A SARIMAX coupled modelling applied to individual load curves intraday forecasting

Frédéric Proïa

Workshop EDF Institut Henri Poincaré - Paris 05 avril 2012

INRIA Bordeaux Sud-Ouest Institut de Mathématiques de Bordeaux

INSTITUT NATION DE RECHERC EN INFORMATIQ ET EN AUTOMATIQ

naín

Plan

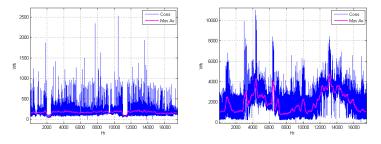
Introduction

- On a SARIMAX coupled modelling
- Stationary ARMA processes
- Identification for stationary AR(p) and MA(q) processes
- Linear relationship between consumption and temperature
- The SARIMAX modelling
- Application to forecasting

Application to forecasting on a load curve

- Procedure
- Seasonality and stationarity
- ACF and PACF
- Selection criteria
- Selection on bayesian criteria
- Selection on bayesian criteria
- 4
- Application on a huge dataset
- Technical issues
- Procedure
- Modelling
- Forecasting

INSTITUT NATIONAL DE RECHERCHI EN INFORMATIQUI ET EN AUTOMATIQUE



• Motivations.

- New energy meters to gather individual consumption with high frequencie.
- Economic issue for EDF : anticipate to optimize.

• Objectives.

- Distinguish nonthermosensitive from thermosensitive customers.
- Intraday daily forecasting.
- Introduce temperature as an exogenous contribution.

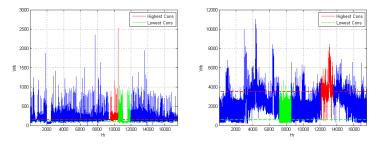
INSTITUT NATIONA DE RECHERCH EN INFORMATIQU ET EN AUTOMATIQU

•

- Detecting thermosensitivity.
 - Deterministic criterion.
 - Thermosensitivity if

$$\max_{\Delta \le t \le N} M_t - \min_{\Delta \le t \le N} M_t > \delta$$

where M_t is the empirical median of $(C_t \dots C_{t-\Delta+1})$.
 $\Delta = 1440$ et $\delta = 1000$.



. .

- More pertinent than SR/DR.
 - 70% of nonthermosensitive customers, only including 75% of SR.

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Plan

Introduction

On a SARIMAX coupled modelling

- Stationary ARMA processes
- Identification for stationary AR(p) and MA(q) processes
- Linear relationship between consumption and temperature
- The SARIMAX modelling
- Application to forecasting

3 Application to forecasting on a load curve

- Procedure
- Seasonality and stationarity
- ACF and PACF
- Selection criteria
- Selection on bayesian criteria
- Selection on bayesian criteria
- 4
- Application on a huge dataset
- Technical issues
- Procedure
- Modelling
- Forecasting

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

• Stationary ARMA processes.

Definition (Stationarity)

A time series (Y_t) is said to be weakly stationary if, for all $t \in \mathbb{Z}$, $\mathbb{E}[Y_t^2] < \infty$, $\mathbb{E}[Y_t] = m$ and, for all $s, t \in \mathbb{Z}$, $Cov(Y_t, Y_s) = Cov(Y_{t-s}, Y_0)$.

Definition (ARMA)

Let (Y_t) be a stationary time series with zero mean. It is said to be an ARMA(p, q) process if, for every $t \in \mathbb{Z}$,

$$Y_t - \sum_{k=1}^p a_k Y_{t-k} = \varepsilon_t + \sum_{k=1}^q b_k \varepsilon_{t-k}$$

where (ε_t) is a white noise of variance $\sigma^2 > 0$, $a \in \mathbb{R}^p$ and $b \in \mathbb{R}^q$.

Stationary ARMA processes

• Causality of ARMA processes.

• Compact expression, for all $1 \le t \le T$,

$$\mathcal{A}(B)Y_t = \mathcal{B}(B)\varepsilon_t$$

where the polynomials

 $\mathcal{A}(z) = 1 - a_1 z - \ldots - a_p z^p$ and $\mathcal{B}(z) = 1 + b_1 z + \ldots + b_q z^q$.

Definition (Causality)

Let (Y_t) be an ARMA(p, q) process for which the polynomials A and B have no common zeroes. Then, (Y_t) is causal if and only if $A(z) \neq 0$ for all $z \in \mathbb{C}$ such that $|z| \leq 1$.

Implications.

- Causality implies the existence of a MA(∞) structure for (Y_t).
- Causality implies stationarity of the process.
- On N^{*}, causality often coincides with stationarity.

Stationary ARMA processes

• Existence and unicity of a stationary solution.

Proposition

If $A(z) \neq 0$ for all $z \in \mathbb{C}$ such that $|z| \leq 1$, then the ARMA equation $A(B)Y_t = B(B)\varepsilon_t$ have the unique stationary solution

$$Y_t = \sum_{k=0}^{\infty} \psi_k \varepsilon_{t-k},$$

and the coefficients $(\psi_k)_{k\in\mathbb{N}}$ are determined by the relation

 $\mathcal{A}^{-1}(z)\mathcal{B}(z) = \sum_{k=0}^{\infty} \psi_k z^k$ with $\sum_{k=0}^{\infty} \psi_k^2 < \infty.$

Explosive cases.

- On Z, no zeroes on the unit circle is a sufficient condition.
- Irrelevant for practical purposes.

Identification for stationary AR(p) and MA(q) processes

• Autocorrelation function.

• To identify q.

Definition (ACF)

Let (Y_t) be a stationary time series. The autocorrelation function ρ associated with (Y_t) is defined, for all $t \in \mathbb{Z}$, as

$$p(t) = \frac{\gamma(t)}{\gamma(0)}$$

where the autocovariance function $\gamma(t) = \text{Cov}(Y_t, Y_0)$.

Proposition

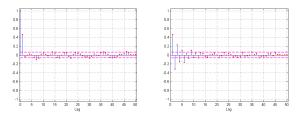
The stationary time series (Y_t) with zero mean is a MA(q) process such that $b_q \neq 0$ if and only if $\rho(q) \neq 0$ and $\rho(t) = 0$ for all |t| > q.

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

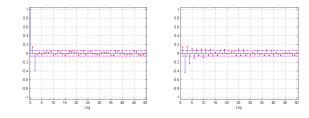
Identification for stationary AR(p) and MA(q) processes

• Examples.

• MA(1) : only $\rho(1)$ nonzero, exponential decay of $\alpha(t)$.



• MA(2) : only $\rho(1)$ and $\rho(2)$ nonzero, damped exponential and sine wave for $\alpha(t)$.



INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Ínría

Identification for stationary AR(p) and MA(q) processes

• Partial autocorrelation function.

• To identify p.

Definition (PACF)

Let (Y_t) be a stationary time series with zero mean. The partial autocorrelation function α is defined as $\alpha(0) = 1$, and, for all $t \in \mathbb{N}^*$, as

 $\alpha(t) = \phi_{t,t}$

where $(\phi_{t,t})_{t \in \mathbb{N}^*}$ are computed via the Durbin-Levinson recursion.

Proposition

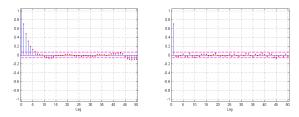
If there exists a square-integrable sequence $(\psi_k)_{k \in \mathbb{N}}$ such that (Y_t) has a MA(∞) expression with $\psi_0 = 1$, then the stationary time series (Y_t) with zero mean is an AR(p) process such that $a_p \neq 0$ if and only if $\alpha(p) \neq 0$ and $\alpha(t) = 0$ for all t > p.

INSTITUT NATION DE RECHERCH EN INFORMATIQU ET EN AUTOMATIQU

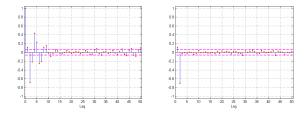
Identification for stationary AR(p) and MA(q) processes

• Examples.

• AR(1) : only $\alpha(1)$ nonzero, exponential decay of $\rho(t)$.



AR(2) : only α(1) and α(2) nonzero, damped exponential and sine wave for ρ(t).



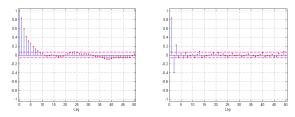
INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Ínría

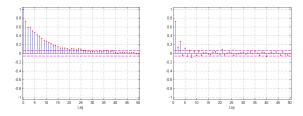
Identification for stationary AR(p) and MA(q) processes

• Examples.

• ARMA(1,1) : exponential decay of $\rho(t)$ and $\alpha(t)$ from first lag.



• ARMA(2,2) : exponential decay of $\rho(t)$ and $\alpha(t)$ from second lag.



INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Ínría

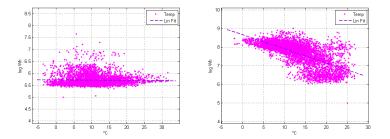
Linear relationship between consumption and temperature

• Variance-stabilizing Box-Cox transformation.

• Logarithmic transform given, for all $1 \le t \le T$, by

$$Y_t = \log\left(C_t + \mathrm{e}^m\right)$$

where *m* ensures that $Y_t = m$ when $C_t = 0$.



INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Ínría

Linear relationship between consumption and temperature

• Linear relationship between consumption and temperature.

On a thermosensitive load curve, for all 1 ≤ t ≤ T,

$$Y_t = c_0 + \mathcal{C}(B)U_t + \varepsilon_t.$$

• For all $z \in \mathbb{C}$,

$$\mathcal{C}(z)=\sum_{k=0}^{r-1}c_{k+1}z^k.$$

• Unknown vector $c \in \mathbb{R}^{r+1}$ estimated by OLS.

Seasonal residuals.

Residuals (ε_t) regarded as a seasonal time series.

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

• Residuals (ε_t) as a seasonal time series.

• SARIMA(p, d, q) × (P, D, Q)_s modelling, for all 1 $\leq t \leq T$,

$$(1-B)^{d}(1-B^{s})^{D}\mathcal{A}(B)\mathcal{A}_{s}(B)\varepsilon_{t} = \mathcal{B}(B)\mathcal{B}_{s}(B)V_{t},$$

where (V_t) is a white noise of variance $\sigma^2 > 0$.

• Polynomials defined, for all $z \in \mathbb{C}$, as

$$A(z) = 1 - \sum_{k=1}^{p} a_k z^k, \qquad A_s(z) = 1 - \sum_{k=1}^{p} \alpha_k z^{sk},$$

$$\mathcal{B}(z) = 1 - \sum_{k=1}^{q} b_k z^k, \qquad \qquad \mathcal{B}_s(z) = 1 - \sum_{k=1}^{Q} \beta_k z^{sk},$$

• Parameters $a \in \mathbb{R}^p$, $b \in \mathbb{R}^q$, $\alpha \in \mathbb{R}^p$ and $\beta \in \mathbb{R}^Q$ estimated by GLS.

• \mathcal{A} and \mathcal{A}_s are causal.

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

nnío

On a SARIMAX coupled modelling The SARIMAX modelling

• The dynamic coupled modelling.

Definition (SARIMAX)

In the particular framework of the study, a random process (Y_t) will be said to follow a SARIMAX $(p, d, q, r) \times (P, D, Q)_s$ coupled modelling if, for all $1 \le t \le T$, it satisfies

$$\begin{cases} Y_t = c_0 + \mathcal{C}(B)U_t + \varepsilon_t, \\ (1-B)^d (1-B^s)^D \mathcal{A}(B)\mathcal{A}_s(B)\varepsilon_t = \mathcal{B}(B)\mathcal{B}_s(B)V_t. \end{cases}$$

As soon as *d* + *D* > 0,

 $(1-B)^{d}(1-B^{s})^{D}\mathcal{A}(B)\mathcal{A}_{s}(B)(Y_{t}-\mathcal{C}(B)U_{t})=\mathcal{B}(B)\mathcal{B}_{s}(B)V_{t}.$

The SARIMAX modelling

• Existence of a stationary solution.

• Let I be the identity matrix of order T and

$$U = \begin{pmatrix} 1 & U_T & U_{T-1} & \dots & U_{T-r+1} \\ 1 & U_{T-1} & U_{T-2} & \dots & U_{T-r} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & U_1 & U_0 & \dots & U_{-r+2} \end{pmatrix}, \quad Y = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_T \end{pmatrix}.$$

Theorem

Assume that U'U is invertible. Then, the differenced process $(\nabla^d \nabla^D_{\mathcal{s}} \varepsilon_t)$ where ε_t is given, for all $1 \le t \le T$, by the vector form

$$\varepsilon = \left(I - U(U'U)^{-1}U'\right)Y$$

is a stationary solution of the coupled model suitably specified.

- ADF and KPSS tests : d and D.
- Box and Jenkins methodology : p, q, r, P, Q, s.

Application to forecasting

• Forecasting using time series analysis.

- Let $\tilde{\varepsilon}_{T+1}$ be the predictor of (ε_t) at stage T + 1.
- Let \hat{c}_T be the OLS estimate of \hat{c} .
- Assume that \hat{r} has been evaluated.
- The predictor at horizon 1 is given by

$$\widetilde{Y}_{T+1} = \widehat{c}_{0,T} + \sum_{k=1}^{\widehat{r}} \widehat{c}_{k,T} U_{T-k+2} + \widetilde{\varepsilon}_{T+1}.$$

• The predictor at horizon H is given by

$$\widetilde{Y}_{T+H} = \widehat{c}_{0,T} + \sum_{k=1}^{\widehat{r}} \widehat{c}_{k,T} U_{T-k+H+1} + \widetilde{\varepsilon}_{T+H}.$$

INSTITUT NATIONAL DE RECHERCH EN INFORMATIQUI ET EN AUTOMATIQUI

Ínría.

Plan

Introduction

On a SARIMAX coupled modelling

- Stationary ARMA processes
- Identification for stationary AR(p) and MA(q) processes
- Linear relationship between consumption and temperature
- The SARIMAX modelling
- Application to forecasting

3 Application to forecasting on a load curve

- Procedure
- Seasonality and stationarity
- ACF and PACF
- Selection criteria
- Selection on bayesian criteria
- Selection on bayesian criteria

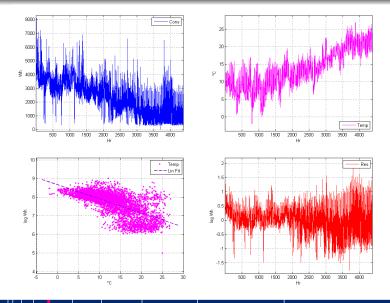
Application on a huge datase

- Technical issues
- Procedure
- Modelling
- Forecasting

Conclusion

INSTITUT NATIONAL DE RECHERCHI EN INFORMATIQUI ET EN AUTOMATIQUI

Procedure



INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Ínría

• Box and Jenkins methodology.

• For a given \hat{r} , estimation of the residual set $(\hat{\varepsilon}_t)$, for all $1 \le t \le T$,

$$\widehat{\varepsilon}_t = Y_t - \widehat{c}_{0,T} - \sum_{k=1}^{\widehat{r}} \widehat{c}_{k,T} U_{t-k+1}.$$

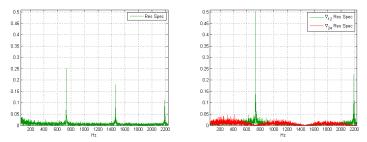
- Select
 s by investigating the seasonality of (
 ε t).
- Select *d* and *D* by investigating the stationarity of (∇^d∇^D_ŝ *c*_t).
- Select \hat{p} , \hat{q} , \hat{P} and \hat{Q} by looking at ACF and PACF on $(\nabla^{\hat{d}} \nabla^{\hat{D}}_{\hat{s}} \hat{\varepsilon}_t)$.
- Test of white noise on the fitted innovations.

INSTITUT NATIONAL DE RECHERCHI EN INFORMATIQUI ET EN AUTOMATIQUI

Seasonality and stationarity

• Seasonality.

• Fourier spectrogram on $(\hat{\varepsilon}_t)$, $(\nabla_{12}\hat{\varepsilon}_t)$ and $(\nabla_{24}\hat{\varepsilon}_t)$, for $T = 730 \times 24$ and $\hat{r} = 1$.



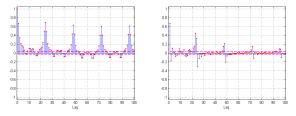
• Stationarity.

- (ε

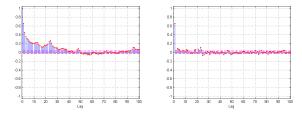
 (ε
 t) is not stationary.
- $(\nabla \widehat{\varepsilon}_t)$, $(\nabla_{24}\widehat{\varepsilon}_t)$ and $(\nabla \nabla_{24}\widehat{\varepsilon}_t)$ are stationary around a deterministic trend.

INSTITUT NATIONA DE RECHERCH EN INFORMATIQU ET EN AUTOMATIQU

- Sample autocorrelations.
 - On the estimated residuals ($\hat{\varepsilon}_t$).



• On the seasonally differenced residuals $(\nabla_{24}\hat{\varepsilon}_t)$.

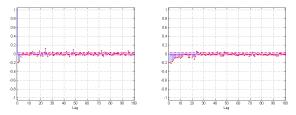


Ínría

Application to forecasting on a load curve ACF and PACF

Sample autocorrelations.

On the doubly differenced residuals $(\nabla \nabla_{24} \hat{\varepsilon}_t)$. •



Identified models.

- SARIMAX(p, 0, 0, r) × (P, 1, Q)₂₄ with p ≤ 5, r ≤ 2, P ≤ 1 and Q = 1.
 SARIMAX(p, 1, q, r) × (P, 1, Q)₂₄ with p ≤ 1, q = 2, r ≤ 2, P ≤ 1 and Q = 1.

Selection criteria

• Bayesian criteria.

Akaike information criterion and Schwarz bayesian criterion,

 $AIC = -2 \log \mathcal{L} + 2k$ and $SBC = -2 \log \mathcal{L} + k \log T$

where \mathcal{L} is the model likelihood and *k* the number of parameters.

- Log-likelihood.
- Overall randomness of successive innovations.

Prediction criteria.

• We define C_A and C_R as follows,

$$C_{A} = \frac{1}{NH} \sum_{k=1}^{NH} \left| \widetilde{C}_{T+k} - C_{T+k} \right| \quad \text{and} \quad C_{R} = \left(\sum_{k=1}^{NH} C_{T+k} \right)^{-1} \left(\sum_{k=1}^{NH} \left| \widetilde{C}_{T+k} - C_{T+k} \right| \right)$$

where $(\tilde{C}_{T+1}, \ldots, \tilde{C}_{T+NH})$ are *N* consecutive predictions at horizon *H* from time *T*.

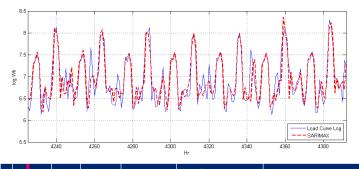
Insia

Selection on bayesian criteria

• Selection on bayesian criteria.

	p	d	q	r	Р	D	Q	S	AIC	SBC	LL	VAR	WN
SARIMAX	1	0	0	1	0	1	1	24	-362.4	-330.4	186.2	0.053	
SARIMAX	3	0	0	1	0	1	1	24	-393.6	-348.8	203.8	0.053	\checkmark
SARIMAX	5	0	0	1	0	1	1	24	-424.7	-367.2	221.4	0.053	\checkmark
SARIMAX	3	0	2	1	0	1	1	24	-446.9	-389.4	232.5	0.052	\checkmark
SARIMAX	3	0	2	2	0	1	1	24	-457.2	-393.3	238.6	0.052	\checkmark
SARIMAX	0	1	1	1	0	1	1	24	100.4	132.3	-45.2	0.059	
SARIMAX	0	1	2	1	0	1	1	24	-238.7	-200.4	125.4	0.055	
SARIMAX	1	1	1	1	0	1	1	24	-389.5	-351.2	200.8	0.053	
SARIMAX	2	1	2	1	0	1	1	24	-435.1	-384.0	225.6	0.052	\checkmark

• Modelling with SARIMAX(3, 0, 2, 2) \times (0, 1, 1)₂₄ with $T = 730 \times 24$.

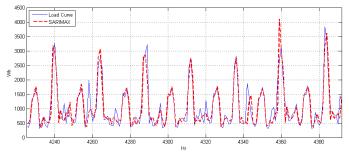


INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Ínnía

Selection on bayesian criteria

- Selection on bayesian criteria.
 - Modelling with SARIMAX $(3, 0, 2, 2) \times (0, 1, 1)_{24}$ with $T = 730 \times 24$.



Least squares estimation, for all 28 ≤ t ≤ T,

$$\begin{cases} C_t = \exp\left(\widehat{c}_0 + \widehat{c}_1 U_t + \widehat{c}_2 U_{t-1} + \varepsilon_t\right) - \exp(5), \\ \varepsilon_t = \varepsilon_{t-24} + \widehat{a}_1(\varepsilon_{t-1} - \varepsilon_{t-25}) + \widehat{a}_2(\varepsilon_{t-2} - \varepsilon_{t-26}) + \widehat{a}_3(\varepsilon_{t-3} - \varepsilon_{t-27}) \\ + (V_t - \widehat{b}_1 V_{t-1} - \widehat{b}_2 V_{t-2}) - \widehat{\beta}_1 (V_{t-24} - \widehat{b}_1 V_{t-25} - \widehat{b}_2 V_{t-26}), \end{cases}$$

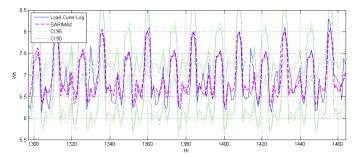
in which $\hat{c}_0 = 7.9871$, $\hat{c}_1 = 0.0166$, $\hat{c}_2 = -0.0420$, $\hat{a}_1 = 0.4776$, $\hat{a}_2 = 0.9030$, $\hat{a}_3 = -0.4305$, $\hat{b}_1 = 0.0801$, $\hat{b}_2 = -0.8524$, $\hat{\beta}_1 = -0.8125$.

Selection on prediction criteria

• Selection on prediction criteria.

	р	d	q	r	Р	D	Q	S	CA	C _R
SARIMAX	1	0	0	1	0	1	1	24	193.9	0.1814
SARIMAX	1	0	1	2	0	1	1	24	193.3	0.1808
SARIMAX	3	0	0	1	0	1	1	24	196.0	0.1833
SARIMAX	3	0	2	1	0	1	1	24	199.9	0.1870
SARIMAX	3	0	2	2	0	1	1	24	198.9	0.1861
SARIMAX	1	1	1	1	0	1	1	24	195.4	0.1828
SARIMAX	2	1	2	1	0	1	1	24	195.3	0.1828

• Forecasting with SARIMAX(1, 0, 1, 2) \times (0, 1, 1)₂₄ with $T = 730 \times 24$.



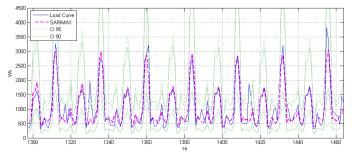
INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Ínría

Selection on prediction criteria

• Selection on prediction criteria.

• Forecasting with SARIMAX $(1, 0, 1, 2) \times (0, 1, 1)_{24}$ with $T = 730 \times 24$.



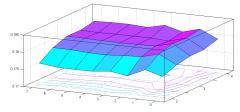
- Parsimony is a central issue in time series analysis.
- Results slightly improved with a sliding window of 2 months.
- Around 2% of relative error between (Y
 _{T+1},..., Y
 _{T+NH}) and (Y
 _{T+1},..., Y
 _{T+NH}).

INSTITUT NATIONA DE RECHERCH EN INFORMATIQU ET EN AUTOMATIQU

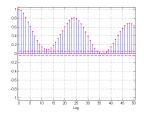
Ínnío

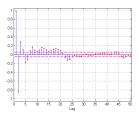
Selection on prediction criteria

- Refining...
 - Influence of *r* and the size of the sliding windows *M* on *C_R*.



- M = 2 months is the optimal sliding window.
- No more influence of r as soon as $r \ge 2$.





INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Ínnín

Plan

Introduction

On a SARIMAX coupled modelling

- Stationary ARMA processes
- Identification for stationary AR(*p*) and MA(*q*) processes
- Linear relationship between consumption and temperature
- The SARIMAX modelling
- Application to forecasting

3 Application to forecasting on a load curve

- Procedure
- Seasonality and stationarity
- ACF and PACF
- Selection criteria
- Selection on bayesian criteria
- Selection on bayesian criteria
- 4

Application on a huge dataset

- Technical issues
- Procedure
- Modelling
- Forecasting

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Application on a huge dataset

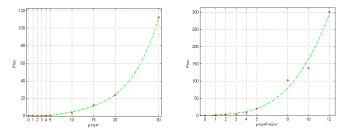
Technical issues

• Huge dataset.

- More than 2000 load curves.
- Around 70% nonthermosensitive.
- High quality : more than 9 months of data per curve, very little missing values.

• Technical problems.

• Exponential growth of computing time with parsimony.



INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Ínría

Application on a huge dataset

• On a representative panel.

- Selection of 200 heterogeneous thermosensitive curves (size, peaks intensity, etc.)
- Massive statistical KPSS procedures and visual first conclusions.
- Bayesian criteria to select the best models on average.
- Application to forecasting.
- Prediction criteria to select the best models on average.
- All parameters vary in their neighborhood.
- · Consider technical issues : a night of computation for some models.

• 2 more bayesian criteria.

- · Reliability index.
- Percentage of significance of the first exogenous coefficient.
- Assess the relevance on large-scale.
- · Caution : main assumptions for t-test not satisfied !

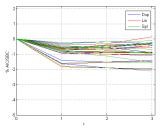
INSTITUT NATION DE RECHERCI EN INFORMATIQU ET EN AUTOMATIQU

Innía

• Stationarity, for r = 1 and M = 3 months.

- Less than 30% of $(\hat{\varepsilon}_t)$ stationary.
- 100% of $(\nabla_{24}\widehat{\varepsilon}_t)$ and $(\nabla\nabla_{24}\widehat{\varepsilon}_t)$ stationary.
- SARIMAX $(p, 0, q, r) \times (P, 1, Q)_{24}$ and SARIMAX $(p, 1, q, r) \times (P, 1, Q)_{24}$.
- Making r increase.

• Relative evolution of AIC and SBC with r.

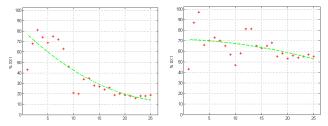


- Clearly, *r* = 1.
- SARIMAX $(3, 0, 2, 1) \times (0, 1, 1)_{24}$, SARIMAX $(3, 1, 2, 1) \times (0, 1, 1)_{24}$.
- Gain over the naive model : ≈ 50%.
- Gain over the SARIMA model : \approx 2%.

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Application on a huge dataset

• Significance of c_1 for M = 6 months.

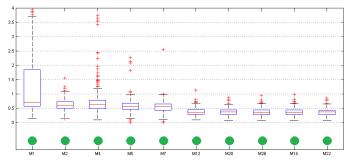


Substantial on thermosensitive curves.

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Ínría

• Evolution of C_R.



- SARIMAX $(1, 1, 1, 1) \times (0, 1, 1)_{24}$ and SARIMAX $(2, 0, 1, 1) \times (0, 1, 1)_{24}$.
- *M* = 2 months.
- Gain over the naive model : \approx 65%.
- Gain over the SARIMA model : \approx 3%.

INSTITUT NATION DE RECHERC EN INFORMATIC ET EN AUTOMATIC

Ínría

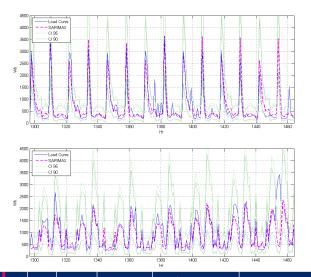
centre de recherche BORDEAUX - SUD-OUEST

37/40

Application on a huge dataset

Forecasting

• Examples.



INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Ínría

Plan

Introduction

On a SARIMAX coupled modelling

- Stationary ARMA processes
- Identification for stationary AR(*p*) and MA(*q*) processes
- Linear relationship between consumption and temperature
- The SARIMAX modelling
- Application to forecasting

3 Application to forecasting on a load curve

- Procedure
- Seasonality and stationarity
- ACF and PACF
- Selection criteria
- Selection on bayesian criteria
- Selection on bayesian criteria
- 4
- Application on a huge dataset
- Technical issues
- Procedure
- Modelling
- Forecasting

Conclusion

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Conclusion

- Nonthermosensitive curves.
 - SARIMA(1,0,1) × (0,1,1)₂₄
- Thermosensitive curves.
 - SARIMAX $(1, 1, 1, 1) \times (0, 1, 1)_{24}$ and SARIMAX $(2, 0, 1, 1) \times (0, 1, 1)_{24}$.
- A careful study curve by curve would provide better results.
 - Of course...
- Caution : technical issues for huge datasets.
 - Is a computation time ×1000 for a gain of 0.1% relevant ?
 - Engineering approach, corporate vision.
- Thank you for your attention.
- Comments or questions ? ©

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Inaín