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Abstract

Bifurcating autoregressive processes are used to model each line of descent in a binary tree as a standard
AR(p) process, allowing for correlations between nodes which share the same parent. Limit distributions of
the least-squares estimators of the model parameters for a pth-order bifurcating autoregressive process
(BAR(p)) are derived. An application to bifurcating integer-valued autoregression is given. A Poisson
bifurcating model is introduced.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Bifurcating autoregressive models were introduced by Cowan and Staudte (1986) for cell
lineage data where each individual in one generation gives rise to two offspring in the next
generation. The Cowan—Staudte model views each line of descent as a first-order autoregressive
(AR(1)) process with the added complication that the observations on the two sister cells who
share the same parent are allowed to be correlated. Staudte et al. (1996) studied data sets in which
the observed correlations between cousin cells were significant, thus necessitating higher-order
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models. Huggins and Basawa (1999) proposed bifurcating ARMA(p, ¢) models to accommodate
this extended dependence in the family tree. Huggins and Basawa (2000) discussed maximum
likelihood estimation for a Gaussian bifurcating AR(p) process and established the consistency
and asymptotic normality of the maximum likelihood estimators of the model parameters.
Recently, Basawa and Zhou (2004) introduced non-Gaussian bifurcating autoregressive models
and studied some preliminary estimation problems. Zhou and Basawa (2004) have discussed
maximum likelihood estimation for an exponential bifurcating AR(1) process. In this paper, we
consider the asymptotic properties of the least-squares (LS) estimators of parameters in a
bifurcating AR(p) (BAR(p)) process.

The rest of the paper is organized as follows. The BAR(p) model and the LS estimators of the
model parameters are presented in Section 2. The limit distributions of the LS estimators are
derived in Section 3. Section 4 is concerned with an application to a bifurcating integer-valued
AR(1) process. A Poisson bifurcating model is introduced in Section 5.

2. Least-squares estimation for BAR(p) processes

The pth-order bifurcating autoregressive process (BAR(p)) is defined by the equation
Xi=¢g+ &1 Xy + G2 X g+ - + & X1y + &1 (2.1)

where {(e2, €2.+1)} 1s a sequence of independent identically distributed (i.i.d.) bivariate random
variables with E(ey) = E(exr1) =0, Var(ey) = Var(eyy) = o2, and Corr(ey, €2141) = p. The
notation [u] denotes the largest integer less than or equal to u. As in Huggins and Basawa (1999),
the bifurcating operator b is defined by

uy e 1f >0,
bu; = /2] .
Uiy if <0,

where [¢/2"7" = [¢/2"] if (¢/2") =1, and [¢/2"]" = [log,(¢/2")] + 1 if (¢/2") < 1. This notation implies
that the descendants of the initial cell are labeled according to their position in the binary tree and
the ancestors of the initial cell are labeled 0, —1, —2,... . The BAR(p) process in (2.1) can then be
represented as

P(B)X 1 = & + by, (2.2)

where ¢p(2) =1 — ¢z — ppz> — - — ¢,7". We assume that the roots of ¢(z) = 0 are greater than
1 in absolute value, so that we can write

X, = E(S[z/zf']* + o)), (2.3)
j=0

where {y;} are the coefficients of Z in the expansion of ¢ '(z). Moreover, Z]?'io|xpj|<oo.
The coefficients ; can be determined recursively as by Huggins and Basawa (1999). The
autocovariances Cov(X,, X) are determined as discussed by Huggins and Basawa (1999).
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In particular, it is seen that

oo )4 -1
EX)=u=doy ;= (1 -3 ¢i> : (2.4)

j=0 i=1

Var(X,) =7(0) = o fj vy,
j=0

Cov(X 1, Xy ) = 9(k) = > > Yy, k0. (2.5)
j=0

Huggins and Basawa (2000) have discussed the consistency and asymptotic normality of the
maximum likelihood estimators of the parameters in a BAR(p) process assuming Gaussian errors
Here, we consider the asymptotic properties of the LS estimators of ¢ = (¢g, ¢y, ..., ¢, )" and 0
without imposing any specific distributional assumption on {e,}. Let Y, = (1, Xy, ..., X [[/zp])
t=2. Then the LS estimator ¢ of ¢ based on the observations {X,,t =27,2" +1,... n} is seen to
be

n -1 n
= (Z Y, Y;> Z Y. X, (2.6)
=2

1=2r
Define
= )22()([ Yig). 27)
1=2r

We will derive the limit distributions of <?) and 62 in the next section. A consistent estimator of p is
given by

p=06"22(Xo — Yy (Xart1 — Yo $).

3. Limit distributions
Consider the following conditions:

(C.1) All the roots of ¢(z) = 0 are greater than 1 in absolute value.
(C.2) E(eh)<oo, for all z.

Lemma 3.1. Under (C.1), we have, as n — o0,

() (1/m)3 1Xt—>ﬂa
(i) (1 /WS, (X, = 0 900,
i) (1/m)> 7 (X, — (X, Ry — KW —> y(k), for k=0, where p and y(k) are defined in (2.4) and
(2.5), respectively.
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Proof. Note that {s[, /2,-]*}, j=0,1,2,..., are i.i.d. random variables with mean 0 and variance ¢°.

The results then follow, via (2.3), as shown by Huggins and Basawa (2000). Also, see Brockwell
and Davis (1987). O

Define Z, = (1, X, X, - - - ,X[t/(zp_l)])/, and let m = (n—1)/2 =the number of triplets
(X, X0y, Xoi1) observed. We then have the following:

Lemma 3.2. Under (C.1)
1

m
— Z Z,Z;—p>A as m — 0o, (3.1)
m

t=2p—]

where A is a (p + 1) x (p + 1) matrix defined by

1 U u u
u a(0) a(l) ... alp—=1

4= |~ a(l) a(0) oooalp—2) , (3.2)
u alp—1) ap-2) ... a(0)

with p defined in (2.4), a(k) = > + y(k), and y(k) given by (2.5).

Proof. The result follows from Lemma 2.1 after noting that

m ZX[ ZX[[/z] e ZX[t/(zp—l)]
X, >x? X Xy e ZX Xy,
2
ZZ[Z; — ZX[[/zl ZX[[/z]Xt ZX[Z/z] o e ZX[I/le[Z/(zp—])] D
2
2Xyy 2XpenXe 2Xyeen Xy - 22X 0y,

The following version of the martingale central limit theorem will be used in the derivation of
the limit distribution of the LS estimator.

Lemma 3.3. Let {Y,}, t=1,2,..., be a sequence of zero-mean vector martingale differences
satisfying the following conditions:

(@) E(Y,Y)) = Q,, a positive definite matrix, and 1/n}_,_, Q;, — Q, a positive definite matrix.
(b) E(Y; Y Y Y,)<oo forallt,and alli,j,1,m, where Y, denotes the rth element of the vector Y.
© (/WY VY —> Q.

Then, (1/Jm)Y>, Y, — N(0, Q).

Proof. See, for instance, Proposition 7.9 in Hamilton (1994). [
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Lemma 3.4. Under (C.1) and (C.2), as m — oo,
1 m d
\/—f—’l_’l— Z Zt Vt I N(Oa 0-2(1 + p)A)a

(=2r"1

where A is defined in Lemma 3.2, and V,; = (1//2)(ex; + €2:41).

Proof. Let #, = o{¢; : j<2t + 1}. It can be verified that Z't":z,,fl Z,V, is a zero-mean martingale
with respect to % ,. In order to verify the central limit theorem for martingales, we now check the
conditions of Lemma 3.3.

(a) From (2.5), we have E(Z,Z.V?) = E(Z,Z,)E(V?) = Ac*(1 + p), where A is defined in Lemma
3.2. It can be verified that A4 is a positive definite matrix. Hence, condition (a) is satisfied.

(b) E( V?Zi,Zj,Zk,Zh)< oo, for all 7,7, k, [, where Z,, is the rth element of the vector Z,. Condition
(b) holds from Proposi}‘)[ion 7.10 of Hamilton (1994) under assumption (C.2).

(©) (1/m)>=7" o V27,7 — 6*(1 + p)A. In order to verify (c), consider

m 1 m 1 m
N vizz,= - S V- +pIZZ,+ (1 + P > zz,
=201 =21 =21

=Uim+ Uyy, say.

We have Uy, = (1/m)y"" 1 W,, where W, = (Vf —d*(1+ p)Z.Z,. For any (p + 1)-vector 4,
we have 2'Uipd = (1/m)>"7)" i /WA It is easily verified that E()'W A% ,_1) = 0, and {1 W1}
is a stationary martingale difference sequence with E(1’ W ,1)* < oo (see (b)). Consequently, b¥ the
law of large numbers for martingales (see Hall and Heyde (1980)) we conclude that A'Uy,,A — 0,
and hence Uy, LN 0.

From Lemma 3.2, (1/m)2Z,Z, LN A, and hence U, LN a*(1 + p)A. Consequently, condition
(c) is verified. The desired limit in Lemma 3.4 then follows from Lemma 3.3. [

il
m

The limit distribution of <}) is given below.

Theorem 3.1. Under (C.1) and (C.2), we have

S — $) -5 N, (1 + p) A7) asn — .
Proof. We have

~1
A 1 & 1 <&
\/ﬁ(ﬁb - Qb) = (‘ Y, Y/> — Y&
1 & I
= —_— ZIZ/ — ZtVt + Op(l)
(m r:zz:f’-‘ t) ﬂ z:zz;"‘

The result then follows from Lemmas 3.2, 3.4 and Slutsky’s theorem. [l

Remark. It may be noted that if the errors {(ey, €2,+1)} are bivariate normal, the limit distribution
of the LS estimator ¢ is the same as that of the maximum likelihood estimator derived by Huggins
and Basawa (2000).



82 J. Zhou, LV. Basawa | Statistics & Probability Letters 74 (2005) 77-88
The next theorem gives the limit distribution of &°.
Theorem 3.2. Under (C.1) and (C.2), we have, as n — oo,

Vn(6? = 6?) N N(O, ug + up — 204,
where us = E(s‘}) and uy = E(S%zggm)-

Proof. We have

SN - Y)Y =D (X —Yip—Yi(d—¢)

t=2" t=2"
=D g -2p—¢) > Yier+(d— qs)’(Z m;)(«%— ¢)
=2 =20 =20
=> g—(—9¢) (Z YIY;>(<2> —9).
1=2r 1=2r
Hence,
V(@ — o) ~ % 2 =0 = i$ ¢ (% 2V Y;> (¢ = ¢)

= Wln + W2n: say.

Note that W, LN 0, since (1/n)y ,_» Y,Y, LN A, and \/ﬁ(&ﬁ —¢) = Op(1).
We have

1 o . - 8§z+8§z+1_202
W= g3 -z ) (B

=2 =201

—d> N(O, uy + uzy — 264).
This completes the proof. [

The limit distribution of p can be obtained in a similar manner which is omitted. We now
illustrate Theorem 3.1 by two examples.

Example 1. BAR(1) model
Consider the model

Xi=¢g+ &1 Xy +e, ¢y#0 and @ <1.

The LS estimators are given by

~ m X, — /\7 _ m
b, = Zz;l UuX, _ 2) where U, = € + €21 and ¥ =~ Z X,
Yo (X = X) 2 m 4=
~ - A — - 1 i
dop=U— ¢, X where U:EZ U,.
=1
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From Theorem 3.1, we have

Vil — ¢) =5 N, 62(1 + p)d~),
where

S 1 $o/(1 = ¢y)
g/ =) /(1= D)+ (do/(1 — ¢1))* )
If ¢y = 0, we have ¢, = 37, U, X,/S", X2, and 4 = EX? = ¢%/(1 — ¢?). Consequently, we
have, for ¢, =0,
V(i — b1~ NO, (1 + p)(1 — $).

Example 2. BAR(2) model
For the model

Xi= o+ 01 X2 + P2 X114 + &1
we have under (C.1) and (C.2),

V(= $) -5 N, 62(1 + p)A~™),

where
I w
A= | u a@©) a(l)
poa(l) a(0)

In particular, when ¢, = 0 and ¢ = (¢, $,), we have

V(- ) -5 N, (1 + p)B),

where
s 19 —h-dy)
~p(l—¢y)  1-¢3 )
3.1. Mean-centered process

We now consider the mean-centered version of the model in (2.1). Model (2.1) can be
rewritten as

Xi—pn= ¢1(X[t/2] -+ d’z(X[t/zZ] -+ + ¢p(X[[/2p] — W)+ & (3.3)
where = (1 = 0, ).
Define

~ p ~ _1
p= o <1 - ¢I-> - (34)
i=1
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Let f = (u, ¢y, b5, -, ¢p)’. We then have

(B — B) = D(¢ — $) + 0p(1), (3.5)
where ¢ = (g, ¢y, .-, d)p)/a
c cu o cuo ... cu
o 1 0 ... 0
p=|0 0 1 ... 0], (3.6)
o 0 o0 ... 1

and c = (1 - Y77, gbi)_l. The limit distribution of ﬁ is given next.
Theorem 3.3. Under (C.1) and (C.2), we have
V(B — B) = N(0,6%(1 + p)DA'D') asn — oo,
where A is defined in (3.2) and D in (3.6).
Proof. The result follows from Theorem 3.1 and (3.5). [

Remark. It is easily verified that

2 0
DA™'D = , 3.7
( 0 1! ) 3.7)
where
7(0) A o =1
(1) 20 .. yp-—=2)
= ) (3.8)
=1 »p—-2) ... (0)
In order to check (3.7), first note that
1 ur :
4= uu F+M2uu’> =P2Pp,

where u = (1,1,...,1) is a (p x 1) unit vector,
1 ! 1 0

e and X = .
0 I 0 r

¢ cuu
— QP,
o 1 )=2
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where

o= (3 )

We thus have

2
DA'D = (QP)(PZP)\(QP) = 057'Q = (‘(; F‘L > (3.9)

Hence, the result in (3.7) is verified.
It then follows that

(i — ) =5 N(0, 2a*(1 + p)),

and

A% d
Vg —¢*)— NO,0*(1 +p)I' ™,
where ¢* = (¢, P, . .., qﬁp)’. Moreover, [t is asymptotically independent of q?>* It can further be
noted that

(3.10)

A = priziply = (1 + 12w T u —pu T >

—ul'u r-!
Example 1 (Continued). The centered version of the BAR(1) model is
X —p=¢ Xy — ) +e where = ¢o(1—¢))".

It follows from Theorem 3.3 that

a(ii = ) =5 N, (1 + p)(1 — ¢)72)

and

Va(y = b1) = N(O, (1 + p)(1 — ¢2).

Moreover, [t is asymptotically independent of <;51.

4. Integer-valued bifurcating autoregressive model

In this section, we introduce an extension of the first-order integer-valued autoregression
(INAR(1)) (see Al-Osh and Alzaid, 1987) to a binary tree-indexed process and discuss LS
estimation for the model parameters. Consider the process {X,} satisfying the relation

Xi=¢ioXym+e 0<¢,<l, 4.1
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where ¢, o X|;/»; denotes the binomial thinning operation defined by

X2

¢ 0 Xy = Z Y, 4.2)
i1

where {Y;}, i=1,2,..., are i.i.d. Bernoulli random variables with P(Y; =1) = ¢, and P(Y,; =
0)=1—-¢,;, 0<¢,<1. The error process {¢} is characterized by the fact that {(ey, €241)}, t =
1,2,..., are ii.d. integer-valued bivariate random variables with E(ey) = E(ex41) = @y,
Var(ey) = Var(ex1) = o and Corr(es, €2,11) = p. It is readily verified from (4.1) that

E(X | Xy2) = bo+ &1 Xy, ¢9>0, (4.3)

and
Var(X | Xyo) = ¢1(1 — p) Xy + 0. (4.4)

The conditional least-squares (CLS) estimators of ¢, and ¢, are obtained by minimizing
Z:l=2 Xy — by — b1 X /2])2 with respect to ¢, and ¢, and these are the same as the LS estimators
¢, and ¢, for the BAR(1) model given in Example 1 in Section 3. It can be verified from (4.3) and
(4.4) that the unconditional stationary moments are given by

= EX;) = ¢o(l — (131)7l (4.5)
and

2(0) = Var(X) = (uey (1 = ¢1) + )1 — o). (4.6)
Using basically similar arguments as those for the centered BAR(1) example at the end of
Section 3, one can verify that

i = 1) = N0, 621 + p)(1 — ¢1) )
and

Vi = ¢y~ N, (1 + p)y ™ (0))
where y(0) is given by (4.6). Moreover, [t is asymptotically independent of <2>1. Even though some
of the time series asymptotics used in the previous section are not directly applicable for the model
in (4.1), one can use the fact that {X,} is an ergodic Markov chain (see Grunwald et al., 2000) and
standard Markov chain asymptotics can then be used to establish the above results. The details
are omitted.

5. Bifurcating Poisson model

As an example of the bifurcating INAR(1) model of Section 4, we present here a Poisson
bifurcating model, and study some of its properties. Consider the model in (4.1) with {(e2/, &2741)}
having a bivariate Poisson distribution defined by

TS 9)’1—i9J’2_i0i
P(e, = , € = = C_(01+92+03) Z : ; 3
( 2t = V15 €241 y2) pary (yl — l)'(yz — l)'l' >

(5.1)
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where y; Ay, = min(y,,y,), 0;>0,i=1,2,3,and y; =0,1,2,...,j = 1,2. The marginal distribu-
tions of &; and &y, are then Poisson with means 0; + 03 and 0, + 03, respectively, and
Cov(eys, e¢41) = 03. The joint moment generating function of (ey;, €2,41) 1S seen to be

M(1y, 1) = exp[03(e" 1 — 1) + 01(e" — 1) + O2(e” — 1)]. (5.2)
See, for instance, Johnson et al. (1997). We now choose the following parameterization:
0 =0, =(1—p)p,and 03 = p¢p, with 0<p<1, ¢,>0.

We then get E(ey) = E(ext1) = Var(ey) = Var(eys1) = ¢y, and Corr(ey, ex41) = p.
The conditional distribution of X; given X7, is obtained from (4.1) and (5.1), and it is seen to
be

XeAX(2) o (x—1i) X(/2) ) )
plelxp) =e % > h( ; >¢>’1(1 — )00, (5.3)
i=0 4 :
We have, from (4.3) and (4.4),
E(X | X112) = ¢o + 1 X112
and
Var(X | X 2) = &1(1 — ¢ )X (12 + do-

The CLS estimators of ¢, and ¢, are then obtained as discussed in Section 4.
The likelihood function is given by

Ln(({boa ¢1, p) = P(xl) H p(XZIa X241 |X[),
t=1

where m is the total number of triplets (x;, xo;, X2,+1) observed, and p(xa;, X2:41]X;) 1s the
conditional distribution of (X5, X2,41) given X,. However, p(xy;, X2;11]|x;) does not have a simple
form. The conditional moment generating function of (X5, X»,41) given X, is given below.

Lemma 5.1. The conditional moment generating function of (X2, X211) given X, is
ME},Z,:ZYZHI)\XI = [¢let1+t2 + (1 - d)l)]XtM(Czr,Szwl)(Zl’ 12),

where M, ...\ (t1, 12) is given by (5.2).

Proof. We have

X, X,
t Yit+tiey+t Yit+he
E[et1X2r+t2X2r+l |X[] _ E[e 1 ; 162t112 ’z:]: 282141 |Xt]

Xt
+ Y;
= E[e(tl tz); |X;]E(et1£2‘+t2821+1)

= [(lsletl+t2 + (1 - qbl)]XtM(szz,szm)(ll, lz),
since conditional on X, ng | Y, is a binomial random variable with parameters (X, ¢;). O

Next, we obtain the unconditional joint distribution of (X»;, X»,41) for the model given by (4.1)
and (5.1). This turns out to be a bivariate Poisson distribution.
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Lemma 5.2. The joint distribution of (X, Xo2ir1) is a bivariate Poisson with E(X») =
E(X211) = ¢ /(1 = ¢y), and Cov(X 21, Xo1) = (p + ¢1/(1 — $1)) o

Proof. The joint moment generating function of (X, X2,41) is given by
M (xp x5,0)(01 1) = E[M (x5, x5, (81, 22)1X (]
= M sy 0,0 (t1, ) E[(¢1" + (1 — ). (5.4)

Next, note that the marginal distribution of X, is Poisson with mean ¢,/(1 — ¢,). This is seen
from representing X, in (4.1) in terms of {ey/21), 7 =0, 1,...,

o0
Xi=) ey
=0

and noting that {e[t /2/]}, j=0,1,2,...,1s a sequence of i.i.d. Poisson random variables with mean
¢,. Consequently,

Ef(e/ + (1= ¢))"] = Ele™]  where s = log(ye"™ + (1 - ¢,)
@] —en| et -] 69)

Substituting (5.5) in (5.4), and simplifying, we get the moment generating function of the bivariate
Poisson distribution given in (5.2) with

0 =0,=(—-p)p, and 03=(¢;/(1 —¢y)+ p),.
The result in the lemma then follows. [

= exp[
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