EXAMEN MARTINGALES

Durée 1h30

PROBLÈME I

6 points

Soit (ε_n) une suite de variables aléatoires indépendantes et de loi de Rademacher $\mathcal{R}(1/2)$. Soit (X_n) la suite définie, pour tout $n \ge 1$, par $X_n = n^a \varepsilon_n$ avec a > 0. On pose

$$M_n = \sum_{k=1}^n X_k.$$

- 1) Montrer que (M_n) est une martingale de carré intégrable.
- 2) Calculer son processus croissant $\langle M \rangle_n$ et vérifier que l'on a

$$\lim_{n \to \infty} \frac{\langle M \rangle_n}{n^{2a+1}} = \frac{1}{2a+1}.$$

3) En déduire la convergence presque sûre

$$\lim_{n \to \infty} \frac{M_n}{n^{2a+1}} = 0.$$

4) Montrer également le théorème limite centrale

$$\frac{M_n}{n^a \sqrt{n}} \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \frac{1}{2a+1}\right).$$

PROBLÈME II

4 points

Soit (ε_n) une suite de variables aléatoires indépendantes et de loi de Rademacher $\mathcal{R}(1/2)$. Pour un réel $\theta > 0$, on pose

$$M_n = \frac{\exp(\theta S_n)}{(\cosh \theta)^n}$$
 avec $S_n = \sum_{k=1}^n \varepsilon_k$.

- 1) Montrer que (M_n) est une martingale.
- 2) Pour un entier $a \ge 1$, soit $T = \inf\{n \ge 1 \mid S_n = a\}$ le premier temps de passage de (S_n) en a. Il est facile de voir que T est un temps d'arrêt fini p.s. Montrer que $(M_{n \land T})$ est une martingale qui converge presque sûrement et dans \mathbb{L}^2 vers la variable aléatoire

$$L = \frac{\exp(\theta a)}{(\cosh \theta)^T}.$$

3) En déduire que $\mathbb{E}[(\cosh \theta)^{-T}] = \exp(-\theta a)$.

PROBLÈME III

10 points

On peut se demander si les performances sportives seront toujours battues et si oui, à quel rythme. Afin de modéliser cette situation, on considère une suite (X_n) de variables aléatoires indépendantes et de même loi, pour laquelle il n'y a pas d'ex aequo. Pour tout $n \ge 1$, on note R_n le rang relatif de X_n . Il est clair que R_n est une variable aléatoire à valeurs dans $\{1, 2, \ldots, n\}$. De plus, les variables aléatoires R_1, R_2, \ldots, R_n sont indépendantes avec, pour tout $n \ge 1$ et pour tout $1 \le k \le n$,

$$\mathbb{P}(R_n = k) = \frac{1}{n}.$$

Pour tout $n \ge 1$, on dit qu'il se produit un record à l'instant n si $R_n = 1$. On s'intéresse au comportement asymptotique des suites (Z_n) et (M_n) données par

$$Z_n = \sum_{k=1}^n I_{(R_k=1)}$$
 et $M_n = Z_n - \sum_{k=1}^n \frac{1}{k}$.

La suite (Z_n) compte le nombre de records qui se produisent avant l'instant n.

- 1) Calculer, pour tout $n \ge 1$, l'espérance et la variance de Z_n .
- 2) Montrer que (M_n) est une martingale de carré intégrable et calculer son processus croissant $< M >_n$.
- 3) En déduire la convergence presque sûre

$$\lim_{n \to \infty} \frac{M_n}{\log n} = 0.$$

4) Montrer également le théorème limite centrale

$$\frac{M_n}{\sqrt{\log n}} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1).$$

5) En déduire que $\frac{Z_n}{\log n} \longrightarrow 1$ presque sûrement et que l'on a

$$\frac{Z_n - \log(n)}{\sqrt{\log n}} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1).$$

Indication : On utilisera que, si γ est la constante d'Euler,

$$\sum_{k=1}^{n} \frac{1}{k} = \log n + \gamma + O\left(\frac{1}{n}\right).$$

2