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Introduction

• Motivations.
• New energy meters to gather individual consumption with high frequencie.
• Economic issue for EDF : anticipate to optimize.

• Objectives.
• Distinguish nonthermosensitive from thermosensitive customers.
• Intraday daily forecasting.
• Introduce temperature as an exogenous contribution.
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Introduction

• Detecting thermosensitivity.
• Deterministic criterion.
• Thermosensitivity if

max
∆≤t≤N

Mt − min
∆≤t≤N

Mt > δ

where Mt is the empirical median of
(
Ct . . . Ct−∆+1

)
.

• ∆ = 1440 et δ = 1000.

• More pertinent than SR/DR.
• 70% of nonthermosensitive customers, only including 75% of SR.
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On a SARIMAX coupled modelling
Stationary ARMA processes

• Stationary ARMA processes.

Definition (Stationarity)

A time series (Yt ) is said to be weakly stationary if, for all t ∈ Z, E[Y 2
t ] <∞, E[Yt ] = m

and, for all s, t ∈ Z, Cov(Yt ,Ys) = Cov(Yt−s,Y0).

Definition (ARMA)

Let (Yt ) be a stationary time series with zero mean. It is said to be an ARMA(p, q)
process if, for every t ∈ Z,

Yt −
p∑

k=1

ak Yt−k = εt +

q∑
k=1

bkεt−k

where (εt ) is a white noise of variance σ2 > 0, a ∈ Rp and b ∈ Rq .
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On a SARIMAX coupled modelling
Stationary ARMA processes

• Causality of ARMA processes.
• Compact expression, for all 1 ≤ t ≤ T ,

A(B)Yt = B(B)εt

where the polynomials

A(z) = 1− a1z − . . .− apzp and B(z) = 1 + b1z + . . . + bqzq
.

Definition (Causality)

Let (Yt ) be an ARMA(p, q) process for which the polynomials A and B have no
common zeroes. Then, (Yt ) is causal if and only if A(z) 6= 0 for all z ∈ C such that
|z| ≤ 1.

• Implications.
• Causality implies the existence of a MA(∞) structure for (Yt ).
• Causality implies stationarity of the process.
• On N∗, causality often coincides with stationarity.
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On a SARIMAX coupled modelling
Stationary ARMA processes

• Existence and unicity of a stationary solution.

Proposition

If A(z) 6= 0 for all z ∈ C such that |z| ≤ 1, then the ARMA equation A(B)Yt = B(B)εt
have the unique stationary solution

Yt =
∞∑

k=0

ψkεt−k ,

and the coefficients (ψk )k∈N are determined by the relation

A−1(z)B(z) =
∞∑

k=0

ψk zk with
∞∑

k=0

ψ2
k <∞.

• Explosive cases.
• On Z, no zeroes on the unit circle is a sufficient condition.
• Irrelevant for practical purposes.
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On a SARIMAX coupled modelling
Identification for stationary AR(p) and MA(q) processes

• Autocorrelation function.
• To identify q.

Definition (ACF)

Let (Yt ) be a stationary time series. The autocorrelation function ρ associated with (Yt )
is defined, for all t ∈ Z, as

ρ(t) =
γ(t)
γ(0)

where the autocovariance function γ(t) = Cov(Yt ,Y0).

Proposition

The stationary time series (Yt ) with zero mean is a MA(q) process such that bq 6= 0 if
and only if ρ(q) 6= 0 and ρ(t) = 0 for all |t | > q.

9 / 40



On a SARIMAX coupled modelling
Identification for stationary AR(p) and MA(q) processes

• Examples.
• MA(1) : only ρ(1) nonzero, exponential decay of α(t).

• MA(2) : only ρ(1) and ρ(2) nonzero, damped exponential and sine wave for α(t).
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On a SARIMAX coupled modelling
Identification for stationary AR(p) and MA(q) processes

• Partial autocorrelation function.
• To identify p.

Definition (PACF)

Let (Yt ) be a stationary time series with zero mean. The partial autocorrelation
function α is defined as α(0) = 1, and, for all t ∈ N ∗, as

α(t) = φt, t

where (φt, t )t∈N ∗ are computed via the Durbin-Levinson recursion.

Proposition

If there exists a square-integrable sequence (ψk )k∈N such that (Yt ) has a MA(∞)
expression with ψ0 = 1, then the stationary time series (Yt ) with zero mean is an
AR(p) process such that ap 6= 0 if and only if α(p) 6= 0 and α(t) = 0 for all t > p.

11 / 40



On a SARIMAX coupled modelling
Identification for stationary AR(p) and MA(q) processes

• Examples.
• AR(1) : only α(1) nonzero, exponential decay of ρ(t).

• AR(2) : only α(1) and α(2) nonzero, damped exponential and sine wave for ρ(t).
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On a SARIMAX coupled modelling
Identification for stationary AR(p) and MA(q) processes

• Examples.
• ARMA(1,1) : exponential decay of ρ(t) and α(t) from first lag.

• ARMA(2,2) : exponential decay of ρ(t) and α(t) from second lag.
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On a SARIMAX coupled modelling
Linear relationship between consumption and temperature

• Variance-stabilizing Box-Cox transformation.
• Logarithmic transform given, for all 1 ≤ t ≤ T , by

Yt = log
(
Ct + em)

where m ensures that Yt = m when Ct = 0.
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On a SARIMAX coupled modelling
Linear relationship between consumption and temperature

• Linear relationship between consumption and temperature.
• On a thermosensitive load curve, for all 1 ≤ t ≤ T ,

Yt = c0 + C(B)Ut + εt .

• For all z ∈ C,

C(z) =

r−1∑
k=0

ck+1zk
.

• Unknown vector c ∈ Rr+1 estimated by OLS.

• Seasonal residuals.
• Residuals (εt ) regarded as a seasonal time series.
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On a SARIMAX coupled modelling
The SARIMAX modelling

• Residuals (εt ) as a seasonal time series.
• SARIMA(p, d, q)× (P,D,Q)s modelling, for all 1 ≤ t ≤ T ,

(1− B)d (1− Bs)DA(B)As(B)εt = B(B)Bs(B)Vt ,

where (Vt ) is a white noise of variance σ2 > 0.
• Polynomials defined, for all z ∈ C, as

A(z) = 1−
p∑

k=1

ak zk
, As(z) = 1−

P∑
k=1

αk zsk
,

B(z) = 1−
q∑

k=1

bk zk
, Bs(z) = 1−

Q∑
k=1

βk zsk
,

• Parameters a ∈ Rp , b ∈ Rq , α ∈ RP and β ∈ RQ estimated by GLS.
• A and As are causal.
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On a SARIMAX coupled modelling
The SARIMAX modelling

• The dynamic coupled modelling.

Definition (SARIMAX)

In the particular framework of the study, a random process (Yt ) will be said to follow a
SARIMAX(p, d , q, r)× (P,D,Q)s coupled modelling if, for all 1 ≤ t ≤ T , it satisfies{

Yt = c0 + C(B)Ut + εt ,

(1− B)d (1− Bs)DA(B)As(B)εt = B(B)Bs(B)Vt .

• As soon as d + D > 0,

(1− B)d (1− Bs)DA(B)As(B) (Yt − C(B)Ut ) = B(B)Bs(B)Vt .
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On a SARIMAX coupled modelling
The SARIMAX modelling

• Existence of a stationary solution.
• Let I be the identity matrix of order T and

U =


1 UT UT−1 . . . UT−r+1
1 UT−1 UT−2 . . . UT−r

...
...

...
...

1 U1 U0 . . . U−r+2

 , Y =


Y1
Y2

...
YT

 .

Theorem

Assume that U ′U is invertible. Then, the differenced process (∇d∇D
s εt ) where εt is given, for all

1 ≤ t ≤ T , by the vector form
ε =

(
I − U(U ′U)−1U ′

)
Y

is a stationary solution of the coupled model suitably specified.

• ADF and KPSS tests : d and D.
• Box and Jenkins methodology : p, q, r ,P,Q, s.
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On a SARIMAX coupled modelling
Application to forecasting

• Forecasting using time series analysis.
• Let ε̃T +1 be the predictor of (εt ) at stage T + 1.
• Let ĉT be the OLS estimate of c.
• Assume that r̂ has been evaluated.
• The predictor at horizon 1 is given by

ỸT +1 = ĉ0,T +
r̂∑

k=1

ĉk,T UT−k+2 + ε̃T +1.

• The predictor at horizon H is given by

ỸT +H = ĉ0,T +
r̂∑

k=1

ĉk,T UT−k+H+1 + ε̃T +H .
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Application to forecasting on a load curve
Procedure
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Application to forecasting on a load curve
Procedure

• Box and Jenkins methodology.
• For a given r̂ , estimation of the residual set (ε̂t ), for all 1 ≤ t ≤ T ,

ε̂t = Yt − ĉ0,T −
r̂∑

k=1

ĉk,T Ut−k+1.

• Select ŝ by investigating the seasonality of (ε̂t ).

• Select d̂ and D̂ by investigating the stationarity of (∇d∇D
ŝ ε̂t ).

• Select p̂, q̂, P̂ and Q̂ by looking at ACF and PACF on (∇d̂∇D̂
ŝ ε̂t ).

• Adjust p̂, q̂, r̂ , P̂ and Q̂ by minimizing bayesian or prediction criteria.
• Test of white noise on the fitted innovations.
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Application to forecasting on a load curve
Seasonality and stationarity

• Seasonality.
• Fourier spectrogram on (ε̂t ), (∇12ε̂t ) and (∇24ε̂t ), for T = 730× 24 and r̂ = 1.

• Stationarity.
• (ε̂t ) is not stationary.
• (∇ε̂t ), (∇24ε̂t ) and (∇∇24ε̂t ) are stationary around a deterministic trend.
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Application to forecasting on a load curve
ACF and PACF

• Sample autocorrelations.
• On the estimated residuals (ε̂t ).

• On the seasonally differenced residuals (∇24ε̂t ).
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Application to forecasting on a load curve
ACF and PACF

• Sample autocorrelations.
• On the doubly differenced residuals (∇∇24ε̂t ).

• Identified models.
• SARIMAX(p, 0, 0, r)× (P, 1,Q)24 with p ≤ 5, r ≤ 2, P ≤ 1 and Q = 1.
• SARIMAX(p, 1, q, r)× (P, 1,Q)24 with p ≤ 1, q = 2, r ≤ 2, P ≤ 1 and Q = 1.

25 / 40



Application to forecasting on a load curve
Selection criteria

• Bayesian criteria.
• Akaike information criterion and Schwarz bayesian criterion,

AIC = −2 logL + 2k and SBC = −2 logL + k log T

where L is the model likelihood and k the number of parameters.
• Log-likelihood.
• Overall randomness of successive innovations.

• Prediction criteria.
• We define CA and CR as follows,

CA =
1

NH

NH∑
k=1

∣∣∣C̃T +k − CT +k

∣∣∣ and CR =

(
NH∑
k=1

CT +k

)−1( NH∑
k=1

∣∣∣C̃T +k − CT +k

∣∣∣)

where (C̃T +1, . . . , C̃T +NH ) are N consecutive predictions at horizon H from time T .
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Application to forecasting on a load curve
Selection on bayesian criteria

• Selection on bayesian criteria.
p d q r P D Q s AIC SBC LL VAR WN

SARIMAX 1 0 0 1 0 1 1 24 -362.4 -330.4 186.2 0.053
SARIMAX 3 0 0 1 0 1 1 24 -393.6 -348.8 203.8 0.053 X
SARIMAX 5 0 0 1 0 1 1 24 -424.7 -367.2 221.4 0.053 X
SARIMAX 3 0 2 1 0 1 1 24 -446.9 -389.4 232.5 0.052 X
SARIMAX 3 0 2 2 0 1 1 24 -457.2 -393.3 238.6 0.052 X
SARIMAX 0 1 1 1 0 1 1 24 100.4 132.3 -45.2 0.059
SARIMAX 0 1 2 1 0 1 1 24 -238.7 -200.4 125.4 0.055
SARIMAX 1 1 1 1 0 1 1 24 -389.5 -351.2 200.8 0.053
SARIMAX 2 1 2 1 0 1 1 24 -435.1 -384.0 225.6 0.052 X

• Modelling with SARIMAX(3, 0, 2, 2)× (0, 1, 1)24 with T = 730× 24.
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Application to forecasting on a load curve
Selection on bayesian criteria

• Selection on bayesian criteria.
• Modelling with SARIMAX(3, 0, 2, 2)× (0, 1, 1)24 with T = 730× 24.

• Least squares estimation, for all 28 ≤ t ≤ T ,
Ct = exp

(
ĉ0 + ĉ1Ut + ĉ2Ut−1 + εt

)
− exp(5),

εt = εt−24 + â1(εt−1 − εt−25) + â2(εt−2 − εt−26) + â3(εt−3 − εt−27)

+ (Vt − b̂1Vt−1 − b̂2Vt−2)− β̂1(Vt−24 − b̂1Vt−25 − b̂2Vt−26),

in which ĉ0 = 7.9871, ĉ1 = 0.0166, ĉ2 = −0.0420, â1 = 0.4776, â2 = 0.9030,
â3 = −0.4305, b̂1 = 0.0801, b̂2 = −0.8524, β̂1 = −0.8125.

28 / 40



Application to forecasting on a load curve
Selection on prediction criteria

• Selection on prediction criteria.
p d q r P D Q s CA CR

SARIMAX 1 0 0 1 0 1 1 24 193.9 0.1814
SARIMAX 1 0 1 2 0 1 1 24 193.3 0.1808
SARIMAX 3 0 0 1 0 1 1 24 196.0 0.1833
SARIMAX 3 0 2 1 0 1 1 24 199.9 0.1870
SARIMAX 3 0 2 2 0 1 1 24 198.9 0.1861
SARIMAX 1 1 1 1 0 1 1 24 195.4 0.1828
SARIMAX 2 1 2 1 0 1 1 24 195.3 0.1828

• Forecasting with SARIMAX(1, 0, 1, 2)× (0, 1, 1)24 with T = 730× 24.
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Application to forecasting on a load curve
Selection on prediction criteria

• Selection on prediction criteria.
• Forecasting with SARIMAX(1, 0, 1, 2)× (0, 1, 1)24 with T = 730× 24.

• Parsimony is a central issue in time series analysis.
• Results slightly improved with a sliding window of 2 months.
• Around 2% of relative error between (ỸT +1, . . . ,YT +NH ) and (YT +1, . . . , ỸT +NH ).
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Application to forecasting on a load curve
Selection on prediction criteria

• Refining...
• Influence of r and the size of the sliding windows M on CR .

• M = 2 months is the optimal sliding window.
• No more influence of r as soon as r ≥ 2.
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Application on a huge dataset
Technical issues

• Huge dataset.
• More than 2000 load curves.
• Around 70% nonthermosensitive.
• High quality : more than 9 months of data per curve, very little missing values.

• Technical problems.
• Exponential growth of computing time with parsimony.
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Application on a huge dataset
Procedure

• On a representative panel.
• Selection of 200 heterogeneous thermosensitive curves (size, peaks intensity, etc.)
• Massive statistical KPSS procedures and visual first conclusions.
• Bayesian criteria to select the best models on average.
• Application to forecasting.
• Prediction criteria to select the best models on average.
• All parameters vary in their neighborhood.
• Consider technical issues : a night of computation for some models.

• 2 more bayesian criteria.
• Reliability index.
• Percentage of significance of the first exogenous coefficient.
• Assess the relevance on large-scale.
• Caution : main assumptions for t-test not satisfied !
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Application on a huge dataset
Modelling

• Stationarity, for r = 1 and M = 3 months.
• Less than 30% of (ε̂t ) stationary.
• 100% of (∇24ε̂t ) and (∇∇24ε̂t ) stationary.
• SARIMAX(p, 0, q, r)× (P, 1,Q)24 and SARIMAX(p, 1, q, r)× (P, 1,Q)24.
• Making r increase.

• Relative evolution of AIC and SBC with r .

• Clearly, r = 1.
• SARIMAX(3, 0, 2, 1)× (0, 1, 1)24, SARIMAX(3, 1, 2, 1)× (0, 1, 1)24.
• Gain over the naive model : ≈ 50%.
• Gain over the SARIMA model : ≈ 2%.
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Application on a huge dataset
Modelling

• Significance of c1 for M = 6 months.

• Substantial on thermosensitive curves.
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Application on a huge dataset
Forecasting

• Evolution of CR .

• SARIMAX(1, 1, 1, 1)× (0, 1, 1)24 and SARIMAX(2, 0, 1, 1)× (0, 1, 1)24.
• M = 2 months.
• Gain over the naive model : ≈ 65%.
• Gain over the SARIMA model : ≈ 3%.
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Application on a huge dataset
Forecasting

• Examples.
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Conclusion

• Nonthermosensitive curves.
• SARIMA(1, 0, 1)× (0, 1, 1)24

• Thermosensitive curves.
• SARIMAX(1, 1, 1, 1)× (0, 1, 1)24 and SARIMAX(2, 0, 1, 1)× (0, 1, 1)24.

• A careful study curve by curve would provide better results.
• Of course...

• Caution : technical issues for huge datasets.
• Is a computation time ×1000 for a gain of 0.1% relevant ?
• Engineering approach, corporate vision.

• Thank you for your attention.

• Comments or questions ? ,
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