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Goal

Let (Xn) be a sequence of iid random variables with unknown
density function f .

Goal
Estimate the density function f by a kernel density estimator.

Let K be a nonnegative, bounded, Lipschitz function called
Kernel, such that∫

R
K (x) dx = 1,

∫
R

xK (x) dx = 0,∫
R

K 2(x) dx = τ 2.
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Choices for the kernel

Uniform kernel

Ka(x) =


1

2a
if |x | 6 a,

0 otherwise.

Epanechnikov kernel

Kb(x) =


3

4b

(
1− x2

b2

)
if |x | 6 b,

0 otherwise.

Gaussian kernel

Kc(x) =
1

c
√

2π
exp
(
− x2

2c2

)
.

Bercu and Portier Kernel density estimation in adaptive tracking 5 / 26



Kernel density estimation
Estimation and adaptive control

Main results
Application to a goodness of fit test

Choices for the kernel

Uniform kernel

Ka(x) =


1

2a
if |x | 6 a,

0 otherwise.

Epanechnikov kernel

Kb(x) =


3

4b

(
1− x2

b2

)
if |x | 6 b,

0 otherwise.

Gaussian kernel

Kc(x) =
1

c
√

2π
exp
(
− x2

2c2

)
.

Bercu and Portier Kernel density estimation in adaptive tracking 5 / 26



Kernel density estimation
Estimation and adaptive control

Main results
Application to a goodness of fit test

Choices for the kernel

Uniform kernel

Ka(x) =


1

2a
if |x | 6 a,

0 otherwise.

Epanechnikov kernel

Kb(x) =


3

4b

(
1− x2

b2

)
if |x | 6 b,

0 otherwise.

Gaussian kernel

Kc(x) =
1

c
√

2π
exp
(
− x2

2c2

)
.

Bercu and Portier Kernel density estimation in adaptive tracking 5 / 26



Kernel density estimation
Estimation and adaptive control

Main results
Application to a goodness of fit test

Parzen-Rosenblatt or Wolverton-Wagner

Let (hn) be a sequence of positive real numbers decreasing to
zero called bandwidth. We can estimate the density f by the
Parzen-Rosenblatt estimator given for all x ∈ R by

f̃n(x) =
1

nhh

n∑
i=1

K
(Xi − x

hn

)
.

We can also estimate the density f by the Wolverton-Wagner
estimator given for all x ∈ R by

f̂n(x) =
1
n

n∑
i=1

1
hi

K
(

Xi − x
hi

)
.
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On Wolverton-Wagner

Theorem
Assume that f is derivable with bounded derivative. If the
bandwidth hn = 1/nα with 0 < α < 1, we have

(LLN) lim
n→∞

f̂n(x) = f (x) a.s.

In addition, if 1/5 < α < 1, we also have

(CLT)
√

nhn(f̂n(x) − f (x))
L−→ N

(
0,

τ 2f (x)

1 + α

)
.
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Consider the d-dimensional ARMAX(p,q,r) model given by

A(R)Xn = B(R)Un + C(R)εn

where R is the shift-back operator, Xn is the system output,
Un is the system input and εn is the driven noise,

A(R) = Id − A1R − · · · − ApRp,
B(R) = B1R + B2R2 + · · ·+ BqRq,
C(R) = Id − C1R − · · · − Cr Rr

where Ai , Bj , and Ck are unknown matrices. We assume that
the high frequency gain B1 is known with B1 = Id .
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The unknown parameter of the model is given by

θ t = (A1, . . . , Ap, B2, . . . , Bq, C1, . . . , Cr ).

The ARMAX(p,q,r) model can be rewritten as

Xn+1 = θ tΨn + Un + εn+1,

where Ψn =
(
X p

n , Uq
n , εr

n
)t with

X p
n = (X t

n, . . . , X t
n−p+1),

Uq
n = (U t

n−1, . . . , U t
n−q+1),

εr
n = (εt

n, . . . , ε
t
n−r+1).
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Causality and Passivity

Definition
The matrix polynomial B is causal if for all z ∈ C with |z| 6 1

det(z−1B(z)) 6= 0.

Definition
The matrix polynomial C is passif if for all z ∈ C with |z| = 1

det(C(z)) 6= 0 and C−1(z) >
1
2

Id
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Extended least squares

We estimate θ by the extended least squares estimator

θ̂n+1 = θ̂n + S−1
n Φn(Xn+1 − Un − θ̂ t

nΦn)
t ,

ε̂n+1 = Xn+1 − Un − θ̂ t
nΦn,

where the vector Φn =
(
X p

n , Uq
n , ε̂r

n
)t with ε̂r

n = (ε̂t
n, . . . , ε̂

t
n−r+1),

Sn =
n∑

i=0

ΦiΦ
t
i + S,

where S is a positive definite and deterministic matrix.
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Adaptive Control

The role played by Un is to force Xn to track step by step a given
trajectory (xn). We make use of the adaptive tracking control

Un = xn+1 − θ̂ t
nΦn.

Then, the closed-loop system is given by

Xn+1 − xn+1 = πn + εn+1

where the prediction error

πn = (θ − θ̂n)
tΦn.
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We assume that (εn) is a sequence of iid random vectors with
unknown density f . If (εn) were observable, we could
estimate f by

fn(x) =
1
n

n∑
i=1

1
hd

i
K
(

εi − x
hi

)
.

However, εn+1 is unobservable but it can estimated by

ε̂n+1 = Xn+1 − Un − θ̂ t
nΦn = Xn+1 − xn+1.

Consequently, we can use the Wolverton-Wagner estimator

f̂n(x) =
1
n

n∑
i=1

1
hd

i
K
(

Xi − xi − x
hi

)
.
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Law of large numbers
Central limit theorem

Uniform law of large numbers

Theorem
Assume that f is positive and differentiable with bounded
gradient and that (εn) has finite moment of order > 2. If the
bandwidth hn = 1/nα with α ∈]0, 1/d [, then

(LLN) lim
n→∞

sup
x∈Rd

|f̂n(x) − f (x)| = 0 a.s.
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Central limit theorem
Theorem
Assume that f is positive and differentiable with bounded
gradient and that (εn) has finite moment of order > 2. If the
bandwidth hn = 1/nα with α ∈]1/(d + 2), 1/d [, then

Gn(x)=
√

nhd
n (f̂n(x) − f (x))

L−→ N
(

0,
τ 2f (x)

1 + αd

)
=G(x).

In addition, for N distinct points x1, . . . , xN of Rd , we also have

(MCLT)
(

Gn(x1), · · · , Gn(xN)
) L−→

(
G(x1), · · · , G(xN)

)
where G(x1), . . . , G(xN) are independent.
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goodness of fit test

We wish to test

H0 : 〈〈 f = f0 〉〉 versus H1 : 〈〈 f 6= f0 〉〉

where f0 is a given density function. Our statistical test is

Tn(N) =
1

τ 2`h

N∑
i=1

(f̂n(xi) − f0(xi))
2

f̂n(xi)

where x1, . . . , xN are N distinct points of Rd and

`h =
1

1 + αd
.
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Theorem
Assume that f is positive and differentiable with bounded
gradient and that (εn) has finite moment of order > 2. If the
bandwidth hn = 1/nα with α ∈]1/(d + 2), 1/d [, then under H0

nhd
n Tn(N)

L−→ χ2(N).

In addition, under H1 and if one can find some point x of Rd in{
x1, x2, . . . , xN

}
such that f (x) 6= f0(x), then Tn(N) → σ2 a.s.√
nhd

n (Tn(N) − σ2)
L−→ N (0, λ2)

σ2 =
1

τ2`h

N∑
i=1

(f (xi)−f0(xi))
2

f (xi)
, λ2 =

1
τ2`h

N∑
i=1

(f 2(xi)−f 2
0 (xi))

2

f 3(xi)
.
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Simulations
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Noise distributions

Gaussian

f0(x) =
1√
2π

exp
(
−x2

2

)
,

Double exponential

f1(x) =
1√
2

exp
(
−
√

2|x |
)
,

Chi square

f2(x) =


9
5
(x +

√
6)5 exp

(
−
√

6(x +
√

6)
)

if |x | > −
√

6,

0 otherwise.
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Law of large numbers
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ARX Goodness of fit test

Xn+1 = θXn + Un + εn+1

Table: Results under H0 and H1 with test level 5%.

n = 200, N = 8 n = 1000, N = 22
Hf0 Hf1 Hf2 Hf0 Hf1 Hf2

Gf0 3.8% 35.7% 28% 3.7% 99.7% 98.2%
Gf1 45.8% 5.5% 71.5% 100% 5% 100%
Gf2 21.2% 54.5% 3.2% 96.7% 100% 5.1%
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NARX Goodness of fit test

Xn+1 = θX 2
n + Un + εn+1

Table: Results under H0 and H1 with test level 5%.

n = 200, N = 8 n = 1000, N = 22
Hf0 Hf1 Hf2 Hf0 Hf1 Hf2

Gf0 3% 37.1% 28.5% 4.3% 99.5% 98.6%
Gf1 44.6% 5.2% 72% 100% 5.1% 100%
Gf2 19.8% 58.3% 3.7% 97.2% 100% 5%
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