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Shape invariant model

A practical Issue in functional analysis

@ Functional data usually convey a general information, which
reflects the inner structure of the observations

@ but also different sources of variation which blurs the data
and prevent the use of the Euclidean mean.

Common in biology, medicine (mixed effect model), economics
or sociology (panel data) and also in electric charge.

Appears when individuals may differ slightly from a pattern
which represents the shape of the observations and break the
Euclidean structure of the data.
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Simulations : Do we trust the mean ?
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Example : in oligonucleotide array
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Example : income of stores from a mall

Sales/size index by year for sector 2000 in EI123 shopping center
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Example : traffic jam on a motorway
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Example : EDF daily load
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Objectives of the statistical studied

Main issues:

@ Recover the shape or pattern of the data from the warped
observations

@ Estimate the individuals deformations

@ Understand the deformations : cluster the data according to
the distance given by the observations , i.e the geometry of
the data.

@ Forecast the future deformations using auxiliary
information

= different framework : shape analysis of curves viewed as a
manifold with an inner geometry.
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General Model

The regression model:
Yij=fr(ty) o€y, i=1l..,n j=1...J.
where
® f* models the j™ signal (unknown);
@ t; the observation points (known).

@ ¢;; is white noise (unknown), and ¢ variance (unknown)

Assumption: There exists a common shape of the signal f* and
warping operators ¢;,

fj.*:(bjf*, _j:].,,J

Aim: Estimation of the deformations and the template f*

Methodology

inverse problem of regression for unknown operator
=> Need for a Model for the warping operator
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Parametric Modeling and Semiparametric Statistics

The warping operator can be parametrized by # € © C RY.
Vi=1,...,J, &;=dy

Yij = o [F7](t) + o€

@ 7* is the main feature

@ ®y«[.] is a parametric warping operator

° 01* local warping parameters
Objective : estimate f* by estimating the Hf's
Semiparametric framework with unknown distribution P¢+ g«

A class of deformations 0=(a b v)

by f(-)— af(-—b)+wv




Shape invariant model Curve Registration Prediction using shape invariant model

Parametric Modeling and Semiparametric Statistics

The warping operator can be parametrized by # € © C RY.
Vi=1,...,J, &;=dy

Yij = P [F7](t) + o€

@ f* is the main feature

@ ®p.[.] is a parametric warping operator

° 01* local warping parameters
Objective : estimate f* by estimating the Hf's
Semiparametric framework with unknown distribution P¢+ g«

A class of deformations 0=(a b v)

by f(-)— af(-—b)+wv




Shape invariant model Curve Registration Prediction using shape invariant model
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Curve Alignment

Y,'Zj=aff*(t,'j—bf)+’l}f+0'f6;’j, j=1...,J, /E{l,...,n}d.

Estimation of the parameters
bf €RY, af €R*, v} €R, j=1,..,J

Lawton, W.M., Sylvestre, E.A. et Maggio, M.G. (1972): iterative method
(SEMOR) based on the polynomial approximation of f*.

Kneip, A. et Gasser, T.(1988): consistency of the SEMOR method.
Gamboa, F., Loubes, J-M. and Maza, E. (EJS 2007): Semi-parametric
estimation of shifts.

Bigot J., Loubes, J-M. and Vimond, M. (PTRF 2012): Semiparametric

estimation of rigid transformations on compact Lie groups,



Shape invariant model Curve Registration Prediction using shape invariant model

Mathematical model

Yij:ajf*(ti - bj*) + Uf + Ujfffj? 1€l = {1“”}d7

Assumptions :

o f* 2rw7Z9-periodic continuous

o tj =2n(i)/n € [0,2x[9,

o (¢ij)jareiid, Eejj=0, Ee7; =1,

2 :0_*2,

@ the variance of noise U]-*
Method:

© Estimate the parameters 6*

@ |Invert the estimated operator to estimate the
shape *
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Identifiability Constraint

Two sets of identifiability constraints are considered:

© a natural parametrization:
we consider one of the signal as a reference,

by =0, aj=1 and v7=0

@ an alternative parametrization:

J
by =0, Za}‘zzJ and a3 >0, (1)

j=1
CO(f*) = fp f(t)(zit)d =0 (2)

e (2) leads us to an asymptotically independent estimators,
e (1) leads us to an asymptotically efficient estimators (profile

likelihood) in the gaussian case,
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Construction of a registration method

A new criterion : alignment of an individual warped curve onto
the mean of all the warped curves ® = ®,: parametric model for
deformations => Semiparametric statistics

9= (a,bv), ®g:f(:)— af(-—b)+uv

@ For a candidate 6, compute the deformations

gi(0,x) = &5 o f7(x) = &y o £7(x)

J
@ Registration Criterion

2
J

Mo(e)ﬁ.lngJQX ZgJ 0,x)| ,

Jj=1 12

M-estimators of the parameters 0 using en empirical version M,(6)
of My(0)
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Semi-parametric framework for translations

Assumption : ®y[f](t) = f(t —0)
Yij = 7(ty = 07) + o€

Fourier Transform (DWT) => Equivalent Observation Model

djj = exp(—ilaj)c/(f) + wj,

==
wj = wjj + iwy, .gx’}’} ~ N(0,2), i.i.d: observation noise
c/(f), I € Z: Fourier coefficients of f (unknown).
P = 2”9* and o = (aj)}zlen are warping parameters to

Q

estimate usmg dj.
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Construction of Contrast

@ Idea : Aligning one shifted coefficient to mean of the
others

cNIj/(a) = exp(iloy)dy = exp(il[aj — a*])cl(f) + exp(iloj)wj

JIn
\V/OJERJ” Z Z|dﬂ ZEQ-,F.
—1 "j:1

2

e Smoothing Sequence §;, such that 3, 67c? < +oo

n—1
2 1 —/n . 1 J,, .
Va € R™ M,(a) = Z J—HZ5/2|O'J/—THZO'JI|2
J—— n—1 ,I:]- ./:1

M-estimation estimator

ap = arg min M, («
" aclo g, %)
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Convergence of the estimator

Assumptions

(1) Convergence : (6;¢/(f)); € ¢?(Z) and 2140 §2c?(f) #0
very weak

(11) Asymptotic Normality : >°(6,/)%c?(f) < +oo0,
S P (F) < +oo et 3020 140} = o(n?)

Theorem (Gamboa-Loubes-Maza (2007))

Under Assumptions (I), &, converges in Probability to o*.

Proof using Standard Technics in M-estimation theory :
P o
o My(a) = K(a, @) with minimum a = o*
e Ais compact, « — M,(«) and o — K(a, *) continuous.

o limPo[ sup [Mp(a) — Ma(B)| > €] = 0.
n |a—B|<nk
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Asymptotic Normality

Theorem

Under Assumptions (Il), the estimate &, is such that

Vi(@, — a*) 55 N (0,T),

L (Un=1) 50y 1252
with T = g0, 205 e s e Y ()-

For &; = ¢/(f), if 3, IPc(f)? < +oo

[nS7 Pa(f)2(an — a®) 5 N (0, V(J))
/

— optimality of Warping Procedure with &,,.
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Complete Model @y : f(-) — af(- — b) + v

dio = ajco(f*) + UJ’-‘ + wjo

., 2T
dji = aj exp(—il—=b)e/(f*) + wj, [ #0.

Inverting the operator for a candidate § = (& b v)’

- exp(il % b;) ~ 1
dj(0) = %dﬂ: I#0, do(0) = —(djo —vj).
J J

0, = arg mein M,(0) — 6*

Shape invariant curve estimator of f*




Curve Registration

Other kind of deformations

Let v a vector field, vj, j=1,...,J
¢j is a diffeomorphism defined as a solution of PDE

0
aqﬁj:‘/jo¢

Model proposed by Trouvé and Youness for image transformations
and used for curve warping

@ Drawback : Fourier transform has not the same nice form but
direct minimization of the quadratic criterion is still feasible ;

@ Advantage : allows non linear warping families
Bigot, Gadat, Loubes (2011)
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Simulations with sinusoidal functions

(@ (b)

9 M‘Nf‘\,:’n,“‘ 0
N=\ £ <
S 4',‘ £ © <
\ ©
A :
n o
\ bl g3
i"./ =
A/ c .
° fa'\v»:% E
PN 8 < .
o WAAAY 53,
3 2 41 0 1 2 3 06 04 -02 00 02 04 06
t parameters
wn
)
o
S
n
o
0




Shape invariant model

force (in N)

force (in N)

10

10

Curve Registration

Pinch Force Data
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Prediction using shape invariant model
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Velocities of Cars
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Velocities of Cars

It works : good models of road trafficking behaviours joint work
with V-Trafic i-phone application with Meteo as auxiliary variable
for prediction
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Curve Registration

Shape invariant model
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Clustering Load curves with warping distance
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Conclusions : (partial)

The shape represents a mean behaviour of a large number of
individuals sharing the same behaviour with some
fluctuations.
Provides a different distance based on deformations
e To aggregate the individual curves and provide a structural
mean curve
e To cluster the individuals with respect to the pseudo-distance
to the pattern
e To analyze the deformations with geometric PCA
Based on sharp estimation of the deformations which relies on
semi-parametric technics

If other variables are available ... use them ! And obtain
better results and enable to predict using auxiliary variables
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Incorporate additional information X € X

Framework : the outcome depends on exogenous information
which explain the individual deviations from the pattern.

Yij = ®o:[7](ti) + oejj = F(X), ti).

X; are observed parameters which characterize the behaviour of the
individual j
@ Objective : model the relationship and estimate it

6 X —0(X) =6

Forecast with shape invariant model

fi = (Dé(xj)[?]

Example : confidence index for income analysis, characteristics of
the observation day (holidays, week end, standard) for vehicle
speed, type of days or temperature evolution for electric load.



©
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Building a surface response

Data: X, j=1,...,J and the outcome Yj;
Estimation of the parameters §J € R3 and f of the shape f*

é\(XJ) is viewed as a sample of a random process 6(.) observed
at random locations. X;, j=1,...,J

= Prediction using standard Kriging method choosing a
proper covariance structure K.

Xo E {X1, .., Xi} X0+ 0(x0)

Forecast : the predicted shape built by the deformations
induced by the parameters xp.

fo = O[]
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Forecasting Sales
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Forecasting Load curves J 41
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Forecasting Load curves J 41
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Remarks on the forecast

Semiparametric framework enables efficient and sharp
estimation of the underlying 6(.).

Necessary since the prediction are based on a good
approximation result.

Choice of the Kernel (covariance) induces a distance on the
covariates X

For curves (temperature), the kernel must handle functional
distance and may depend on a tuning parameter (see work by
Sapatinas 2012).

Sensitivity Analysis to analyze the influence of the parameters
X.

The deformations should be local ... for the moment work on
parts of curves but work still in progress

If scale issues : transform the problem into forecast of the
daily distribution of consumption (deformation of densities)
and the daily consumption (regression)
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