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Abstract

In a recent paper Lee and Na [2002. Statist. Probab. Lett. 56(1), 23–25] introduced a test for the
parametric form of the distribution of the innovations in autoregressive models, which is based on the
integrated squared error of the nonparametric density estimate from the residuals and a smoothed version
of the parametric fit of the density. They derived the asymptotic distribution under the null-hypothesis,
which is the same as for the classical Bickel–Rosenblatt [1973. Ann. Statist. 1, 1071–1095] test for the
distribution of i.i.d. observations. In this note we first extend the results of Bickel and Rosenblatt to the case
of fixed alternatives, for which asymptotic normality is still true but with a different rate of convergence. As
a by-product we also provide an alternative proof of the Bickel and Rosenblatt result under substantially
weaker assumptions on the kernel density estimate. As a further application we derive the asymptotic
behaviour of Lee and Na’s statistic in autoregressive models under fixed alternatives. The results can be
used for the calculation of the probability of the type II error if the Bickel–Rosenblatt test is used to check
the parametric form of the error distribution or to test interval hypotheses in this context.
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1. Introduction

The goodness-of-fit testing problem for the distribution of the innovations is of particular
importance in time series analysis. In particular the hypothesis of Gaussian errors is of interest.
Under this additional assumption inference simplifies substantially and many statistical
procedures in time series are based on the assumption of normality (see e.g. Brockwell and
Davis (1991) or Fan and Yao (2003)). In a recent paper Lee and Na (2002) considered the
problem of testing the hypothesis

H0 : f ¼ f 0; H1 : faf 0 (1.1)

in the first-order-autoregressive process

X j ¼ jX j�1 þ Zj, (1.2)

where f 0 is a given density, Zj are i.i.d. random variables with density f ; mean 0 and variance
s240: Their work was motivated by the fact that for the more general hypothesis of a location-
scale family the limit distribution of tests based on functionals of the empirical process of the
residuals Ẑj ¼ X j � ĵX j�1 depends on the parameter estimates involved in the empirical process
and is no longer a functional of the standard Brownian bridge (see e.g. Boldin (1982), Koul (1991,
2002), Koul and Levental (1989)). Lee and Na (2002) proposed to use the Bickel–Rosenblatt test
based on the residuals Ẑ1; . . . ; Ẑn for the hypotheses (1.1) and proved asymptotic normality of the
corresponding test statistic under the null hypothesis H0 : f ¼ f 0: They also generalized this result
to the problem of testing for a location-scale family.
It is the purpose of the present paper to provide a more refined analysis of the

Bickel–Rosenblatt test by a discussion of the asymptotic behaviour of the test statistic under
fixed alternatives of the form

dðf ; f 0Þ ¼

Z
ðf � f 0Þ

2
ðxÞdx40. (1.3)

In Section 2 we show that under the alternative (1.3) a standardized version of the statistic of
Bickel and Rosenblatt (1973) based on i.i.d. observations is still asymptotically normal distributed
but with a different rate of convergence.
This result allows a simple calculation of the probability of the type II error of the

Bickel–Rosenblatt test. It is therefore of particular importance if the null hypothesis cannot be
rejected (see Berger and Delampady (1987) or Sellke et al. (2001)). The asymptotic distribution of
the test statistic under fixed alternatives can also be used for the calculation of critical values in the
problem of testing precise hypotheses of the form

H0 : dðf ; f 0Þ4p; H1 : dðf ; f 0Þpp. (1.4)

Here p is a given bound in which the experimenter would denote deviations from the assumed
density f 0 as not relevant. Note that the formulation of the hypotheses (1.4) allows the
experimenter to test that the density f is approximately equal to f 0 (i.e. dðf ; f 0ÞppÞ at a controlled
type I error.
In Section 3 we consider the statistic of Lee and Na (2002) under alternative (1.3). We show

that it has the same asymptotic behaviour as Bickel and Rosenblatt’s statistic in the i.i.d. case
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which was derived in Section 2. It is also demonstrated that this result holds for composite
hypotheses

H0 : f 2 F; H1 : feF, (1.5)

where

F ¼
1

s
f 0

� � m
s

� �
j m 2 R; s40

� �
(1.6)

is a location-scale family and f 0 is a given density. In Section 4 we investigate the finite sample
properties of a bootstrap version of the proposed test and compare its properties with the
Kolmogorov–Smirnov test. Finally, some of the proofs are given in an appendix in Section 5.
2. The test of Bickel and Rosenblatt revisited

Let Z1;Z2; . . . ;Zn denote iid random variables with two times continuously differentiable
density f with bounded second derivative and K : R ! R be a continuous bounded symmetric
kernel with compact support satisfyingZ

KðxÞdx ¼ 1;

Z
x2KðxÞdxo1;

Z
K2ðxÞdxo1. (2.1)

We consider the kernel estimator

f nðxÞ ¼
1

n

Xn

i¼1

Khðx � ZiÞ, (2.2)

where Khð�Þ ¼ ð1=hÞKð �
h
Þ is the scaled kernel and h40 denotes a bandwidth satisfying

nh2 ! 1; h ! 0 (2.3)

if n ! 1. For the problem of testing the hypothesis (1.1) Bickel and Rosenblatt (1973) proposed
to reject the null-hypothesis for large values of the statistic

Tn ¼

Z
½f n � Kh � f 0

2ðxÞdx, (2.4)

where f 1 � f 2 denotes the convolution of the functions f 1 and f 2: Under the null hypothesis
H0 : f ¼ f 0 these authors showed asymptotic normality of Tn, namely

n
ffiffiffi
h

p
Tn �

1

nh

Z
K2ðtÞdt

� �
�!
D

Nð0; t2Þ, (2.5)

where

t2 ¼ 2

Z
f 20ðxÞdx

Z
ðK � KÞ

2
ðxÞdx. (2.6)

The following result now establishes asymptotic normality of an appropriately standardized
version of Tn under fixed alternatives.
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Theorem 2.1. If the assumptions (2.1)–(2.3) are valid and the alternative H1 : faf 0 is satisfied in the

sense of (1.3) we have

ffiffiffi
n

p
Tn �

Z
ðKh � ðf � f 0ÞÞ

2
ðxÞdx

� 	
�!
D

Nð0; 4R2Þ, (2.7)

where the asymptotic variance is given by

R2 ¼ Var½ðf � f 0ÞðZiÞ. (2.8)

In the appendix we provide an alternative proof of the statement (2.5) based on a central limit
theorem for degenerate U-statistics, which is of its own interest and particularly helpful to identify
the limit distribution in the proof of Theorem 2.1. Moreover, with this technique the statement
(2.5) can be proved under substantially weaker assumptions than imposed by Bickel and
Rosenblatt (1973). These authors derived this result using an approximation of the normalized
and centered sample distribution function by an appropriate Brownian process on a convenient
probability space.
It is also interesting to note that the centered version of Tn is of different order under the null

hypothesis and alternative, namely

Tn � E½Tn �
H0

Op
1

n
ffiffiffi
h

p


 �
,

Tn � E½Tn �
H1

Op
1ffiffiffi
n

p


 �
. ð2:9Þ

A detailed proof of these properties is given in the appendix. For a heuristic explanation note that

Tn ¼

Z
½f n � Kh � f 2ðxÞdx þ

Z
½Kh � ðf � f 0Þ

2ðxÞdx

� 2

Z
ðf n � Kh � f Þ½Kh � ðf � f 0ÞðxÞdx

The first term is essentially the integrated mean-squared error of a kernel density estimate, which
is known to be of order

Op
1

n
ffiffiffi
h

p


 �

(see e.g. Bickel and Rosenblatt (1973) or Hall (1984)). The second term corresponds
approximately to E½Tn and vanishes under the null hypothesis. Finally, the third term also
vanishes under the null hypothesis. However, under the alternative, it is a sum of i.i.d. random
variables, which can be shown to be of order Opð1=

ffiffiffi
n

p
Þ (see our proof in the appendix).

In the following we briefly indicate two potential applications of Theorem 2.1. Note that the
weak convergence in (2.7) can be used for the calculation of the probability of the type II error of
the test, which rejects the null hypothesis H0 : f ¼ f 0; whenever

n
ffiffiffi
h

p
Tn �

1

nh

Z
K2ðtÞdt

� �
4tu1�a. (2.10)
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Here u1�a is the ð1� aÞ quantile of the standard normal distribution. A straightforward
calculation gives under the alternative (1.3) for the probability of rejection the approximation

P(‘‘ rejection’’ ) � F
ffiffiffi
n

p

2R
dðf ; f 0Þ �

t
2R

u1�affiffiffiffiffi
nh

p


 �
� F

ffiffiffi
n

p

2R
dðf ; f 0Þ


 �
.

A further application of Theorem 2.1 consists in the calculation of critical values of the test for
the precise hypotheses defined in (1.4). Here the null hypothesis is rejected for small values of the
statistic Tn; namely

ffiffiffi
n

p Tn � p
2R̂

pua, (2.11)

where R̂ is an appropriate estimator of the asymptotic variance R in Theorem 2.1. Note that the
test of the form (2.11) decides in favour of the alternative H1 : dðf ; f 0Þpp at a controlled type I
error of size a: In other words if we decide that the ‘‘true’’ density is approximately equal to f 0; the
probability of a possible error is approximately a: We finally note that it is important to control
this probability because subsequent data analysis will be performed under the assumption f ¼ f 0
if the null hypothesis in (1.4) is rejected.
3. A goodness-of-fit test in autoregressive models

Consider the first-order autoregressive model, where we are interested in testing the hypothesis
(1.1) for the distribution of the innovations Zi: Because these values are unobservable, we replace
them by the residuals Ẑi ¼ X i � ĵX i�1, where ĵ is a

ffiffiffi
n

p
-consistent estimator of the parameter j:

Let

f̂ nðxÞ ¼
1

n

Xn

i¼1

Khðx � ẐiÞ ð3:1Þ

denote the kernel density estimate based on the residuals Ẑ1; . . . ; Ẑn and define the statistic T̂n as
the analogue of Tn; where the random variable f n defined in (2.2) is replaced by f̂ n, i.e.

T̂n ¼

Z
½f̂ n � Kh � f 0

2ðxÞdx. (3.2)

Lee and Na (2002) made the following assumptions:

K ð3Þ exists; K ð2Þ is bounded (3.3)Z
jK ðjÞðxÞjdxo1; j ¼ 1; 2; 3;

Z
jK ðjÞðxÞj2 dxo1; j ¼ 1; 2 (3.4)

nh4 ! 1. (3.5)

They showed that the statistics Tn and T̂n are asymptotically equivalent, i.e.

n
ffiffiffi
h

p
½T̂n � Tn ¼ oPð1Þ, (3.6)
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and derived as a consequence the asymptotic normality of T̂n from the corresponding result of
Bickel and Rosenblatt (1973). The following results show that statements of this form remain true
under fixed alternatives.

Theorem 3.1. Assume that jjjo1: If the assumptions (2.1)–(2.3), (3.3)–(3.5) are satisfied and

alternative (1.3) is valid, then

ffiffiffi
n

p
T̂n �

Z
ðKh � ðf � f 0ÞÞ

2
ðxÞdx

� 	
�!
D

Nð0; 4R2Þ, (3.7)

where R2 is given in (2.8).

Theorem 3.2. Assume that jjj41 and that the assumptions (2.1)–(2.3) and (3.5) are satisfied. If

additionally the kernel K in the density estimate (3.1) is bounded such that there exists a constant
B40 withZ

jKðx þ dÞ � KðxÞjdxpBd (3.8)

for all d40; then assertion (3.7) holds.

Remark 3.3. Theorems 3.1 and 3.2 are also valid for testing the composite hypothesis (1.6) of a
location-scale family. To be precise consider the first-order autoregressive model

X t ¼ mþ rX t�1 þ Zt. (3.9)

We are interested in the problem of testing the hypothesis

H0 : Mðf ; f 0Þ ¼ 0 H1 : Mðf ; f 0Þ40 (3.10)

or the corresponding precise hypotheses of the form (1.4). Here

Mðf ; f 0Þ ¼ min
s40

Z
f ðxÞ �

1

s
f 0

x

s

� �
 �2

dx (3.11)

is the L2-distance of the best approximation of the density f by elements from the scale family

F ¼
1

s
f 0

�

s

� �
j s40

� �
.

We assume that the minimum in (3.11) exists and is attained at a unique point, say s040: Assume
that m̂; ĵ; ŝ are

ffiffiffi
n

p
-consistent estimates of m;j; s, respectively and that f̂ n is the density estimate

(3.1) from the residuals Ẑi ¼ X i � m̂� ĵX i�1: Lee and Na (2002) showed for the statistic

T̄n ¼

Z
f̂ nðxÞ � Kh �

1

ŝ
f

�

ŝ

� �
 �� �2

ðxÞdx (3.12)

the asymptotic normality

n
ffiffiffi
h

p
T̄n �

1

nh

Z
K2ðxÞdx


 �
�!
D

Nð0; t2Þ (3.13)

under the null hypothesis (3.10), where t2 is defined in (2.6). Combining these arguments with the
arguments given for the proof of Theorems 2.1, 3.1 and 3.2 it can be shown that under any fixed
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alternative Mðf ; f 0Þ40 it followsffiffiffi
n

p
ðT̄n � Mðf ; f 0ÞÞ�!

D
Nð0; 4r̄2Þ, (3.14)

where

r̄ ¼ Var f ðZiÞ �
1

s0
f 0

Zi

s0


 �� �2
 !

and s0 is the unique minimizer in (3.11). The details are omitted for the sake of brevity.

Remark 3.4. It is well known (see Boldin (1982) or Koul (1991)) that the Kolmogorov–Smirnov
test, based on the residual empirical process, is asymptotically distribution free for testing an error
distribution with zero mean in the autoregressive model (1.2). However, this fact is neither true in
the case

R
xf 0ðxÞdxa0 nor in the case where a location scale family has to be tested. On the other

hand the Bickel–Rosenblatt test is always asymptotically distribution free. Note also that in the
case

R
xf 0ðxÞdxa0 the consistent estimation of j in model (1.2) is not possible.

Moreover, while the Kolmogorov–Smirnov test is more powerful with respect to Pitman
alternatives than the proposed test based on density estimation, the opposite may be true for the
power with respect to local alternatives of the form

knðxÞ ¼ f 0ðxÞ þ anwððx � cÞg�1n Þ,

where an; gn ! 0: Here we assume that the function w is two times continuously differentiable and
square integrable such that for sufficiently large n the function knðxÞ is nonnegative (note that the
condition

R
knðxÞdx ¼ 1 implies

R
wðxÞdx ¼ 0, which means that w must have negative values). It

can be shown by similar arguments as given in the appendix, that for alternatives of this type with

an ¼
1

n1=2h2=3
; gn ¼ h5=6

the statistic on the left-hand side of (2.5) is also asymptotically normal with variance t2 and meanR
w2ðxÞdx. Because the size of the integral

R c

�1
anwððx � cÞg�1n Þdx is of order angn ¼ h1=6n�1=2 the

Bickel–Rosenblatt test has greater power against such local alternatives than tests based on the
deviation between the sample and the true distribution function (see Rosenblatt (1975) or Gosh
and Huang (1991) for more details).
4. A finite sample comparison

In this section we briefly investigate the finite sample properties of the test based on the L2-
distance between the densities and the Kolmogorov–Smirnov test which compares the distribution
functions directly. For this purpose we consider the problem of testing the hypothesis of a scale
family

H0 : f 2 F ¼
1

s
f 0

�

s

� �
j s40

� �
(3.15)
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for the error distribution in the first-order autoregressive model (1.2). The test statistic for the L2-
distance is given by (3.12), where f̂ n is the density estimate from the residuals Ẑt ¼ X t � ĵX t�1; ĵ
and ŝ2 are the Yule–Walker estimates of the parameter j and the variance of the innovations,
respectively. For the Kolmogorov–Smirnov test we used the statistic

Un ¼ sup
x2R

F̂ nðxÞ � F0
x

ŝ

� ���� ���, (3.16)

where F̂ nðxÞ ¼ ð1=nÞ
Pn

t¼0 IfẐtpxg is the empirical distribution function of the residuals. The
implementation of the statistic (3.12) requires the specification of a bandwidth, and we used

h ¼
ŝ2

n


 �1=5

(3.17)

for this purpose. We consider the problem of testing the distribution of the innovations for a
centered normal and a double exponential distribution with unknown variance. Because the
Kolmogorov–Smirnov test is not asymptotically distribution free in this case and the
approximation of the distribution of the standardized statistic T̄n in (3.12) by the normal
distribution is not too accurate, we implemented a bootstrap version of both tests. For this we
adapted a resampling scheme which was recently proposed by Neumann and Kreiss (1998) in the
more general context of first-order nonparametric autoregressive models. To be precise, we
determined the Yule–Walker estimates ĵ and ŝ2 of the parameters in the model (1.2) and
generated bootstrap observations as follows:

Y �
i ¼ ĵX i�1 þ ŝ��i ; i ¼ 1; . . . ; n, (3.18)

where the ��i are i.i.d. random variables with a standardized distribution corresponding to the null
hypothesis (that is a standard normal distribution, if we are testing for normality or a double
exponential distribution with mean 0 and variance 1 if we are testing for the double exponential
distribution). The statistics T̄n defined in (3.12) and Un defined in (3.16) are now calculated for the
bootstrap sample and denoted by T̄

�

n and U�
n; respectively.

If T̄
�

nð1Þ; . . . ; T̄
�

nðBÞ (or U�
nð1Þ; . . . ;U

�
nðBÞÞ denote the order statistics obtained from B bootstrap

replications the null hypothesis of a scale family with density f 0 is rejected if

T̄n4T̄
�

nbBð1�aÞc ðUn4U�
nbBð1�aÞcÞ, (3.19)

where the level a is 2.5%, 5% and 10%. In Table 1 we show the rejection probabilities of the two
tests for the null hypothesis of a centered normal distribution and the alternatives

Nð0:5; 1Þ,

Nð1; 1Þ,

ðw2k � kÞ=
ffiffiffiffiffiffi
2k

p
; k ¼ 1; 2; 3, (3.20)

where the symbol w2k denotes a w2 distribution with k degress of freedom. The sample sizes are
n ¼ 25; 50 and we used B ¼ 200 bootstrap replications and 1000 simulation runs for the
calculation of the rejection probabilities. Data was generated according to the first-order
autoregressive model (1.2) with j ¼ 0:1 and a standard normal distribution for the errors. We
observe a reasonable approximation of the nominal level under the null hypothesis for both tests
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Table 2

Simulated rejection probabilities of the Kolmogorov–Smirnov test based on the statistic Un in (3.16) and the test based

on the statistic T̄n defined in (3.12) in the problem of testing for a scale family

n ¼ 25 n ¼ 50

T̄n Un T̄n Un

a 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

DEð0Þ 0.021 0.042 0.089 0.033 0.053 0.105 0.029 0.047 0.089 0.034 0.052 0.115

DEð0:5Þ 0.236 0.303 0.439 0.374 0.466 0.609 0.599 0.688 0.791 0.878 0.932 0.967

DEð1Þ 0.392 0.463 0.589 0.652 0.733 0.863 0.663 0.750 0.888 0.972 0.991 1.000

df 1 0.761 0.824 0.886 0.537 0.619 0.750 0.993 0.998 1.000 0.928 0.965 0.990

df 2 0.567 0.651 0.766 0.263 0.318 0.426 0.908 0.932 0.966 0.592 0.702 0.864

df 3 0.435 0.511 0.640 0.176 0.220 0.304 0.821 0.863 0.922 0.367 0.452 0.648

Six error distributions are considered: a double exponential distribution with variance 1 (corresponding to the null

hypothesis), a DEð0:5Þ, a DEð1Þ distribution (where the symbol DEðmÞ denotes a double exponential distribution with

mean m and variance 1Þ and a standardized w2k-distribution with mean 0 and variance 1 denoted by the symbol df k

ðk ¼ 1; 2; 3Þ:

Table 1

Simulated rejection probabilities of the Kolmogorov–Smirnov test based on the statistic Un in (3.16) and the test based

on the statistic T̄n defined in (3.12) in the problem of testing for a scale family

n ¼ 25 n ¼ 50

T̄n Un T̄n Un

a 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

Nð0; 1Þ 0.027 0.048 0.107 0.030 0.049 0.105 0.032 0.057 0.109 0.043 0.063 0.106

Nð0:5; 1Þ 0.180 0.216 0.301 0.308 0.386 0.556 0.434 0.533 0.650 0.681 0.767 0.880

Nð1; 1Þ 0.291 0.316 0.426 0.543 0.640 0.817 0.496 0.584 0.672 0.939 0.962 0.987

df 1 0.748 0.805 0.872 0.476 0.594 0.740 0.986 0.992 0.996 0.913 0.955 0.981

df 2 0.445 0.525 0.633 0.255 0.319 0.449 0.803 0.834 0.902 0.530 0.660 0.798

df 3 0.311 0.365 0.448 0.171 0.226 0.318 0.576 0.643 0.738 0.404 0.491 0.677

Six error distributions are considered: a standard normal distribution (corresponding to the null hypothesis), a

Nð0:5; 1Þ; a Nð1; 1Þ distribution and a standardized w2k-distribution with mean 0 and variance 1 denoted by the symbol
df k ðk ¼ 1; 2; 3Þ:

D. Bachmann, H. Dette / Statistics & Probability Letters 74 (2005) 221–234 229
(see the first row in Table 1). For shift alternatives the Kolmogorov–Smirnov test is substantially
more powerful than the Bickel–Rosenblatt test (see the second and third line of Table 1). On the
other hand if w2 distributions appear as alternatives, the test based on the L2-distance of the two
densities yields remarkably larger power (see row 4–6 of Table 1).
In Table 2 we show the corresponding results for the problem of testing the hypothesis (3.15)

for a double exponential distribution with density

f 0ðxÞ ¼
1ffiffiffi
2

p exp �
ffiffiffi
2

p
jxj

� �
; x 2 R
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(note that
R

xf 0ðxÞdx ¼ 0;
R

x2f 0ðxÞdx ¼ 1 for this choice). The alternatives are a double
exponential distribution with variance 1 and mean 0.5, 1 and the standardized w2 distributions
specified by (3.20). We observe a similar performance of the two tests as described for the problem
of testing for a normal distribution. The level is approximated with reasonable accuracy under the
null hypothesis (see the first row in Table 2). Under shift alternatives the Kolmogorov–Smirnov
test outperforms the test based on the L2-distance of the densities (see row 2,3 of Table 2), while
the opposite behaviour can be observed, if w2 distributions are considered as alternatives (see row
4–6 of Table 2).
Acknowledgements

The support of the Deutsche Forschungsgemeinschaft (SFB 475, Komplexitätsreduktion
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Appendix. Proofs
Proof of (2.5) and Theorem 2.1. Note that we will establish asymptotic normality under the null
hypothesis f ¼ f 0 and under fixed alternatives faf 0 with different rates of convergence in both
cases. The weak convergence (2.5) under the null hypothesis has already been established by
Bickel and Rosenblatt (1973), but the argument presented here is more direct and requires weaker
assumptions.
Let f denote the ‘‘true’’ density of the random variables Zi. Recalling the definition of the

statistic Tn and the density estimate f n we obtain the following decomposition:

Tn ¼

Z
½f n � Kh � f 0

2ðxÞdx

¼

Z
½f n � Kh � f 2ðxÞdx þ 2

Z
½f n � Kh � f ðxÞghðxÞdx þ

Z
g2hðxÞdx

¼
2

n2

X
ioj

Z
½Khðx � ZiÞ � ehðxÞ½Khðx � ZjÞ � ehðxÞdx

þ
2

n

Xn

i¼1

½ðKh � ghÞðZiÞ � E½ðKh � ghÞðZiÞ þ
1

n2

Xn

i¼1

Z
½Khðx � ZiÞ � ehðxÞ

2 dx

þ

Z
g2hðxÞdx, ðA:1Þ



ARTICLE IN PRESS

D. Bachmann, H. Dette / Statistics & Probability Letters 74 (2005) 221–234 231
where the functions eh and gh are defined by eh :¼Kh � f and gh :¼Kh � ðf � f 0Þ, respectively. A
straightforward calculation shows

1

n2

Xn

i¼1

Z
½Khðx � ZiÞ � ehðxÞ

2 dx ¼
1

nh

Z
K2ðxÞdx þOP

1

n


 �
. (A.2)

Consequently we obtain the stochastic expansion

Tn �
1

nh

Z
K2ðxÞdx �

Z
½Kh � ðf � f 0Þ

2ðxÞdx ¼
2

n2

X
ioj

HnðZi;ZjÞ þ
2

n

Xn

i¼1

Y i þOP
1

n


 �
,

(A.3)

where the random variables HnðZi;ZjÞ and Y i are defined by

HnðZi;ZjÞ ¼

Z
½Khðx � ZiÞ � ehðxÞ½Khðx � ZjÞ � ehðxÞdx, (A.4)

Y i ¼ ðKh � ghÞðZiÞ � E½Kh � ghðZiÞ, (A.5)

respectively. Define the first term in this decomposition as

Un ¼
2

n2

X
ioj

HnðZi;ZjÞ (A.6)

and note that Un does not depend on the density f 0 specified by the null hypothesis. As a
consequence any asymptotic property of Un holds independently if the null hypothesis is satisfied
or not.
In the following we will establish the weak convergence of this statistic. For this we apply a

central limit theorem for degenerate U-statistics proved by Hall (1984) (see Theorem 2.1 in this
reference). Obviously, Hn is symmetric, E½HnðZ1;Z2Þ j Z1 ¼ 0; and E½H2

nðZ1;Z2Þo1 for each
n 2 N: Moreover, a straightforward but tedious calculation shows

lim
n!1

Var
ffiffiffi
h

p
HnðZi;ZjÞ

� �
¼ lim

n!1
E½hH2

nðZi;ZjÞ ¼

Z
ðK � KÞ

2
ðxÞdx

Z
f 20ðxÞdx. (A.7)

This gives for the variance of n
ffiffiffi
h

p
Un

Var n
ffiffiffi
h

p
Un

� �
¼ E

4h

n2

X
ioj

i0oj0

HnðZi;ZjÞHnðZi0 ;Zj0 Þ

2
664

3
775

¼ E 2h
n � 1

n
H2

nðZi;ZjÞ

� 	
¼ t2 þ oð1Þ,

where t2 is defined in (2.6). The final condition (2.1) of Hall’s (1984) Theorem 2.1 is more
difficult to check. First note that it follows from (A.7) that E½H2

nðZi;ZjÞ ¼ Oð1
h
Þ. A similar
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calculation gives

E½H4
nðZi;ZjÞ ¼

1

h3

Z
f 20ðxÞdx

Z
ðK � KÞ

4
ðxÞdx þO

1

h2


 �
¼ O

1

h3


 �
. (A.8)

Finally, we have to consider the quantity

GnðZ1;Z2Þ ¼ E½HnðZ1;Z3ÞHnðZ3;Z2Þ j Z1;Z2,

and obtain

E½G2
nðZi;ZjÞ ¼

1

h2
E

Z
ðK � KÞðwÞðK � KÞ w �

Zi � Zj

h


 �
f ðZiÞdw

� �2
" #

þO
1

h


 �

¼
1

h

Z Z
ðK � KÞ � ðK � KÞ
� �2

ðsÞdsf 4ðvÞdv þO
1

h


 �

¼ O
1

h


 �
.

This gives

E½G2
nðZi;ZjÞ þ

1
n

E½H4
nðZi;ZjÞ

ðE½H2
nðZi;ZjÞÞ

2
¼ O h þ

1

nh


 �
¼ oð1Þ,

and establishes condition (2.1) of Hall’s (1984) Theorem 2.1. We therefore obtain the weak
convergence

n
ffiffiffi
h

p
Un �!

D
Nð0; t2Þ. (A.9)

We are now in a position to prove the assertions (2.5) and (2.7) of Section 2.

Proof of (2.5). Weak convergence under the null hypothesis f ¼ f 0.
Under the null hypothesis H0 : f ¼ f 0 we have Y i � 0 and obtain from (A.3) the stochastic

expansion

Tn �
1

nh

Z
K2ðxÞdx ¼

2

n2

X
ioj

HnðZi;ZjÞ þOP
1

n


 �
¼ Un þOP

1

n


 �
, (A.10)

where the statistic Un is defined in (A.6). The asymptotic normality of the statistic

n
ffiffiffi
h

p
Tn �

1

nh

Z
K2ðxÞdx

� �

now follows from the corresponding statement for the random variable n
ffiffiffi
h

p
Un in (A.9).

Proof of (2.7). Weak convergence under a fixed alternative faf 0.
For a proof of asymptotic normality of the statistic Tn under a fixed alternative satisfying (1.3)

we note that it follows from (A.9) that

Un ¼
2

n2

X
ioj

HnðZi;ZjÞ ¼ Op
1

n
ffiffiffi
h

p


 �
.
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From (2.3) and (A.3) we obtain

Tn �

Z
½Kh � ðf � f 0Þ

2ðxÞdx ¼
2

n

Xn

i¼1

Y i þ op
1ffiffiffi
n

p


 �
,

where the random variables Y i are defined by (A.5). A straightforward but tedious calculation
shows

VarðY iÞ ¼ Varððf � f 0ÞðZiÞÞ þOðh2Þ ¼ R2 þOðh2Þ.

Consequently we have

Var
2ffiffiffi
n

p
Xn

i¼1

Y i

 !
¼ 4R2 þ oð1Þ,

while

E½Y 4
i  ¼ Oð1Þ,

uniformly with respect to i ¼ 1; . . . ; n: The asymptotic normality in Theorem 2.1 now follows
from Lindeberg–Feller’s theorem, which completes the proof of this Theorem. &

Proof of Theorems 3.1 and 3.2. We only consider the case jjjo1; the proof of Theorem 3.2 can be
obtained by similar arguments. Obviously, the assertion follows from the estimateffiffiffi

n
p

ðT̂n � TnÞ ¼ opð1Þ (A.11)

For a proof of this estimate we will proceed as in Lee and Na (2002) who obtained the estimateZ
ðf̂ n � f nÞ

2
ðxÞdx ¼ OPðn

�2h�4Þ. (A.12)

On the other hand Theorem 2.1 shows that under a fixed alternativeZ
ðf n � Kh � f 0Þ

2
ðxÞdx ¼ OPð1Þ, (A.13)

and a straightforward calculation [using condition (3.5)] gives

jT̂n � Tnjp
Z

ðf̂ n � f nÞ
2
ðxÞdx þ 2

Z
ðf̂ n � f nÞ

2
ðxÞdx

� 	1=2 Z
ðf n � Kh � f 0Þ

2
ðxÞdx

� 	1=2

¼ OP
1

nh2


 �
¼ oP

1ffiffiffi
n

p


 �
,

which proves the assertion of Theorem 3.1. &
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