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Introduction

The electricity load signal
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Comments

@ the electricity demand exhibits multiple strong seasonalities : yearly, weekly and
daily.

@ daylight saving times, holidays and bank holidays induce several breaks
@ non-linear link with the temperature.
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The mode

The electricity load X; is written as

Xi=si4+w+e€

@ s, : seasonal part
@ w; : non-linear weather-depending part (heating)
@ (&)ien iid. from N(0,0?)

Heating part

| gTi—u) fTi<u
"= 0 it 7, > u

@ g is the heating gradient,
@ u is the heating threshold
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Introduction

Model (cont.)

Seasonal part

» .
2 .
s = Z{ajcos(%“ﬁzs~l)+b_/sm(36525 )} Zw,]lsz ZI{/]IK

j=1

@ the average seasonal behaviour with a truncated Fourier series

@ gaps (parameters w; € R) represent the average levels over predetermined
periods given by a partition (£});cq1,... 4,3 Of the calendar.

@ day-to-day adjustments through shapes (parameters «;) that depends on the
so-called days’ types which are given by a second partition (K;);cqi,... 4,3 Of the
calendar. )
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Bayesian approach and asymptotic results

e Bayesian approach and asymptotic results
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Bayesian principle

Let X1, ..., Xy be the observations.
The likelihood of the model, conditionnally to the temperatures, is :

N
I(X1,...,Xn|0) = ———exps —=—— [Xr — (s +w
(1 Nl) II:IIW p{ 20_2[’ (T ’)]
Let 7(6) be the prior distribution on 6

The bayesian inference is based on
@ the posterior distribution of 6

701Xy, ..., Xx) o< [(X1, ..., Xn|0)7(6)

@ The Bayes estimate (under quadratic loss) is § = E[0|Xi, ..., Xn]

Predictive distribution
o
]7(XN+/C|X17 - ,XN) = / l(X/v+;\v|l9)7I'(9|X|7 . ,XN) d9
©

@ The optimal prediction (under quadratic 10ss) is Xy« = E[Xy1| X1, .., Xn]
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Asymptotic results for the heating part

The observations X;., = (X1, ...,X,) depend on an exogenous variable
Ty, = (T, ..., T,) via the model

Xf - N(777 T!) + fi = g(T' - M)H[Ti,+0<>[(u) + 557
fori=1,...,n.

@ (&)ien is a sequence of i.i.d. from N(0, o?).
@ 0y will denote the true value of 6.

0= (g,u,0°) €O =R xJu, u[xR}.
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Consistency

Assumptions (A).

Q There exists K C © a compact subset of the parameter space © such that the
MLE 0, € K for any n large enough.

@ Let F be a cumulative distribution function which is continuously differentiable and
F’ does not vanish over [u, ]

F(M ZILT “+oo Lt mF(H)

Theorem ( Launay et al [2])
Let 7(-) be a prior distribution on 6, continuous and positive on a neighbourhood of 6,

and let U be a neighbourhood of 6y,
then under Assumptions (A), as n — +oo,

/ 7(0)X1.,) d§ £ 1.
U
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Asymptotic normality

Theorem (Launay et al [2])

Let w(-) be a prior distribution on @, continuous and positive at 0, and let ko € N such
that

/ 0] (6) d6 < +o0,
[C]

and denote

o=

(0 —8,),

t=n

and 7,(-|X1..) the posterior density of t given X,.,, then under Assumptions (A), for any
0 <k <ky, asn— +oo,

3 1
2

H1(00)] 2 e 21| dr B 0,

/m I ’%,l(zp(.:n) ~ (on)

where 1(0) is the asymptotic Fisher Information matrix.
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Plan

Q Construction of the prior
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Obijective
Consider the general model X, = s, + w; + ¢
Aim

the estimation and the predictions of the parametric model over a short dataset
denoted B

Problem

@ The high dimensionality of a model leads to an overfitting situation, and so the
errors in prediction are larger

@ the parameter of the model
9:(77702)’77:(a17"'7a177b17'"7b1J3w17'"7wk7l€]3"'7l€h 8, u )
N— N——

~—~

Fourier offsets shapes heating part

Prior information

@ A along dataset known to share some common features with B

We wish to improve parameter estimations and
model predictions over B with the help of A.
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Choice of the prior distribution

Construction of the prior distribution for B the short dataset using the information
coming from the long dataset A

A —— prior distribution * |————( posterior distribution 7 (-|x*)
D
B ——— prior distribution 7# ——>( posterior distribution 7% (-|x*)
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Methodology

@ we assume 7° belongs to a parametric family 7 = {mx, A € A}
@ we want to pick \? such that 7% is «close» to = (-|X*)

Let T : 7 — A be an operator such that for every A € A,

T[ma] = A

Choice of the prior distribution on B
@ we select \? «proportional to » T[#*(-|y*)] in the sense that
A = KT[r* ()]
where K : A — A is a diagonal operator
K = Diag(ki, ..., kj,...)

@ the operator K can be interpreted as a similarity operator between A and B
(the diagonal components of K are hyperparameters of the prior)

@ we give k; a vague hierarchical prior distribution centred around ¢,

@ the prior on ¢ is vague and centred around 1.
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Methodology (cont.)

Example 1 : Method of Moments
We assume that the elements of F can be identified via their m first moments.

T[mx] = F(E(9),...,E(0™)) =X
The expression of A? then becomes

N = KF(E(0XY), ..., E@"|x"))

Example 2 : Conjugacy

We assume that F is the family of priors conjugated for the model.
e F=>r'(xYeF

let M (X*) € A be the parameter of posterior distribution 7 (-|X*)

The expression of A® thus reduces to

M= kXN (x?)
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Application to the model of electricity load

@ Non informative prior for the the long dataset A
o 7% € F = {gaussian distributions}

A —F— non-info. prior 7 —————>( posterior distribution 7 (-|X*)
1
e g
v
B ———| gaussian dist. —————( posterior distribution 7% (-|X*?)
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Non-informative prior [long dataset A]

non-informative prior for A

@ we consider prior distribution of the form : 7*(0) = 7 (n)n(c?)

* m(n) o< 1
*x m(0?) x o2 Jeffreys prior for a standard regression model

posterior distribution
@ the posterior distribution associated is well defined

/ (X1, ..., Xy|0)7" (0)d6 < +oo
J O

@ Explicit forms of x*, =* are not available ~» MCMC algorithm
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Informative prior distribution [short dataset B]

The hierarchical prior that we use is built as follows :
@ the prior distribution is of the form :

(60, k,1,q,r) = 7(n|k,1) 7(q)m(r)m(c?)

@ prior : the parameter of B are close to x* and ¥*

-2

* m(0?) x o
x nlk, [ ~ N (M, 7'54) M* = Diag j
@ hyperparameters k and [ correspond to the similarity between A and B
aj=b =10""
@ hyperparameters g and r are more general indicators of how close A and B are,
q corresponding to the mean of the coordinates of k
r is the inverse-variance of the coordinates of k

x q N,*\s'(l.(r(:/')‘ r~ Gl(ar,by) (Tj =10*, ¢, =b, =107°
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Simulation

Dataset A.

@ We simulated 4 years of daily data for A with parameters chosen to mimic the

typical electricity load of France .

* 4 frequencies used for the truncated Fourier series
* 7 daytypes : one daytype for each day of the week
* 2 offsets to simulate the daylight saving time effect

@ The temperatures (7;) are those measured from September 1996 to August 2000

at 10 :00AM.
Dataset B. We simulated 1 year of daily data for B with parameters :
seasonal : of = ka!, o= (a,b,w) Vi=1,.
shape : x} = &, Vi=1,...

heating : ¢° = kg*, ® = u".
We compare the quality of the bayesian predictions associated to
@ the hierarchical prior
@ the non-informative prior.
We simulate an extra year of daily data B to evaluate the prediction
Informative Hierarchical Prior Distribution

"7d(¥

21/31



The comparison criterion

@ let X; = fi(0) + «, the prediction error can be written as

X — 521 = [X! _ff(())] + [f,(@) - )?/]
—_——— —_———
noise €; difference w.r.t. the true model

@ given that we want to validate our model on simulated data, we choose to consider
the quadratic distance between the real and the predicted model over a year as
our quality criterion for a model, i.e. :

365

1 Y12
S5 2 00) R
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Comparison : RMSE info. / RMSE non-info.

RMSE (predictions) ratio between non-informative and informative prior

12
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k

@ abscissa : k, similarity coefficient between seasonality and heating gradient of
populations A and B (other parameters remain untouched)
@ ordinate : RMSE info. / RMSE non-info.

* whether similarity between A and B is ideal (k = 1) or not (k # 1), prior information
improves predictions’ quality
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Parameters’ estimation : info. vs non-info.

Seasonal
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@ 300 replications for the ideal situation (k = 1)

e ordinate : § — 6 for the informative prior (left) and the non-informative prior (right)
* prior information improves the estimations a lot
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Parameters’ estimation : info. vs non-info. (cont.)

Seasonal
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@ 300 replications for a difficult situation (k = 0.5)

e ordinate : § — 6 for the informative prior (left) and the non-informative prior (right)
* prior information improves the estimations only slightly
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Hyperparameters’ estimation (g and r) : k; ~ N (g, 7 ")

posterior mean of g
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@ abscissa : k, similarity coefficient between seasonality and heating gradient of
populations A and B (other parameters remain untouched)
@ ordinate : Bayes estimator for ¢ and r for the 5 x 300 replications considered
* ¢ et r correspond to the mean and precision (inverse of variance) of the similarity
coefficients k;
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Application

Dataset

@ For A the dataset corresponds to a specific population in France frequently
referred to as “non-metered”

@ B, is a subpopulation of A

@ B, covers the same people that A (ERDF)

@ The sizes (in days) of the datasets are

* population A : non metered (833 days)

* population B, : res1+2 (177 +30 days)

* population B, : non metered ERDF (121 +30 days)

Dataset
* 4 frequencies used for the truncated Fourier series
* 5 daytypes
* 2 offsets

We kept the last 30 days of each B out of the estimation datasets and assessed the
model quality over the predictions for those 30 days.
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Results

B non-informative | hierarchical | comparison
RMSE est. 775.93 786.97 +1.42%
RMSE pred. 1863.25 894.00 —52.01%
MAPE est. 4.00 3.93 —0.07
MAPE pred. 19.37 9.30 —10.07

B> non-informative | hierarchical | comparison
RMSE est. 1127.60 1202.32 +6.62%
RMSE pred. 2286.42 1339.14 —41.83%
MAPE est. 2.82 2.98 +0.15
MAPE pred. 8.65 3.48 —5.17

TABLE: Results for the dataset B, (top) and B, (bottom). RMSE is the “root mean square error”
and MAPE is the “mean absolute percentage error”. Both of these common measures of accuracy
were computed on the estimation (est.) and prediction (pred.) parts of the two datasets.
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Numerical results

Estimated posterior marginal distributions of k; for the hierarchical
method and for both datasets B; (upper row) and B, (lower row).
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(0.73,24.48)  on B,

Estimation of hyperparameters (g,7) = { (1.02.795.16) on B
] . 2
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