{b} 3 & \rightarrow \mathrm{ok}
\end{array}
$$

Final result : $\mathbf{b 1}=\mathbf{a}|\mathbf{0}\rangle+\mathbf{b}|\mathbf{1}\rangle$, error probability of order $\mathbf{p}^{\mathbf{2}}$

* Correct flip errors on one qubit with probability $\mathrm{O}\left(\mathrm{p}^{2}\right) \ll \mathrm{p} \quad \mathrm{OK}$!
* Phase errors : encoding on more than 3 bits ($5 \mathrm{~min}, 7$ or 9 ok)
* General idea : "syndrome measurement" + suitable correction

QUANTUM COMPUTING

Implementations? Most obvious: Photons

Advantages : Simplicity (useful for building "models"), good isolation from environment ...

Drawbacks : A CNOT gate requires a phase shift π per photon : difficult to implement (coupling increased by using high finesse cavities)

EXPERIMENTAL PROPOSALS

	Qubits	Gates	Main difficulty
1994	Photons	Bistables optiques	Available energy : h v! Very difficult to implement
1995	Semiconductors "quantum dots"	$?$	Strong decoherence
1996	Trapped ions	Coulomb interaction	Thermal motion
1997	Molecular spins + RMN	Spin coupling +	Complexity of the molecule Macroscopic sample !
		R-生	

QUANTUM COMPUTER IN SILICON

Qubit : magnetic moment of phosphorus atoms individually implanted below electrodes
"A" : 1 qubit gates "J" : 2 qubits gates

* Technically possible * Decoherence ???

B. E. Kane, "A silicon-based nuclear spin quantum computer", Nature, Vol. 393, p. 133, 1998

EXPERIMENTAL PROPOSALS

	Qubits	Gates	Main difficulty
1994	Photons	Bistables optiques	Available energy : h v ! Very difficult to implement
$\begin{aligned} & 1995 \\ & 1998 \\ & 1999 \\ & \hline \end{aligned}$	Semiconductors "quantum dots"	? Individual Spins	Strong decoherence Implanted in silicon? Carbon nanotubes?
$\begin{aligned} & 1996 \\ & 1999 \end{aligned}$	Trapped ions	Coulomb interaction	Thermal motion Laser cooling in linear traps
$\begin{aligned} & 1997 \\ & 1998 \end{aligned}$	Molecular spins $\begin{gathered} +\mathrm{RMN} \\ \mathrm{CHCl}_{3} \end{gathered}$	Spin coupling	Complexity of the molecule Macroscopic sample! First "calculations" (3 qubits)

LINEAR ION TRAPS (Innsbruck University)

* Calcium ions trapped using electromagnetic fields -> "rows" of ions
* Laser cooling -> regular arrays (Coulomb repulsion).

Ions isolated in vacuum :
decoherence much smaller than in solid-state materials

EXPERIMENTAL PROPOSALS

	Qubits	Gates	Main difficulty
1994 2000	Photons Microwave domain	Bistables optiques	Available energy : hv: Very difficult to implement but CNOT gate realized.
1995 1998 1999	Semiconductors "quantum dots"	? Individual Spins	Strong decoherence Implanted in silicon ? Carbon nanotubes?
$\begin{aligned} & 1996 \\ & 1999 \\ & 2001 \end{aligned}$	Trapped ions Trapped atoms	Coulomb interaction	Thermal motion Laser cooling in linear traps "Optical tweezers"
1997	Molecular spins + RMN	Spin coupling	Complexity of the molecule Macroscopic sample !
1998 2000	CHCl_{3} Fluorine 19 (M-F5)		First "calculations" (3 qubits) Calculations with 5 qubits

Two atoms at your fingertips

N. Schlosser et al, Nature 411, 1024 (2001) PRL 89, 023005 (2002)

Resolution of the imaging system:
1 micron / pixel

EXPERIMENTAL PROPOSALS

	Qubits	Gates	Main difficulty
1994 2000 1995	Photons Microwave domain	Bistables optiques	Available energy : hv! Very difficult to implement but CNOT gate realized.
$\begin{aligned} & 1995 \\ & 1998 \\ & 1999 \end{aligned}$	Semiconductors 'quantum dots'	? Individual Spins	Strong decoherence Implanted in silicon? Carbon nanotubes?
$\begin{aligned} & 1996 \\ & 1999 \\ & 2002 \end{aligned}$	Trapped ions Trapped atoms	Coulomb interaction Collisions	Thermal motion Laser cooling in linear traps Optical tweezers and lattices
1997	Molecular spins + RMN	Spin coupling	Complexity of the molecule Macroscopic sample !
1998	CHCl_{3}		First 'calculations" (3 qubits)
2002	Fluorine 19 (M-F5)	-4	Factorization of 15 !

```
"QUANTUM CCD '
D. Kielpinsky, C. Monroe, D. Wineland. Nature (2002)
```

* Chain of trapped ions moved from storing to interaction areas.
* Qubits : 2 atomic levels (spin states - laser-controlled)
* Extraction of any two ions to the interaction area:
-> quantum gate between any 2 qubits !

"Scalable" proposal, but not yet implemented !

CONCLUSION

* Quantum cryptography appears to evolve slowly but straightforwardly towards practical implementations.
* Quantum computing is a much bigger scientific challenge : by principle it cannot work at a macroscopic scale, microscopic systems are difficult to control ... -> "mesoscopic scale enginering"
* Objectively, a useful quantum computer is very far away:
-> 1-10 quantum gates : repeaters for quantum cryptography...
-> 10-100 quantum gates : implement quantum simulation...
-> 100-1000 quantum gates : efficient error correction possible...
* On the way ... exploration of many open problems in
-> quantum mechanics (theory and experiment...)
-> information theory (algorithms, error corrections ...)

