

Available at www.**Elsevier**Mathematics.com

Statistics & Probability Letters 65 (2003) 199-206

www.elsevier.com/locate/stapro

The best constant in the Topchii–Vatutin inequality for martingales

Gerold Alsmeyer^{a,*}, Uwe Rösler^b

^aInstitut für Mathematische Statistik, Fachbereich Mathematik, Westfälische Wilhelms-Universität Münster, Einsteinstraße 62, Münster D-48149, Germany ^bMathematisches Seminar, Christian-Albrechts-Universität Kiel, Ludewig-Meyn-Straße 4, Kiel D-24098, Germany

Received July 2002

Abstract

Consider the class of even convex functions $\phi : \mathbb{R} \to [0,\infty)$ with $\phi(0) = 0$ and concave derivative on $(0,\infty)$. Given any ϕ -integrable martingale $(M_n)_{n\geq 0}$ with increments $D_n \stackrel{\text{def}}{=} M_n - M_{n-1}$, $n \geq 1$, the Topchii–Vatutin inequality (Theory Probab. Appl. 42 (1997) 17) asserts that

$$E\phi(M_n) - E\phi(M_0) \leqslant C\sum_{k=1}^n E\phi(D_k)$$

with C = 4. It is proved here that the best constant in this inequality is C = 2 for general ϕ -integrable martingales $(M_n)_{n \ge 0}$, and C = 1 if $(M_n)_{n \ge 0}$ is further nonnegative or having symmetric conditional increment distributions.

© 2003 Elsevier B.V. All rights reserved.

MSC: 60G42; 60E15

Keywords: Martingale; Topchii-Vatutin inequality; Convex function; Choquet representation

1. Introduction and result

Let $(M_n)_{n\geq 0}$ be a martingale with increments $D_n \stackrel{\text{def}}{=} M_n - M_{n-1}$, $n \geq 1$, and associated absolute maxima $M_n^* \stackrel{\text{def}}{=} \max_{0 \leq k \leq n} |M_k|$, $n \geq 0$. Let further \mathscr{G}_0 be the class of even convex functions ϕ : $\mathbb{R} \to [0,\infty)$ with $\phi(0) = 0$ and \mathscr{G}_1 its subclass of $\phi \in \mathscr{G}_0$ with a concave derivative on $(0,\infty)$.

^{*} Corresponding author. Fax: +49-25-18332712.

E-mail address: gerolda@math.uni-muenster.de (G. Alsmeyer).

Note that the latter class comprises the functions $\phi(x) = |x|^p$ for $p \in [1,2]$ as well as $\phi(x) = (|x| + a)^p \log^r(|x| + a) - a^p \log^r a$ for $p \in [1,2)$, r > 0 and a > 0 sufficiently large. The following convex function inequality is due to Topchii and Vatutin (1997): There exists a finite positive constant *C* such that for all $\phi \in \mathscr{G}_1$, all martingales $(M_n)_{n \ge 0}$ and all $n \ge 1$

$$E\phi(M_n) - E\phi(M_0) \leqslant C \sum_{k=1}^n E\phi(D_k).$$
(1.1)

More precisely, they showed (1.1) be true with C = 4 and $M_0 = 0$. If $\phi(x) = |x|$ or $\phi(x) = x^2$, then it is well-known that (1.1) holds true with C = 1 and that this value cannot be improved. We shall prove in this note that the best constant for general $\phi \in \mathscr{G}_1$ and general ϕ -integrable martingales is C = 2, but that C = 1 is optimal when imposing certain additional restrictions on the class of considered martingales. The result is stated as the following theorem.

Theorem 1. If $0 \neq \phi \in \mathscr{G}_1$ and $M = (M_k)_{0 \leq k \leq n}$ is a ϕ -integrable martingale, then

$$E\phi(M_n) - E\phi(M_0) < 2\sum_{k=1}^n E\phi(D_k).$$
 (1.2)

The constant 2 is sharp in the sense that, for each $\varepsilon \in (0,1)$, there exists a bounded martingale M and some $\phi \in \mathscr{G}_1$ such that

$$E\phi(M_n) - E\phi(M_0) \ge (2 - \varepsilon) \sum_{k=1}^n E\phi(D_k).$$
(1.3)

If M is nonnegative or having symmetric conditional increment distributions, then inequality (1.1) holds true with C = 1.

An analogue of (1.1) for the maximum M_n^* can be quite easily inferred from the following Burkholder–Davis–Gundy inequality (see e.g. Chow and Teicher, 1997 Theorem 1, p. 425): Let v > 0 and $\mathscr{G}_0^{(v)}$ be the class of all $\phi \in \mathscr{G}_0$ satisfying $\phi(2x) \leq v\phi(x)$ for all x. Then there exists a constant $C_v^* \in (0,\infty)$ such that for all $\phi \in \mathscr{G}_0^{(v)}$ and all martingales $(M_n)_{n \geq 0}$ having $M_0 = 0$

$$E\phi(M_n^*) \leqslant C_v^* E\phi\left(\left(\sum_{k=1}^n D_k^2\right)^{1/2}\right).$$
(1.4)

This inequality applies to class \mathscr{G}_1 because $\mathscr{G}_1 \subset \mathscr{G}_0^{(4)}$ as will be shown in Lemma 2 at the end of Section 2. Defining $\psi(t) \stackrel{\text{def}}{=} \phi(t^{1/2})$, the same lemma will further show that ψ is concave and subadditive on $[0, \infty)$, that is $\psi(\sum_{k=1}^n x_k) \leq \sum_{k=1}^n \psi(x_k)$ for all $x_1, \ldots, x_n \geq 0$ and $n \in \mathbb{N}$. Utilizing this last fact on the right-hand side in (1.4), we obtain

$$E\phi(M_n^*) \leqslant C_4^* \sum_{k=1}^n E\phi(D_n).$$
(1.5)

Let us finally mention that sharp inequalities similar to those considered here were derived in a recent paper by de la Peña et al. (2002) for infinite degree order statistics.

200

2. Proof of Theorem 1

The proof of Theorem 1 and in particular of the sharpness of the constant C = 2 in (1.1) are heavily based on several reductions, the main one being that it suffices to consider only certain extremal elements $\phi \in \mathscr{G}_1$. This was also used by Alsmeyer (1996) and Rösler (1995) for the study of odd functional moments of positive random variables with a decreasing density. The general background is that the class of increasing convex (or concave) functions $\phi : [0, \infty) \rightarrow [0, \infty)$ with $\phi(0)=0$ as well as many important subclasses like \mathscr{G}_1 form a convex cone for which Choquet theory tells us that each element ϕ can be written as an integral of its extremal elements with respect to some measure on $[0, \infty]$ (depending on ϕ). For the given classes these integral representations are obtained by simple partial integration. The following lemma provides the result for the class \mathscr{G}_1 and exemplifies the general procedure.

Lemma 1. For each $\phi \in \mathscr{G}_1$, there exists a unique finite measure Q_{ϕ} on $[0,\infty]$ such that

$$\phi(x) = \int_{[0,\infty]} \phi_t(x) Q_\phi(\mathrm{d}t), \quad x \ge 0,$$
(2.1)

where $\phi_0(x) = |x|$, $\phi_{\infty}(x) = x^2$, and

$$\phi_t(x) \stackrel{\text{def}}{=} \begin{cases} x^2 & \text{if } |x| \le t \\ 2xt - t^2 & \text{if } |x| > t \end{cases}$$
(2.2)

for $t \in (0, \infty)$.

Note that the functions ϕ_t also arise in problems of robust estimation and are known in statistics as Huber functions or Huber's ρ -functions, see e.g. Huber (1964, 1973).

Proof. Each $\phi \in \mathscr{G}_1$ has a concave derivative ϕ' with $\phi'_+(0) \stackrel{\text{def}}{=} \lim_{x \to +0} \phi'(x) \ge 0$ and thus also a nonincreasing second right derivative ϕ''_+ with asymptotic value $\phi''_+(\infty) \stackrel{\text{def}}{=} \lim_{x \to \infty} \phi''_+(x) \ge 0$. Therefore $\Lambda_{\phi'}((x,\infty)) \stackrel{\text{def}}{=} \phi''_+(x) - \phi''_+(\infty)$ for $x \ge 0$ defines a measure on $(0,\infty)$. Put

$$\mathscr{G}_1^{*\text{def}} \{ \phi \in \mathscr{G}_1 : \phi'_+(0) = 0, \phi''_+(\infty) = 0 \}.$$

and $\phi^*(x) \stackrel{\text{def}}{=} \phi(x) - \phi'_+(0)|x| - \phi''_+(\infty)x^2/2$ which is an element of \mathscr{G}_1^* . Partial integration now gives for x > 0

$$\phi'(x) - \phi'_{+}(0) - \phi''_{+}(\infty)x = \int_{0}^{x} (\phi''_{+}(y) - \phi''_{+}(\infty)) \, \mathrm{d}y$$
$$= \int_{0}^{x} \int_{(y,\infty)} \Lambda_{\phi'}(\mathrm{d}t) \, \mathrm{d}y$$
$$= \int_{(0,\infty)} (x \wedge t) \Lambda_{\phi'}(\mathrm{d}t)$$

and also

$$\phi^{*}(x) = \int_{0}^{x} (\phi'(y) - \phi'_{+}(0) - \phi''_{+}(\infty)y) \, \mathrm{d}y$$
$$= \int_{(0,\infty)} \int_{0}^{x} (y \wedge t) \, \mathrm{d}y \Lambda_{\phi'}(\mathrm{d}t)$$
$$= \int_{(0,\infty)} \phi_{t}(x) Q_{\phi^{*}}(\mathrm{d}t),$$

where $Q_{\phi^*} \stackrel{\text{def}}{=} \Lambda_{\phi'}/2$. We conclude (2.1) with $Q_{\phi} \stackrel{\text{def}}{=} \phi'_+(0)\delta_0 + \frac{1}{2}\phi''_+(\infty)\delta_\infty + Q_{\phi^*}$. \Box

Proof of Theorem 1. The following reduction arguments will show that it suffices to prove

$$E\phi_1(s+D) \leqslant \phi_1(s) + C E\phi_1(D) \tag{2.3}$$

for all $s \ge 0$ and all centered random variables *D* having a two point distribution, where C = 2 in the general case, while C = 1 if *D* is symmetric or $s + D \ge 0$. Of course, ϕ_1 is the function defined by (2.2). Note that in terms of the martingales under consideration the former means nothing but a reduction to martingales of the form $(M_0, M_1) = (s, s + D)$.

First reduction: As noted above, for each $\phi \in \mathscr{G}_1$ the even function $\phi^*(x) = \phi(x) - \phi'_+(0)|x| - \phi''_+(\infty)x^2/2$ is an element of \mathscr{G}_1^* . Since

$$\begin{split} E\phi(M_n) &= E\phi^*(M_n) + \phi'_+(0)E|M_n| + \frac{\phi''_+(\infty)}{2}EM_n^2 \\ &\leq E\phi^*(M_n) + \phi'_+(0)\left(E|M_0| + \sum_{k=1}^n E|D_k|\right) + \frac{\phi''_+(\infty)}{2}\left(EM_0^2 + \sum_{k=1}^n ED_k^2\right), \end{split}$$

it suffices to prove Theorem 1 for functions $\phi \in \mathscr{G}_1^*$.

Second reduction: Using (2.2), $\phi_t(x) = t^2 \phi_1(x/t)$ for all $t \in (0, \infty)$ and $Q_{\phi}(\{0, \infty\}) = 0$ if $\phi'_+(0) = 0$ and $\phi''_+(\infty) = 0$ (see at the end of the proof of Lemma 1), we infer for each $\phi \in \mathscr{G}_1^*$

$$E\phi(M_n) = \int_{(0,\infty)} E\phi_t(M_n)Q_\phi(\mathrm{d}t) = \int_{(0,\infty)} t^2 E\phi_1(M_n/t)Q_\phi(\mathrm{d}t).$$

Since $(M_k/t)_{0 \le k \le n}$ is still a martingale, it suffices to prove Theorem 1 with $\phi = \phi_1$. *Third reduction*: By conditioning

$$E\phi_1(M_n) - E\phi_1(M_{n-1}) - C E\phi_1(D_n)$$

= $\int (E(\phi_1(s+D_n)|M_{n-1}=s) - \phi_1(s) - C E(\phi_1(D_n)|M_{n-1}=s))P(M_{n-1}\in ds),$

where, given $M_{n-1} = s$, D_n has conditional mean 0. This reduces the proof to that of (2.3) for any centered random variable D and any $s \in \mathbb{R}$. We may further restrict to $s \ge 0$ because $E\phi_1(s+D) = E\phi_1(-s-D)$ and -D is also centered.

Fourth reduction: Finally, since every centered distribution is a mixture of centered two point distributions, we conclude that it is indeed enough to prove (2.3) for all $s \ge 0$ and all centered D taking only two values, see e.g. Hoeffding (1955).

202

In the following, we simply write f' and always mean f'_+ in those cases where left and right derivatives are different.

Proof of (2.3) with C = 1 for symmetric D. Suppose D has distribution $(\delta_{-a} + \delta_a)/2$ for some $a \ge 0$ and let

$$\Delta(s) \stackrel{\text{def}}{=} E\phi_1(s+D) - E\phi_1(D) - \phi_1(s), \quad s \ge 0.$$

Then

$$\Delta(s) = \frac{\phi_1(s+a) + \phi_1(s-a)}{2} - \phi_1(a) - \phi_1(s),$$
$$\Delta'(s) = \frac{\phi_1'(s+a) + \phi_1'(s-a)}{2} - \phi_1'(s),$$
$$\Delta''(s) = \frac{\phi_1''(s+a) + \phi_1''(s-a)}{2} - \phi_1''(s)$$

for $s \ge 0$. In particular $\Delta(0) = \Delta'(0) = 0$ and $\Delta''(0) \le 0$. Note that

$$\phi_1'(x) \stackrel{\text{def}}{=} \begin{cases} 2x & \text{if } |x| \leq 1\\ 2\operatorname{sign}(x) & \text{if } |x| \geq 1 \end{cases} \quad \text{and} \quad \phi_1''(x) = 2\mathbf{1}_{[-1,1]}(x)\lambda - \operatorname{a.e.},$$

where λ denotes Lebesgue measure on \mathbb{R} and 1_B the indicator function of a set *B*. Hence, if $a \in [0, 1]$, then λ -a.e.

$$\Delta''(s) = \begin{cases} 0 & \text{if } 0 \le s \le 1 - a \text{ or } s > a + 1, \\ -1 & \text{if } 1 - a < s \le 1, \\ 1 & \text{if } 1 < s \le a + 1 \end{cases}$$

while in case $a \in (1, 2]$

$$\Delta''(s) = \begin{cases} -2 & \text{if } 0 \le s \le a - 1, \\ -1 & \text{if } a - 1 < s \le 1, \\ 1 & \text{if } 1 < s \le a + 1, \\ 0 & \text{if } s > a + 1 \end{cases}$$

and in case a > 2

$$\Delta''(s) = \begin{cases} 0 & \text{if } 1 < s \le a - 1 \text{ or } s > a + 1, \\ -2 & \text{if } 0 \le s \le 1, \\ 1 & \text{if } a - 1 < s \le a + 1. \end{cases}$$

We also have that $\Delta(s)$ and $\Delta'(s)$ vanish at s = 0 and (by linearity of ϕ_1 on $(1, \infty)$) for sufficiently large *s*. From this we see that Δ' is everywhere nonpositive and unimodal which in turn yields $\Delta(s) \leq 0$ for all $s \geq 0$ and thus (2.3) with C = 1.

Proof of (2.3) with C = 1 for nonnegative s + D. Let D be a centered random variable with distribution $p\delta_{-a} + q\delta_b$ for $a, b \ge 0$, hence p + q = 1 and qb - pa = 0. The function Δ now takes the form

$$\Delta(s) = p\phi_1(s-a) + q\phi_1(s+b) - p\phi_1(-a) - q\phi_1(b) - \phi_1(s)$$

and has derivative $\Delta'(s) = p\phi'_1(s-a) + q\phi'_1(s+b) - \phi'_1(s)$. By concavity of ϕ'_1 on $[0,\infty)$,

$$\Delta'(s) \leqslant \phi_1'(s - pa + qb) - \phi_1'(s) = 0$$

for all $s \ge a$. Consequently, $E\phi_1(s+D) \le E\phi_1(D) + \phi_1(s)$ follows for all s > a if this is true for s = a.

If $s = a \le 1$, then $\phi_1(s) = s^2$ whence $\phi_1(s+x) - \phi_1(x) \le (s+x)^2 - x^2 = s(2x+s)$ for all $x \ge -s$ implies the asserted inequality, namely

$$E\phi_1(s+D) - E\phi_1(D) \leqslant sE(2D+s) = s^2.$$

Now fix $s = a \ge 1$, note that ED = 0 implies p = b/(s + b), and look at $\Delta(s)$ as a function G(b), say, of b. We obtain

$$G(b) = q\phi_1(s+b) - p\phi_1(-s) - q\phi_1(b) - \phi_1(s)$$

= $q\phi_1(s+b) - q\phi_1(b) - (1+p)\phi_1(s)$
= $\frac{s\phi_1(s+b) - s\phi_1(b) - (s+2b)\phi_1(s)}{s+b}$.

This implies in case $b \ge 1$

$$G(b) = \frac{s(2(s+b)-1) - s(2b-1) - (s+2b)(2s-1)}{s+b} = \frac{s+2b-4sb}{s+b} \leq 0,$$

and in case 0 < b < 1

$$G(b) = \frac{s(2(s+b)-1) - sb^2 - (s+2b)(2s-1)}{s+b} = \frac{-2b(s-1) - sb^2}{s+b} \le 0.$$

So we have again shown that (2.3) holds with C = 1.

Proof of (2.3) with C = 2 for general D. The assertion to prove may be rephrased in terms of $\Delta(s)$ as

$$\Delta(s) \leq E\phi_1(D) = p\phi_1(s-a) + q\phi_1(s+b)$$

for all $s \ge 0$. Since s = 0 is trivial, fix an arbitrary s > 0, let *D* have distribution $p\delta_{-a} + q\delta_b$ and suppose $\theta \stackrel{\text{def}}{=} a - s \ge 0$ (only this case needs to be considered after the previous part of the proof). Note that ED = 0 implies b = (p/q)a and thus $D \stackrel{d}{=} p\delta_{-s-\theta} + q\delta_{(p/q)(s+\theta)}$. In order to prove (2.3) with C = 2, fix any $p \in (0, 1)$ and consider

$$H(\theta) \stackrel{\text{def}}{=} E\phi_1(s+D) - 2E\phi_1(D) - \phi_1(s)$$

= $p(\phi_1(\theta) - 2\phi_1(s+\theta)) + q(\phi_1(s+(p/q)(s+\theta)) - 2\phi_1((p/q)(s+\theta))) - \phi_1(s)$

for $\theta \ge 0$. Since $s + D \ge 0$ if $\theta = 0$, we infer $H(0) \le -E\phi_1(D) < 0$ from the previous part of the proof. Differentiation with respect to θ gives

$$H'(\theta) = p(\phi'_{1}(\theta) - 2\phi'_{1}(s+\theta)) + p(\phi'_{1}(s+(p/q)(s+\theta)) - 2\phi'_{1}((p/q)(s+\theta)))$$

= $p((\phi'_{1}(s+(p/q)(s+\theta)) - \phi'_{1}((p/q)(s+\theta))) - (\phi'_{1}(s+\theta) - \phi'_{1}(\theta))$
 $-(\phi'_{1}(s+\theta) + \phi'_{1}((p/q)(s+\theta)))).$ (2.4)

204

The function ϕ'_1 is monotone and is subadditive as a nonnegative concave function on $[0,\infty)$. It follows that

$$\phi_1'(s+\theta) + \phi_1'((p/q)(s+\theta)) \ge \phi_1'(s+\theta + (p/q)(s+\theta)) \ge \phi_1'(s+(p/q)(s+\theta))$$

and thereby in (2.4)

$$H'(\theta) \leqslant -p(\phi_1'((p/q)(s+\theta)) + (\phi_1'(s+\theta) - \phi_1'(\theta))) \leqslant 0.$$

Consequently, *H* is nonincreasing on $[0, \infty)$ with H(0) < 0 and therefore everywhere negative. This proves (2.3) with C = 2 and strict inequality.

Attaining the bound in (2.3) with C = 2. We finally have to provide examples showing that the bound C = 2 is sharp. Let $s \ge 1$ and D be distributed as $[b/(a+b)]\delta_{-a} + [a/(a+b)]\delta_b$ for some $a \ge 1 + s$ and $b \in [0, 1]$. Then

$$\begin{split} E\phi_1(s+D) &- \phi_1(s) - (2-\varepsilon)E\phi_1(D) \\ &= \frac{1}{a+b}(b(2a-2s-1) + a(2s+2b-1) - (a+b)(2s-1) - (2-\varepsilon)(b(2a-1) + ab^2)) \\ &= \frac{b}{a+b}(2-2ab-4s + \varepsilon(2a-1+ab)). \end{split}$$

Now it is easily seen that, for any $\varepsilon > 0$, a positive value is obtained when choosing b = 1/a and a sufficiently large. The proof of Theorem 1 is herewith complete. \Box

Recall that $\mathscr{G}_0^{(v)}$ denotes the class of all $\phi \in \mathscr{G}_0$ satisfying $\phi(2x) \leq v\phi(x)$ for all x. We claimed in the Introduction that $\mathscr{G}_1 \subset \mathscr{G}_0^{(4)}$ as well as $\mathscr{G}_1 \subset \mathscr{G}_2$, where \mathscr{G}_2 denotes the subclass of \mathscr{G}_0 containing those ϕ for which $\psi(x) \stackrel{\text{def}}{=} \phi(x^{1/2})$ is concave on $[0, \infty)$. These claims are finally confirmed in the subsequent lemma.

Lemma 2. $\mathscr{G}_1 \subset \mathscr{G}_2$ and $\mathscr{G}_1 \subset \mathscr{G}_0^{(4)}$.

Proof. Note that each nonnegative concave function f on $[0, \infty)$ is subadditive and that f(x)/x is nonincreasing (because -f is evidently star-shaped, see Marshall and Olkin, 1979, p. 453). Given any $\phi \in \mathscr{G}_1$, use this for $f = \phi'$ to see that the pertinent ψ is indeed concave because $\psi'(x) = [\phi'(x^{1/2})]/2x^{1/2}$. Moreover, the subadditivity of ϕ' on $[0, \infty)$ implies $\phi'(2x) \leq 2\phi'(x)$ and thus

$$\phi(2x) = \int_0^{2x} \phi'(t) \, \mathrm{d}t = \int_0^x 2\phi'(2t) \, \mathrm{d}t \le \int_0^x 4\phi'(t) \, \mathrm{d}t = 4\phi(x)$$

for all $x \ge 0$. \Box

Note added in Proof

In a recent paper, Li [7, Theorem 2.1] proved the following large deviation inequality for a martingale $(M_n)_{n\geq 0}$ with $M_0 = 0$: If $1 and <math>K \stackrel{\text{def}}{=} \sup_{n\geq 1} E|M_n|^p < \infty$, then

$$P\left(\max_{1\leqslant i\leqslant n}|M_n|>nx\right)\leqslant CKn^{1-p}x^{-p}$$

for all x > 0, $n \ge 1$ and $C = (18 pq^{1/2})^p$, where q is such that $\frac{1}{p} + \frac{1}{q} = 1$. A combination of Doob's maximal inequality (see [2, p. 255]) with our Theorem 1 for $\phi(x) = |x|^p$ immediately shows that Li's inequality actually holds true with the considerably smaller constant C = 2.

Acknowledgements

The authors are indebted to an anonymous referee for a very careful reading and for giving some additional related references.

References

- Alsmeyer, G., 1996. Nonnegativity of odd functional moments of positive random variables with decreasing density. Statist. Probab. Lett. 26, 75–82.
- Chow, Y.S., Teicher, H., 1997. Probability Theory: Independence, Interchangeability, Martingales, 3rd Edition. Springer, New York.
- de la Peña, V.H., Ibragimov, R., Sharakhmetov, S., 2002. On sharp Burkholder–Rosenthal type inequalities for infinite degree order statistics. Ann. Inst. H. Poincaré 38, 973–990.
- Hoeffding, W., 1955. The extrema of the expected value of a function of independent random variables. Ann. Math. Statist. 26, 268–275.
- Huber, P., 1964. Robust estimation of a location parameter. Ann. Math. Statist. 35, 73-101.
- Huber, P., 1973. Robust regression: asymptotics, conjectures and Monte Carlo. Ann. Statist. 1, 799-821.
- Marshall, A.W., Olkin, I., 1979. Inequalities: theory of majorization and its applications. Mathematics in Science and Engineering, Vol. 143. Academic Press, New York.

Rösler, U., 1995. Distributions slanted to the right. Statist. Neerlandica 49, 83-93.

Topchii, V.A., Vatutin, V.A., 1997. Maximum of the critical Galton–Watson processes and left continuous random walks. Theory Probab. Appl. 42, 17–27.