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Introduction

In an atmospheric model, coasts, orography, soil type and
vegetation status are not perfectly well represented. In addition for
computation purposes that space is discretized ; by a way of
consequence a statistical post-processing is necessary to
account for the local climatology of the site (station).

This is called statistical adaptation of numerical model outputs
(SA). Meteo-France currently produces approximately 3.5 billion
forecasts using SA per day (for a station, a parameter and time
range given).

Uncertainty is present since the start of the forecast covered time
range. We want to increase the use of a probabilistic
approach, including, if possible, by forecasting the distributions of
the parameters. We have several methods available to us, as
we shall see...



Forecast of a probabilistic distribution : different ways

1. Dynamic approach : the ensemble forecast

I The ensemblist systems (varEPS, NCEP, PEARP...) :
I Advantages : realizations of trajectories and maps, extreme

phenomena forecasting (if enough members).
I Disadvantage : cost (⇒ limited resolution).

I The multi-models systems (IFS + ARPEGE + ...) :
I Advantages : realizations of trajectories and maps, quality of

the deterministic forecast in the short time range.
I Disadvantages : more time to collect the data from the various

producers and limited number of ensemble members.

I The multi-ensemblists systems (TIGGE) :
I Advantages and disadvantages of previously described

approaches.

Often require post-processing statistics (because the produced
probabilities are often unreliable) : Ensemble Dressing, Bayesian
Model Averaging (BMA), Nonhomogenous Gaussian Regression
(NGR) or Ensemble Regression.



Forecast of a probabilistic distribution : different ways

2. Statistical approach : probabilistic statistical adaptation of
an atmospheric model

I Discrimination models (LDA, logistic regression, neural
networks...) :

I Advantages : cost and robustness of linear methods.
I Disadvantage : production of occurrence probabilities but no

production of distribution.

I Generalized Linear Models :
I Advantages : cost and possibility to use the underlying

probability distributions.
I Disadvantages : limited number of supported distributions

(exponential family) not always perfectly calibrated after
fitting.



Forecast of a probabilistic distribution : different ways

Proposed new approach : the generalized linear regression by
Gaussian anamorphosis

I Advantages : cost, robustness (linear model), no constraint on
probabilistic distributions and strongly calibrated (in theory).
Can be used for the postprocessing of an ensemble forecast
coupled with a BMA.

I Disadvantage : generally no direct computable formulation of
deterministic forecast (expectation).

Remark : statistical methods have the disadvantage of not being
able to easily produce realistic realizations of trajectories or map.



Generalized linear regression by Gaussian anamorphosis

Φ(y) = Ψ−1 ◦ PY (y)

Φ(y)

Φ−1(z)

Ψ(z) PY (y)[z |ẑ] [y |ŷ ]

1. Methodology (beta distribution for humidity)
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Generalized linear regression by Gaussian anamorphosis
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calibration of [z |ẑ]
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Generalized linear regression by Gaussian anamorphosis

- Record value
[ŷini ]

[ŷcor ]

3. Application examples
Using a truncated normal distribution for a better forecasting of
extreme temperatures (theoretical simulation)

Theoretical gains made on RMSE
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Generalized linear regression by Gaussian anamorphosis

- New
- approach

- Classical
- approach

• New approach
• is better

• Classical approach
• is better

Forecast of the cloudiness : comparison of the qualities of the
model against those of logistic regressions (for probabilities
forecast) and linear regression (for deterministic forecast)

Probability of the hypothesis reliability
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Probabilistic mixed statistical adaptation

This is a statistically post-processed multi-model system.
Advantage for the deterministic forecast for the short time range :

RMSE of temperature forecasts mixed versus its components (average of
 25 european stations). Calculated results for the period 09/2011 to 01/2012.
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Probabilistic mixed statistical adaptation

The goal of the probabilistic mixed SA is to fit a linear regression
model to each model of an ensemble set, using a BMA.

We have K models Mk . z distribution forms (in the normalized
space) given by the BMA :

p(z |(Mk)k=1,··· ,K ,Θ, zT ) =
K∑

k=1

αkp(z |Mk , θk , zT )

z |Mk , θk , zT ∼ N (

q∑
i=1

ak
i xk

i , σk)

zT = (z1, · · · , zn), θk = ((ak
i )i=1,··· ,q, σk) et Θ = ((αk , θk)k=1,··· ,K )

We estimate the Θ parameters using the maximum likelihood with
the EM algorithm.

Step E (expectation) : we estimate the probabilities p(Mk |Θ, zT )

p(Mk |Θg , zT ) =
αg−1

k p(zT |Mk , θg−1
k )∑K

l=1 αg−1
l p(zT |Ml , θ

g−1
l )



Probabilistic mixed statistical adaptation

Step M (maximisation) : parameters Θ are iterativaly estimated

αg
k =

1

n

n∑
j=1

p(Mk |Θg , zj)

(ak
i )gi=1,··· ,q = (X

′
kPg

k Xk)−1X
′
kPg

k zT

Xk matrix of model predictors k

Pg
k =


p(Mk |Θg , z1) 0 · · · 0

0 p(Mk |Θg , z2) · · · 0
...

...
. . .

...
0 0 · · · p(Mk |Θg , zn)



σg
k =

√√√√ 1

nαg
k

n∑
j=1

p(Mk |Θg , zj)(ẑk
g
j − zj)

2



Conclusion

I Among the various ways to produce probability distributions,
the generalized linear regression by Gaussian anamorphosis has
the advantage of being inexpensive, robust, to overcome
discrimination techniques requiring a statistical model by
class, and to issue reliable probabilistic forecasts (if the
observations distribution is adjusted properly and the number
of predictors sufficiently high).

I The deterministic forecast produced by this model has good
properties and may be better than the one obtained by a
linear regression.

I Coupled with BMA, the Gaussian anamorphosis can be used
to improve the quality of an ensemble forecast. This is a
statistical-dynamical system particularly promising.



Prospects : probabilistic approach and spatialization

I Multi-parameters probabilistic mixed SA (course in
progress).

I Probabilistic spatialization of SA on a regular grid. It can
be facilitated in a normalized space by anamorphosis. Idea of a
procedure :

1. Normalization of all the explanatories variables before
regression.

2. Report of the regressions based on a spatial classification of
the parameter analyzed by AROME model.

3. Evaluation of the observations distributions on the grid based
on the observed data of the stations and analyzed by AROME
(suggestion : interpolation of the Hermite’s polynomials
coefficients with adjustement cubic splines).

I Exploiting the forecaster’s expertise in probabilistic
forecasting, especially in the case of events strongly bi-modal
(effect of the presence or not of low clouds on the
temperature).



The endThe end
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