A SARIMAX coupled modelling applied to individual load curves intraday forecasting

Frédéric Proïa

Workshop EDF
Institut Henri Poincaré - Paris
05 avril 2012

INRIA Bordeaux Sud-Ouest
Institut de Mathématiques de Bordeaux
1 Introduction

2 On a SARIMAX coupled modelling
 - Stationary ARMA processes
 - Identification for stationary AR\((p)\) and MA\((q)\) processes
 - Linear relationship between consumption and temperature
 - The SARIMAX modelling
 - Application to forecasting

3 Application to forecasting on a load curve
 - Procedure
 - Seasonality and stationarity
 - ACF and PACF
 - Selection criteria
 - Selection on bayesian criteria
 - Selection on bayesian criteria

4 Application on a huge dataset
 - Technical issues
 - Procedure
 - Modelling
 - Forecasting

5 Conclusion
• **Motivations.**
 - New energy meters to gather individual consumption with high frequency.
 - Economic issue for EDF: anticipate to optimize.

• **Objectives.**
 - Distinguish nonthermosensitive from thermosensitive customers.
 - Intraday daily forecasting.
 - Introduce temperature as an exogenous contribution.
• Detecting thermosensitivity.
 - Deterministic criterion.
 - Thermosensitivity if
 \[
 \max_{\Delta \leq t \leq N} M_t - \min_{\Delta \leq t \leq N} M_t > \delta
 \]
 where \(M_t \) is the empirical median of \((C_t \ldots C_{t-\Delta+1})\).
 - \(\Delta = 1440 \) et \(\delta = 1000 \).

- More pertinent than SR/DR.
 - 70% of nonthermosensitive customers, only including 75% of SR.
1. Introduction

2. On a SARIMAX coupled modelling
 - Stationary ARMA processes
 - Identification for stationary AR(p) and MA(q) processes
 - Linear relationship between consumption and temperature
 - The SARIMAX modelling
 - Application to forecasting

3. Application to forecasting on a load curve
 - Procedure
 - Seasonality and stationarity
 - ACF and PACF
 - Selection criteria
 - Selection on bayesian criteria
 - Selection on bayesian criteria

4. Application on a huge dataset
 - Technical issues
 - Procedure
 - Modelling
 - Forecasting

5. Conclusion
• **Stationary ARMA processes.**

Definition (Stationarity)

A time series \((Y_t)\) is said to be weakly stationary if, for all \(t \in \mathbb{Z}\), \(E[Y_t^2] < \infty\), \(E[Y_t] = m\) and, for all \(s, t \in \mathbb{Z}\), \(\text{Cov}(Y_t, Y_s) = \text{Cov}(Y_{t-s}, Y_0)\).

Definition (ARMA)

Let \((Y_t)\) be a stationary time series with zero mean. It is said to be an ARMA\((p, q)\) process if, for every \(t \in \mathbb{Z}\),

\[
Y_t - \sum_{k=1}^{p} a_k Y_{t-k} = \varepsilon_t + \sum_{k=1}^{q} b_k \varepsilon_{t-k}
\]

where \((\varepsilon_t)\) is a white noise of variance \(\sigma^2 > 0\), \(a \in \mathbb{R}^p\) and \(b \in \mathbb{R}^q\).
• **Causality of ARMA processes.**

 - Compact expression, for all \(1 \leq t \leq T\),

 \[
 \mathcal{A}(B)Y_t = \mathcal{B}(B)\varepsilon_t
 \]

 where the polynomials

 \[
 \mathcal{A}(z) = 1 - a_1z - \ldots - a_pz^p \quad \text{and} \quad \mathcal{B}(z) = 1 + b_1z + \ldots + b_qz^q.
 \]

Definition (Causality)

Let \((Y_t)\) be an ARMA\((p, q)\) process for which the polynomials \(\mathcal{A}\) and \(\mathcal{B}\) have no common zeroes. Then, \((Y_t)\) is causal if and only if \(\mathcal{A}(z) \neq 0\) for all \(z \in \mathbb{C}\) such that \(|z| \leq 1\).

• **Implications.**

 - Causality implies the existence of a MA\((\infty)\) structure for \((Y_t)\).
 - Causality implies stationarity of the process.
 - On \(\mathbb{N}^*\), causality often coincides with stationarity.
On a SARIMAX coupled modelling
Stationary ARMA processes

• **Existence and unicity of a stationary solution.**

Proposition

If \(A(z) \neq 0 \) for all \(z \in \mathbb{C} \) such that \(|z| \leq 1 \), then the ARMA equation \(A(B) Y_t = B(B) \varepsilon_t \) have the unique stationary solution

\[
Y_t = \sum_{k=0}^{\infty} \psi_k \varepsilon_{t-k},
\]

and the coefficients \((\psi_k)_{k \in \mathbb{N}} \) are determined by the relation

\[
A^{-1}(z)B(z) = \sum_{k=0}^{\infty} \psi_k z^k \quad \text{with} \quad \sum_{k=0}^{\infty} \psi_k^2 < \infty.
\]

• **Explosive cases.**
 - On \(\mathbb{Z} \), no zeroes on the unit circle is a sufficient condition.
 - Irrelevant for practical purposes.
On a SARIMAX coupled modelling
Identification for stationary AR(p) and MA(q) processes

- **Autocorrelation function.**
 - To identify q.

Definition (ACF)

Let (Y_t) be a stationary time series. The autocorrelation function ρ associated with (Y_t) is defined, for all $t \in \mathbb{Z}$, as

$$\rho(t) = \frac{\gamma(t)}{\gamma(0)}$$

where the autocovariance function $\gamma(t) = \text{Cov}(Y_t, Y_0)$.

Proposition

The stationary time series (Y_t) with zero mean is a MA(q) process such that $b_q \neq 0$ if and only if $\rho(q) \neq 0$ and $\rho(t) = 0$ for all $|t| > q$.
• **Examples.**
 - MA(1) : only $\rho(1)$ nonzero, exponential decay of $\alpha(t)$.
 - MA(2) : only $\rho(1)$ and $\rho(2)$ nonzero, damped exponential and sine wave for $\alpha(t)$.
- **Partial autocorrelation function.**
 - To identify p.

Definition (PACF)

Let (Y_t) be a stationary time series with zero mean. The partial autocorrelation function α is defined as $\alpha(0) = 1$, and, for all $t \in \mathbb{N}^*$, as

$$\alpha(t) = \phi_t, t$$

where $(\phi_t, t)_{t\in\mathbb{N}^*}$ are computed via the Durbin-Levinson recursion.

Proposition

If there exists a square-integrable sequence $(\psi_k)_{k \in \mathbb{N}}$ such that (Y_t) has a $MA(\infty)$ expression with $\psi_0 = 1$, then the stationary time series (Y_t) with zero mean is an $AR(p)$ process such that $a_p \neq 0$ if and only if $\alpha(p) \neq 0$ and $\alpha(t) = 0$ for all $t > p$.

On a SARIMAX coupled modelling

Identification for stationary AR(p) and MA(q) processes
On a SARIMAX coupled modelling
Identification for stationary AR(p) and MA(q) processes

- **Examples.**
 - AR(1) : only $\alpha(1)$ nonzero, exponential decay of $\rho(t)$.
 - AR(2) : only $\alpha(1)$ and $\alpha(2)$ nonzero, damped exponential and sine wave for $\rho(t)$.
• **Examples.**
 • ARMA(1,1) : exponential decay of $\rho(t)$ and $\alpha(t)$ from first lag.
 • ARMA(2,2) : exponential decay of $\rho(t)$ and $\alpha(t)$ from second lag.
On a SARIMAX coupled modelling
Linear relationship between consumption and temperature

- **Variance-stabilizing Box-Cox transformation.**
 - Logarithmic transform given, for all $1 \leq t \leq T$, by
 $$Y_t = \log (C_t + e^m)$$
 where m ensures that $Y_t = m$ when $C_t = 0$.

![Graph 1](image1.png)
![Graph 2](image2.png)
On a SARIMAX coupled modelling
Linear relationship between consumption and temperature

• **Linear relationship between consumption and temperature.**
 - On a thermosensitive load curve, for all \(1 \leq t \leq T \),
 \[
 Y_t = c_0 + C(B)U_t + \epsilon_t.
 \]
 - For all \(z \in \mathbb{C} \),
 \[
 C(z) = \sum_{k=0}^{r-1} c_k+1 z^k.
 \]
 - Unknown vector \(c \in \mathbb{R}^{r+1} \) estimated by OLS.

• **Seasonal residuals.**
 - Residuals \((\epsilon_t) \) regarded as a seasonal time series.
On a SARIMAX coupled modelling

The SARIMAX modelling

- **Residuals** \((\varepsilon_t) \) as a seasonal time series.
 - SARIMA\((p, d, q) \times (P, D, Q)\) modelling, for all \(1 \leq t \leq T\),
 \[
 (1 - B)^d (1 - B^s)^D \mathcal{A}(B) \mathcal{A}_s(B) \varepsilon_t = \mathcal{B}(B) \mathcal{B}_s(B) V_t,
 \]
 where \((V_t)\) is a white noise of variance \(\sigma^2 > 0\).
 - Polynomials defined, for all \(z \in \mathbb{C}\), as
 \[
 \mathcal{A}(z) = 1 - \sum_{k=1}^{p} a_k z^k, \quad \mathcal{A}_s(z) = 1 - \sum_{k=1}^{P} \alpha_k z^{sk},
 \]
 \[
 \mathcal{B}(z) = 1 - \sum_{k=1}^{q} b_k z^k, \quad \mathcal{B}_s(z) = 1 - \sum_{k=1}^{Q} \beta_k z^{sk},
 \]
 - Parameters \(a \in \mathbb{R}^p, b \in \mathbb{R}^q, \alpha \in \mathbb{R}^P\) and \(\beta \in \mathbb{R}^Q\) estimated by GLS.
 - \(\mathcal{A}\) and \(\mathcal{A}_s\) are causal.
On a SARIMAX coupled modelling

The SARIMAX modelling

- The dynamic coupled modelling.

Definition (SARIMAX)

In the particular framework of the study, a random process \((Y_t)\) will be said to follow a SARIMAX\((p, d, q, r) \times (P, D, Q)_s\) coupled modelling if, for all \(1 \leq t \leq T\), it satisfies

\[
\begin{align*}
Y_t &= c_0 + C(B)U_t + \varepsilon_t, \\
(1 - B)^d(1 - B^s)^D A(B)A_s(B)\varepsilon_t &= B(B)B_s(B)V_t.
\end{align*}
\]

- As soon as \(d + D > 0\),

\[
(1 - B)^d(1 - B^s)^D A(B)A_s(B) (Y_t - C(B)U_t) = B(B)B_s(B)V_t.
\]
• **Existence of a stationary solution.**

 Let \(I \) be the identity matrix of order \(T \) and

 \[
 U = \begin{pmatrix}
 1 & U_T & U_{T-1} & \ldots & U_{T-r+1} \\
 1 & U_{T-1} & U_{T-2} & \ldots & U_{T-r} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 1 & U_1 & U_0 & \ldots & U_{-r+2}
 \end{pmatrix}, \quad Y = \begin{pmatrix}
 Y_1 \\
 Y_2 \\
 \vdots \\
 Y_T
 \end{pmatrix}.
 \]

Theorem

Assume that \(U'U \) is invertible. Then, the differenced process \((\nabla^d \nabla^D \varepsilon_t) \) where \(\varepsilon_t \) is given, for all \(1 \leq t \leq T \), by the vector form

\[
\varepsilon = \left(I - U(U'U)^{-1}U' \right) Y
\]

is a stationary solution of the coupled model suitably specified.

• ADF and KPSS tests: \(d \) and \(D \).
• Box and Jenkins methodology: \(p, q, r, P, Q, s \).
• **Forecasting using time series analysis.**

 - Let $\tilde{\epsilon}_{T+1}$ be the predictor of (ϵ_t) at stage $T + 1$.
 - Let \hat{c}_T be the OLS estimate of c.
 - Assume that \hat{r} has been evaluated.
 - The predictor at horizon 1 is given by
 \[
 \tilde{Y}_{T+1} = \hat{c}_{0,T} + \sum_{k=1}^{\hat{r}} \hat{c}_{k,T} U_{T-k+2} + \tilde{\epsilon}_{T+1}.
 \]
 - The predictor at horizon H is given by
 \[
 \tilde{Y}_{T+H} = \hat{c}_{0,T} + \sum_{k=1}^{\hat{r}} \hat{c}_{k,T} U_{T-k+H+1} + \tilde{\epsilon}_{T+H}.
 \]
1. Introduction

2. On a SARIMAX coupled modelling
 - Stationary ARMA processes
 - Identification for stationary AR(\(p\)) and MA(\(q\)) processes
 - Linear relationship between consumption and temperature
 - The SARIMAX modelling
 - Application to forecasting

3. Application to forecasting on a load curve
 - Procedure
 - Seasonality and stationarity
 - ACF and PACF
 - Selection criteria
 - Selection on bayesian criteria
 - Selection on bayesian criteria

4. Application on a huge dataset
 - Technical issues
 - Procedure
 - Modelling
 - Forecasting

5. Conclusion
Application to forecasting on a load curve

Procedure
Application to forecasting on a load curve

Procedure

- **Box and Jenkins methodology.**
 - For a given \(\hat{r} \), estimation of the residual set \((\hat{\varepsilon}_t)\), for all \(1 \leq t \leq T \),

 \[
 \hat{\varepsilon}_t = Y_t - \hat{c}_0, T - \sum_{k=1}^{\hat{r}} \hat{c}_k, T U_{t-k+1}.
 \]

 - Select \(\hat{s} \) by investigating the seasonality of \((\hat{\varepsilon}_t)\).
 - Select \(\hat{d} \) and \(\hat{D} \) by investigating the stationarity of \((\nabla^d \nabla^D_s \hat{\varepsilon}_t)\).
 - Select \(\hat{p}, \hat{q}, \hat{P} \) and \(\hat{Q} \) by looking at ACF and PACF on \((\nabla^d \nabla^D_s \hat{\varepsilon}_t)\).
 - Adjust \(\hat{p}, \hat{q}, \hat{r}, \hat{P} \) and \(\hat{Q} \) by minimizing bayesian or prediction criteria.
 - Test of white noise on the fitted innovations.
• **Seasonality.**
 - Fourier spectrogram on $(\hat{\varepsilon}_t)$, $(\nabla_{12}\hat{\varepsilon}_t)$ and $(\nabla_{24}\hat{\varepsilon}_t)$, for $T = 730 \times 24$ and $\hat{r} = 1$.

• **Stationarity.**
 - $(\hat{\varepsilon}_t)$ is not stationary.
 - $(\nabla\hat{\varepsilon}_t)$, $(\nabla_{24}\hat{\varepsilon}_t)$ and $(\nabla\nabla_{24}\hat{\varepsilon}_t)$ are stationary around a deterministic trend.
• **Sample autocorrelations.**
 - On the estimated residuals ($\hat{\varepsilon}_t$).

![Sample autocorrelations](image1)

• On the seasonally differenced residuals ($\nabla_{24}\hat{\varepsilon}_t$).

![Seasonally differenced residuals](image2)
• **Sample autocorrelations.**
 - On the doubly differenced residuals ($\nabla \nabla_{24} \hat{e}_t$).

![Graph showing autocorrelation](image)

• **Identified models.**
 - SARIMAX$(p, 0, 0, r) \times (P, 1, Q)_{24}$ with $p \leq 5$, $r \leq 2$, $P \leq 1$ and $Q = 1$.
 - SARIMAX$(p, 1, q, r) \times (P, 1, Q)_{24}$ with $p \leq 1$, $q = 2$, $r \leq 2$, $P \leq 1$ and $Q = 1$.
Application to forecasting on a load curve

Selection criteria

- **Bayesian criteria.**
 - Akaike information criterion and Schwarz bayesian criterion,
 \[
 \text{AIC} = -2 \log \mathcal{L} + 2k \quad \text{and} \quad \text{SBC} = -2 \log \mathcal{L} + k \log T
 \]
 where \(\mathcal{L} \) is the model likelihood and \(k \) the number of parameters.
 - Log-likelihood.
 - Overall randomness of successive innovations.

- **Prediction criteria.**
 - We define \(C_A \) and \(C_R \) as follows,
 \[
 C_A = \frac{1}{NH} \sum_{k=1}^{NH} \left| \tilde{C}_{T+k} - C_{T+k} \right| \quad \text{and} \quad C_R = \left(\sum_{k=1}^{NH} C_{T+k} \right)^{-1} \left(\sum_{k=1}^{NH} \left| \tilde{C}_{T+k} - C_{T+k} \right| \right)
 \]
 where \((\tilde{C}_{T+1}, \ldots, \tilde{C}_{T+NH})\) are \(N \) consecutive predictions at horizon \(H \) from time \(T \).
Application to forecasting on a load curve

Selection on bayesian criteria.

- Selection on bayesian criteria.

<table>
<thead>
<tr>
<th>Model</th>
<th>p</th>
<th>d</th>
<th>q</th>
<th>r</th>
<th>P</th>
<th>D</th>
<th>Q</th>
<th>s</th>
<th>AIC</th>
<th>SBC</th>
<th>LL</th>
<th>VAR</th>
<th>WN</th>
</tr>
</thead>
<tbody>
<tr>
<td>SARIMAX</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>24</td>
<td>-362.4</td>
<td>-330.4</td>
<td>186.2</td>
<td>0.053</td>
<td>✓</td>
</tr>
<tr>
<td>SARIMAX</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>24</td>
<td>-393.6</td>
<td>-348.8</td>
<td>203.8</td>
<td>0.053</td>
<td>✓</td>
</tr>
<tr>
<td>SARIMAX</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>24</td>
<td>-424.7</td>
<td>-367.2</td>
<td>221.4</td>
<td>0.053</td>
<td>✓</td>
</tr>
<tr>
<td>SARIMAX</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>24</td>
<td>-446.9</td>
<td>-389.4</td>
<td>232.5</td>
<td>0.052</td>
<td>✓</td>
</tr>
<tr>
<td>SARIMAX</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>24</td>
<td>-457.2</td>
<td>-393.3</td>
<td>238.6</td>
<td>0.052</td>
<td>✓</td>
</tr>
<tr>
<td>SARIMAX</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>24</td>
<td>100.4</td>
<td>132.3</td>
<td>-45.2</td>
<td>0.059</td>
<td></td>
</tr>
<tr>
<td>SARIMAX</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>24</td>
<td>-238.7</td>
<td>-200.4</td>
<td>125.4</td>
<td>0.055</td>
<td></td>
</tr>
<tr>
<td>SARIMAX</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>24</td>
<td>-389.5</td>
<td>-351.2</td>
<td>200.8</td>
<td>0.053</td>
<td></td>
</tr>
<tr>
<td>SARIMAX</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>24</td>
<td>-435.1</td>
<td>-384.0</td>
<td>225.6</td>
<td>0.052</td>
<td>✓</td>
</tr>
</tbody>
</table>

- Modelling with SARIMAX($3, 0, 2, 2) \times (0, 1, 1)_{24}$ with $T = 730 \times 24$.

![Graph showing load curve and SARIMAX model comparison]
Application to forecasting on a load curve
Selection on bayesian criteria

- **Selection on bayesian criteria.**
 - Modelling with SARIMAX$(3, 0, 2, 2) \times (0, 1, 1)_{24}$ with $T = 730 \times 24$.

- Least squares estimation, for all $28 \leq t \leq T$,

\[
\begin{align*}
C_t &= \exp \left(\hat{c}_0 + \hat{c}_1 U_t + \hat{c}_2 U_{t-1} + \varepsilon_t \right) - \exp(5), \\
\varepsilon_t &= \varepsilon_{t-24} + \hat{a}_1 (\varepsilon_{t-1} - \varepsilon_{t-25}) + \hat{a}_2 (\varepsilon_{t-2} - \varepsilon_{t-26}) + \hat{a}_3 (\varepsilon_{t-3} - \varepsilon_{t-27}) \\
&\quad + (V_t - \hat{b}_1 V_{t-1} - \hat{b}_2 V_{t-2}) - \beta_1 (V_{t-24} - \hat{b}_1 V_{t-25} - \hat{b}_2 V_{t-26}),
\end{align*}
\]

in which $\hat{c}_0 = 7.9871, \hat{c}_1 = 0.0166, \hat{c}_2 = -0.0420, \hat{a}_1 = 0.4776, \hat{a}_2 = 0.9030, \hat{a}_3 = -0.4305, \hat{b}_1 = 0.0801, \hat{b}_2 = -0.8524, \beta_1 = -0.8125.$
Application to forecasting on a load curve

Selection on prediction criteria.

- Forecasting with SARIMAX(1, 0, 1, 2) × (0, 1, 1)_{24} with \(T = 730 \times 24 \).
Selection on prediction criteria.

- Forecasting with SARIMAX(1, 0, 1, 2) × (0, 1, 1)_{24} with \(T = 730 \times 24 \).

- Parsimony is a central issue in time series analysis.
- Results slightly improved with a sliding window of 2 months.
- Around 2% of relative error between \((\tilde{Y}_{T+1}, \ldots, Y_{T+NH}) \) and \((Y_{T+1}, \ldots, \tilde{Y}_{T+NH}) \).
• **Refining...**
 - Influence of r and the size of the sliding windows M on C_R.

 - $M = 2$ months is the optimal sliding window.
 - No more influence of r as soon as $r \geq 2$.
Introduction

2 On a SARIMAX coupled modelling
 - Stationary ARMA processes
 - Identification for stationary AR(p) and MA(q) processes
 - Linear relationship between consumption and temperature
 - The SARIMAX modelling
 - Application to forecasting

3 Application to forecasting on a load curve
 - Procedure
 - Seasonality and stationarity
 - ACF and PACF
 - Selection criteria
 - Selection on bayesian criteria
 - Selection on bayesian criteria

4 Application on a huge dataset
 - Technical issues
 - Procedure
 - Modelling
 - Forecasting

5 Conclusion
Application on a huge dataset

Technical issues

- **Huge dataset.**
 - More than 2000 load curves.
 - Around 70% nonthermosensitive.
 - High quality: more than 9 months of data per curve, very little missing values.

- **Technical problems.**
 - Exponential growth of computing time with parsimony.
Application on a huge dataset

Procedure

- **On a representative panel.**
 - Selection of 200 heterogeneous thermosensitive curves (size, peaks intensity, etc.)
 - Massive statistical KPSS procedures and visual first conclusions.
 - Bayesian criteria to select the best models **on average**.
 - Application to forecasting.
 - Prediction criteria to select the best models **on average**.
 - All parameters vary in their neighborhood.
 - Consider technical issues: a night of computation for some models.

- **2 more bayesian criteria.**
 - Reliability index.
 - Percentage of significance of the first exogenous coefficient.
 - Assess the relevance on large-scale.
 - Caution: main assumptions for t-test not satisfied!
Application on a huge dataset
Modelling

- **Stationarity, for \(r = 1 \) and \(M = 3 \) months.**
 - Less than 30% of \((\hat{\varepsilon}_t)\) stationary.
 - 100% of \((\nabla_{24}\hat{\varepsilon}_t)\) and \((\nabla \nabla_{24}\hat{\varepsilon}_t)\) stationary.
 - SARIMAX\((p, 0, q, r) \times (P, 1, Q)_{24}\) and SARIMAX\((p, 1, q, r) \times (P, 1, Q)_{24}\).
 - Making \(r \) increase.

- **Relative evolution of AIC and SBC with \(r \).**

![Graph showing relative evolution of AIC and SBC with \(r \).]

- Clearly, \(r = 1 \).
- SARIMAX\((3, 0, 2, 1) \times (0, 1, 1)_{24}\), SARIMAX\((3, 1, 2, 1) \times (0, 1, 1)_{24}\).
- Gain over the naive model: \(\approx 50\% \).
- Gain over the SARIMA model: \(\approx 2\% \).
• Significance of c_1 for $M = 6$ months.

• Substantial on thermosensitive curves.
Application on a huge dataset
Forecasting

- **Evolution of C_R.**

- $\text{SARIMAX}(1, 1, 1, 1) \times (0, 1, 1)_{24}$ and $\text{SARIMAX}(2, 0, 1, 1) \times (0, 1, 1)_{24}$.
- $M = 2$ months.
- Gain over the naive model: $\approx 65\%$.
- Gain over the SARIMA model: $\approx 3\%$.
• Examples.
1 Introduction

2 On a SARIMAX coupled modelling
 - Stationary ARMA processes
 - Identification for stationary AR(p) and MA(q) processes
 - Linear relationship between consumption and temperature
 - The SARIMAX modelling
 - Application to forecasting

3 Application to forecasting on a load curve
 - Procedure
 - Seasonality and stationarity
 - ACF and PACF
 - Selection criteria
 - Selection on bayesian criteria
 - Selection on bayesian criteria

4 Application on a huge dataset
 - Technical issues
 - Procedure
 - Modelling
 - Forecasting

5 Conclusion
• **Nonthermosensitive curves.**
 - SARIMA(1, 0, 1) × (0, 1, 1)\textsubscript{24}

• **Thermosensitive curves.**
 - SARIMAX(1, 1, 1, 1) × (0, 1, 1)\textsubscript{24} and SARIMAX(2, 0, 1, 1) × (0, 1, 1)\textsubscript{24}.

• **A careful study curve by curve would provide better results.**
 - Of course...

• **Caution : technical issues for huge datasets.**
 - Is a computation time ×1000 for a gain of 0.1% relevant?
 - Engineering approach, corporate vision.

• **Thank you for your attention.**

• **Comments or questions ? 🤓**