PARTIEL SÉRIES CHRONOLOGIQUES

Durée 2 heures

PROBLÈME I

4 points

Soit (ε_n) une suite de variables aléatoires indépendantes et de même loi $\mathcal{N}(0,1)$ et soit

$$\xi_n = \frac{\varepsilon_n^2 - 1}{\sqrt{2}}.$$

On définit le processus (X_n) par

$$X_n = \begin{cases} \varepsilon_n & \text{si } n \text{ est un entier relatif pair,} \\ \xi_{n-1} & \text{si } n \text{ est un entier relatif impair.} \end{cases}$$

- 1) Vérifier que (X_n) n'est pas une suite de variables aléatoires indépendantes.
- 2) Montrer cependant que (X_n) est un bruit blanc de variance 1.

PROBLÈME II

6 points

On considère le processus autorégressif d'ordre deux défini, pour tout $n \in \mathbb{Z}$, par

$$X_n = aX_{n-1} + bX_{n-2} + \varepsilon_n$$

où les paramètres $a, b \in \mathbb{R}$ et (ε_n) est un bruit blanc de variance $\sigma^2 > 0$. On lui associe, pour tout $z \in \mathbb{C}$, le polynôme $A(z) = 1 - az - bz^2$. On rappelle que A est causal si toutes ses racines sont à l'extérieur du disque unité.

- 1) Vérifier que si $|b| \ge 1$, alors A ne peut être causal.
- 2) Montrer que A est causal si et seulement si le couple (a, b) appartient au triangle donné par |b| < 1 et |a| < 1 b et tracer ce triangle.
- 3) Si 0 < b < 1, |a| < 1 b et si ρ est la fonction d'autocorrélation associée à (X_n) , montrer que

$$\rho(1) = \frac{a}{1-b}$$
 et $\rho(2) = \frac{a^2 + b(1-b)}{1-b}.$

PROBLÈME III

5 points

On considère le processus moyenne mobile défini, pour tout $n \in \mathbb{Z}$, par

$$X_n = \theta \varepsilon_{n-1} + \varepsilon_n$$

où $|\theta| < 1$ et (ε_n) est un bruit blanc de variance $\sigma^2 > 0$.

- 1) Calculer la densité spectrale f du processus (X_n) .
- 2) Soit $T_n(f)$ la matrice de Toeplitz d'ordre n associée à f et soit $d_n = \det(T_n(f))$. Montrer que d_n vérifie, pour tout $n \ge 2$, la relation de récurrence linéaire d'ordre 2,

$$d_n = \sigma^2 (1 + \theta^2) d_{n-1} - \sigma^4 \theta^2 d_{n-2}$$

avec $d_0 = 1$ et $d_1 = \sigma^2(1 + \theta^2)$.

- 3) En déduire, pour tout $n \ge 0$, la valeur de d_n en fonction de n, σ^2 et θ^2 .
- 4) En utilisant une somme télescopique, conclure que

$$\lim_{n \to \infty} \frac{1}{n} \ln(d_n) = \ln(\sigma^2).$$

PROBLÈME IV

5 points

On considère le processus autorégressif d'ordre deux donné, pour tout $n \in \mathbb{Z}$, par

$$X_n = \theta X_{n-1} + \theta^2 X_{n-2} + \varepsilon_n$$

où $\theta \in \mathbb{R}$ avec $\theta \neq 0$ et (ε_n) est un bruit blanc de variance $\sigma^2 > 0$. On lui associe le polynôme A défini, pour tout $z \in \mathbb{C}$, par $A(z) = 1 - \theta z - \theta^2 z^2$.

- 1) Trouver une condition sur le paramètre θ sous laquelle le polynôme A est causal.
- 2) Si A est causal et γ est la fonction d'autocovariance associée à (X_n) , montrer que

$$\gamma(0) = \frac{\sigma^2(1 - \theta^2)}{(1 + \theta^2)(1 - 3\theta^2 + \theta^4)}.$$

3) En déduire les valeurs de $\gamma(1)$ et $\gamma(2)$.