
Journal of the Korean Statistical Society 41 (2012) 17–36

Contents lists available at SciVerse ScienceDirect

Journal of the Korean Statistical Society

journal homepage: www.elsevier.com/locate/jkss

A new approach on recursive and non-recursive SIR methods
Bernard Bercu a,b, Thi Mong Ngoc Nguyen a,c, Jérôme Saracco a,c,d,∗

a Institut de Mathématiques de Bordeaux, UMR CNRS 5251, Université de Bordeaux, 351 cours de la libération, 33405 Talence Cedex, France
b INRIA Bordeaux Sud-Ouest, ALEA team, France
c INRIA Bordeaux Sud-Ouest, CQFD team, France
d Institut Polytechnique de Bordeaux, 1 avenue du Dr Albert Schweitzer, 33402 Talence Cedex, France

a r t i c l e i n f o

Article history:
Received 30 August 2010
Accepted 5 May 2011
Available online 11 June 2011

AMS 2000 subject classifications:
primary 62H99
secondary 62F99

Keywords:
Recursive estimation
Semiparametric regression model
Sliced inverse regression (SIR)

a b s t r a c t

We consider a semiparametric single index regression model involving a p-dimensional
quantitative covariable x and a real dependent variable y. A dimension reduction is included
in this model via an index x′β . Sliced inverse regression (SIR) is a well-known method to
estimate the direction of the Euclidean parameter β which is based on a ‘‘slicing step’’ of y
in the population and sample versions. The goal of this paper is twofold. On the one hand,
we focus on a recursive version of SIR which is also suitable for multiple indices model.
On the other hand, we propose a new method called SIRoneslice when the regression
model is a single index model. The SIRoneslice estimator of the direction of β is based
on the use of only one ‘‘optimal’’ slice chosen among the H slices. Then, we provide its
recursive version. We give an asymptotic result for the SIRoneslice approach. Simulation
study shows good numerical performances of the SIRoneslice method and clearly exhibits
the main advantage of using recursive versions of the SIR and SIRoneslice methods from
a computational time point of view. A real dataset is also used to illustrate the approach.
Some extensions are discussed in concluding remarks. The proposedmethods and criterion
have been implemented in R and the corresponding codes are available from the authors.

© 2011 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

In statistical applications, high-dimensional data became common. In a regression framework, let y ∈ R be the response
variable and x ∈ Rp be the regressor. In order to study the relationship between y and x, it is usual to impose assumptions
for a specific structure on themean regression function of y on x such as linearity or additivity. To cope with dimensionality,
in a dimension reduction setting, many authors suppose that x can be replaced by a linear combination of its components,
β ′x, without losing information on the conditional distribution of y given x. This assumption can be expressed as

y ⊥ x | β ′x (1)

where the notation u1 ⊥ u2 | u3 means that the random variable u1 is independent of the random variable u2 given any
values for the random variable u3. An example where (1) holds is the following single index model with an additive error:

y = f (β ′x) + ε, (2)
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where ε ⊥ x, the distribution of ε is arbitrary and unknown, and f is an unknown real-valued function. In this model,
sufficient dimension reduction of the regression is achieved and leads to summary plot of y versus β ′x which provides
graphical modeling information. Then, it is possible to nonparametrically estimate the link function f on the reduced data,
more efficiently in the sense that the curse of dimensionality has been overcome. Finally, when (1) holds, it straightforwardly
also holds for any vector collinear to β . Let us call E := span(β) the dimension reduction subspace, also named effective
dimension reduction (EDR) space following Duan and Li (1991) in their original presentation of sliced inverse regression
(SIR).

Li (1991) consider a multiple indices regression model. The Euclidean parameter β is a p × K matrix: β = [β1, . . . , βK ]

where the vectors βk are assumed linearly independent. The EDR space is now the K -dimensional linear subspace of Rp

spanned by the βk’s.
Methods based on the use of inverse regression are widely available in literature for estimating the EDR space. In order

for inverse regression to be useful in estimating the EDR space, some of them, like SIR and related methods (for instance
principal Hessian direction introduced by Li (1992) or sliced average variance estimation discussed by Cook (2000)) place
certain conditions on the marginal distribution of the covariable x. In this paper, we will focus on SIR. Let us then now
recall the theory of SIR and its necessary assumption on x. The SIR approach relies on the following assumption often called
linearity condition (LC):

For all b ∈ Rp, E

b′x | β ′x


is linear in x′β. (3)

The LC is required to hold only for the true Euclidean parameter β . Since β is unknown, it is not possible in practice to verify
a priori this assumption. Hence, we can assume that LC holds for all possible values of β , which is equivalent to elliptical
symmetry of the distribution of x. Recall that the well-known multivariate normal distribution is an example of such a
distribution. Finally, Hall and Li (1993) mentioned that the LC is not a severe restriction because this LC holds to a good
approximation in many problems as the dimension p of the predictors increases, see also Chen and Li (1998) or Cook and Ni
(2005) for interesting discussions on the LC.

Let us consider a monotone transformation T . Under model (1) and LC, Duan and Li (1991) showed that the centered
inverse regression curve satisfies:

E[x | T (y)] − µ ∈ Span(Σβ), (4)

where µ := E[x] and Σ := V(x). This result implies that the space spanned by the centered inverse curve, {E[x |

T (y)]−E[x] : y ∈ Y} where Y is the support of response variable y, is a subspace of the EDR space but it does not guarantee
equality. For instance, pathological model has been identified in the literature and are called symmetric dependent model:
that is model for which the centered inverse regression curve is degenerated.

From (4), the centered inverse regression curve can be used to recover the EDR space if the model is not pathological.
Indeed, a direct consequence of this result is that the covariance matrix of this curve,

Γ := V(E[x | T (y)]),

is degenerate in any direction Σ-orthogonal to β (i.e. to the βk’s for a multiple indices model). Therefore, the eigenvectors
associated with the nonnull eigenvalues of Σ−1Γ are EDR directions, which means that they span the EDR space E.

In the slicing step of SIR, the range of y is partitioned into H slices {s1, . . . , sH}. With such slicing, the covariance matrix
Γ can be straightforwardly written as

Γ :=

H
h=1

ph(mh − µ)(mh − µ)′

where ph = P(y ∈ sh) and mh = E[x | y ∈ sh]. Let us consider a random sample {(xi, yi), i = 1, . . . , n} generated from
model (1). By substituting empirical versions of µ, Σ , ph and mh for their theoretical counterparts, we obtain an estimated
basis of E spanned by the eigenvector b̂SIR associated with the largest eigenvalue of the estimate Σ−1

n
Γn of Σ−1Γ where

Σn =
1
n

n
i=1

(xi − x̄n)(xi − x̄n)′ and Γn =

H
h=1

p̂h,n(m̂h,n − x̄n)(m̂h,n − x̄n)′,

with

x̄n =
1
n

n
i=1

xi, p̂h,n =
1
n

n
i=1

I[yi∈sh] =
n̂h,n

n
, m̂h,n =

1
n̂h,n


i∈sh

xi,

the notation I[.] standing for indicator function. This approach is the one proposed by Duan and Li (1991) and Li (1991) when
they initially introduced the SIR approach. The SIR method has been extensively studied by several authors, see for instance
Chen and Li (1998), Cook and Ni (2005), Hsing and Carroll (1992), Saracco (1997) and Zhu and Ng (1995) among others.

The goal of this paper is twofold. On the one hand, we focus on a recursive version of SIR which is suitable for multiple
indices model and has never been introduced in the previous literature. The recursive approach relies on the use of the
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estimator defined on the n − 1 first observations (xi, yi) and the new observation (xn, yn). For instance, we can illustrate
this recursive framework with the following practical example where the data do not arrive at the same time and thus
the recursive version of SIR is useful. Let us consider a database of costumers (of a website for example) which increases
as time goes by. The statistician uses this database in order to infer the association between a dependent variable y (the
amount of expenses for example) and a p-dimensional vector x of covariables (some numerical information given by the
consumer when he creates an account on this website for instance). For each new customer, the recursive SIR approach
does not require the use of the entire database (which can be huge) to update the relationship between y and x (that is the
EDR direction) and the time saving will be important from a computational point of view. On the other hand, we propose a
new method called SIRoneslice when the regression model is a single index model. We define in Section 2 the SIRoneslice
estimator of the direction of β based on the use of only one ‘‘optimal’’ slice chosen among the H slices. Then, we provide
in Section 3 the recursive versions of the SIR and SIRoneslice procedures and we also establish an asymptotic result for the
SIRoneslice estimator. The proof is postponed in the Appendix. In Section 4, a simulation study shows very good numerical
performances of the SIRoneslice method and clearly exhibits the main advantage of using recursive versions of the SIR and
SIRoneslice methods from a computational times point of view. A real dataset is used to illustrate our approach. All the
methods have been implemented in R. Finally concluding remarks are given in Section 5.

2. A ‘‘one slice-based SIR’’ approach

Under model (1) and the LC, E[x | T (y)] can be written as, for each slice h,

E[x | y ∈ sh] = µ + khΣβ, (5)

where

kh =
E[(x − µ)′β | y ∈ sh]

β ′Σβ
, (6)

more details are given in Appendix A. For all h = 1, . . . ,H , let

zh := E[x | y ∈ sh] − µ = mh − µ.

We have respectively from (5) and (6) that

zh = khΣβ and kh =
z ′

hβ

β ′Σβ
. (7)

Then, zh falls along a line spanned byΣβ if kh is nonnull. From (7), if the scalar kh is nonnull, we can estimate an EDRdirection
from a random sample {(xi, yi), i = 1, . . . , n}, using the following estimator:

b̂h,n := Σ−1
n ẑh,n,

with ẑh,n = m̂h,n − x̄n. If kh is nonnull, b̂h,n is a
√
n-consistent estimator of the EDR direction since it can easily be shown

that b̂h,n converges to khβ at
√
n rate.

Note that, contrary to the usual SIR approach, we do not use in this SIRoneslice approach the information from all the H
slices. We only focus on one slice h̃ for which kh̃ is nonnull. In some situations, for instance when the regression model is
partially symmetric, the estimator b̂h̃,n obtained for the ‘‘best’’ slice h̃ performs better than b̂SIR. This point is illustrated in
the simulation study described in Section 4. The way to choose this best slice will be discussed hereafter.

In the following, let us assume that β is such that ∥β∥Σ = 1. Then the term kh is given by kh = z ′

hβ but depends on the
unknown index parameter β . However, from (7), we have β =

1
kh

Σ−1zh, and using ∥β∥Σ = 1, we get

1
(kh)2

z ′

hΣ
−1ΣΣ−1zh = 1

and then

(kh)2 = ∥zh∥2
Σ−1 ,

which can be easily estimated from the sample data. From this result, we can propose an ‘‘optimal’’ slice for the SIRoneslice
approach defined by:

ho
= argmax

h
(kh)2, (8)

and the corresponding population version of the estimator is then

βho :=
Σ−1zho
∥zho∥Σ−1

.



20 B. Bercu et al. / Journal of the Korean Statistical Society 41 (2012) 17–36

From a computational point of view, it is easy to estimate each kh from a sample by substituting zh andΣ by their sample
versions ẑh,n and Σn. Then, we find that

(k̂h,n)2 = ∥ẑh,n∥2Σ−1
n

.

From these values, we can define

ĥo
n = argmax

h
(k̂h,n)2. (9)

With this choice of slice, the corresponding Σn-normalized estimator is

β̂ĥon,n
:=

Σ−1
n ẑĥon,n

∥ẑĥon,n∥Σ−1
n

. (10)

By the law of large numbers, it can be shown that β̂ĥon,n
converges almost surely to ±β . Straightforwardly, an alternative

estimator of the direction of β , which is not Σn-normalized, is given by

b̂ĥon,n := Σ−1
n ẑĥon,n. (11)

In Theorem 3.1, we show that this estimator converges almost surely to

bho := Σ−1zho (12)

which is collinear to β under model (1) and the LC.

3. Recursive versions of SIR and ‘‘one slice-based SIR’’ approaches

We first present in Section 3.1 the recursive versions of the SIRmethods andwe give recursive expressions of x̄n, Σn, Σ−1
n ,

p̂h,n and ẑh,n. Then, we define in Section 3.2 the recursive SIR estimator of the EDR direction as the eigenvector associated
with the largest eigenvalue of the recursive expression of the matrix of interest Σ−1

n
Γn. Then, we propose in Section 3.3 the

recursive version of the SIRoneslice estimator. The almost sure rate of convergence of the SIRoneslice estimator is given in
Section 3.4.

3.1. Description of the recursive approach

Let us consider that the sample {(xi, yi), i = 1, . . . , n} is split into two subsets: the subsample of the first (n − 1)
observations {(xi, yi), i = 1, . . . , n−1} and the newobservation (xn, yn). Let us first give the recursive formof the estimators
x̄n, Σn and Σ−1

n of µ, Σ and Σ−1. The recursive expression of the empirical mean x̄n is given by

x̄n =
1
n

n
i=1

xi =
n − 1
n

x̄n−1 +
1
n
xn = x̄n−1 +

1
n
Φn (13)

where Φn = xn − x̄n−1.
In the first term, we can observe the presence of x̄n−1, the empirical mean of the first (n − 1) observations, and in the

second one, the presence of the nth observation xn. Similarly, the recursive form of the empirical covariance matrix Σn is
given by:

Σn =
1
n

n
i=1

(xi − x̄n)(xi − x̄n)′

=
n − 1
n

Σn−1 +
n − 1
n2

(xn − x̄n−1)(xn − x̄n−1)
′

=
n − 1
n

Σn−1 +
n − 1
n2

ΦnΦ
′

n. (14)

It can be shown, via Riccati equation, that the inverse of Σn has the following recursive expression:

Σ−1
n =

n
n − 1

Σ−1
n−1 −

n
(n − 1)(n + ρn)

Σ−1
n−1ΦnΦ

′

n
Σ−1

n−1 (15)

where ρn = Φ ′
n
Σ−1

n−1Φn.
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Let us now give the recursive form of the estimators p̂h,n and m̂h,n of ph andmh. Denote by h∗ the slice containing yn, the
nth observation of y. We can now give the recursive expression of the estimator p̂h,n of ph:

p̂h,n =


n − 1
n

p̂h∗,n−1 +
1
n

if h = h∗,

n − 1
n

p̂h,n−1 otherwise.
(16)

The recursive form ofmh,n is given by:

mh,n =

mh∗,n−1 +
1

n̂h∗,n−1 + 1
Φh∗,n if h = h∗,

mh,n−1 otherwise,
(17)

where Φh∗,n = xn − mh∗,n−1.
From (13) and (17), we obtain the recursive form ofzh,n:

ẑh,n =


ẑh∗,n−1 −

1
n
Φn +

1
n̂h∗,n−1 + 1

Φh∗,n if h = h∗,

ẑh,n−1 −
1
n
Φn otherwise.

(18)

3.2. Recursive SIR

Using the recursive forms of x̄n, p̂h,n, Σ−1
n and ẑh,n, we describe the recursive form of the matrix interest Σ−1

n
Γn in order

to determine the eigenvector associated with the largest eigenvalue of this matrix. In writing the form ΓnΓn =


h≠h∗

p̂h,nẑh,nẑ ′

h,n + p̂h∗,nẑh∗,nẑ ′

h∗,n,

we can deduce from (16) and (18) the following recursive form for Γn:

Γn =
n − 1
n

Γn−1 −
n − 1
n2

H
h=1

p̂h,n−1

ẑh,n−1Φ

′

n + Φnẑ ′

h,n−1


+

n − 1
n3

ΦnΦ
′

n +
n − 1
n

p̂h∗,n−1Ah∗,n +
1
n
Bh∗,nB′

h∗,n (19)

with

Ah∗,n =
1

n̂h∗,n−1 + 1


ẑh∗,n−1Φ

′

h∗,n + Φh∗,nẑ ′

h∗,n−1


−

1
n(n̂h∗,n−1 + 1)


ΦnΦ

′

h∗,n + Φh∗,nΦ
′

n


+

1
(n̂h∗,n−1 + 1)2

Φh∗,nΦ
′

h∗,n

and Bh∗,n = ẑh∗,n−1 −
1
nΦn +

1
n̂h∗,n−1+1Φh∗,n.

From (15) and (19), we obtain the recursive form of the matrix interest Σ−1
n
Γn:

Σ−1
n
Γn = Σ−1

n−1
Γn−1 + Σ−1

n−1Ch∗,n −
1

n + ρn

Σ−1
n−1ΦnΦ

′

n
Σ−1

n−1

Γn−1 + Ch∗,n


(20)

where

Ch∗,n = −
1
n

H
h=1

p̂h,n−1

ẑh,n−1Φ

′

n + Φnẑ ′

h,n−1


+

1
n2

ΦnΦ
′

n + p̂h∗,n−1Ah∗,n +
1

n − 1
Bh∗,nB′

h∗,n.

Finally, for a multiple indices model, we obtain an estimated basis of E spanned by the eigenvectors associated with the K
largest eigenvalues of the estimate Σ−1

n
Γn of Σ−1Γ .

3.3. A recursive version of the SIRoneslice approach

Wegave in (10) and (11) the non-recursive expression of the estimators β̂ĥon,n
and b̂ĥon,n. From (15) and (18), it is possible to

obtain their corresponding recursive expression. We only detail in this paper the recursive expression of b̂ĥon,n = Σ−1
n ẑĥon,n:
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b̂ĥon,n =
n

n − 1
Σ−1

n−1ẑĥon,n−1 −
1

n − 1
Σ−1

n−1Φn −
1

(n − 1)(n + ρn)
Σ−1

n−1ΦnΦ
′

n
Σ−1

n−1(nẑĥon,n−1 − Φn)

+
1

n − 1
Φ ′

ĥon,n

Σ−1
n−1 −

1
(n + ρn)

Σ−1
n−1ΦnΦ

′

n
Σ−1

n−1


I
[h∗=ĥon]

,

where h∗ still designates the slice containing the nth observation. In a care of simplicity, we do not provide the recursive
expression of β̂ĥon,n

since this expression is cumbersome and very complicated.

3.4. An asymptotic result for SIRoneslice

We need the following additional assumptions:

(A1) The observations (xi, yi), i = 1, . . . , n, are sampled independently from the model (2).
(A2) The support of y is partitioned into H fixed slices s1, . . . , sH such that ph ≠ 0, for all h = 1, . . . ,H .
(A3) There is an unique ho

∈ {1, . . . ,H} such that kho > kh.

In the following, let ∥.∥ denote the usual Euclidean norm.

Theorem 3.1. Under model (1), LC and assumptions (A1), (A2) and (A3), we have for n large enough

∥b̂ĥon,n − bho∥ = O


log(log n)

n


a.s.

where bho , defined in (12), is collinear to β .

The proof of this theorem is given in Appendix B. Note that in the asymptotic context of this theorem, the selected slice ĥo
n

converges to the optimal ‘‘theoretical’’ slice ho (which is fixed and unknown). With finite samples, ĥo
n may slightly vary but

will provide an optimal ‘‘empirical’’ slice.

4. Simulation study and real data application

In this section, in order to compare the numerical performance of SIRoneslice versus SIR, wewill only focus our attention
on single index regressionmodel. Nevertheless let us recall that the recursive version of SIR can be straightforwardly applied
to multiple indices regression model.

In the simulation study, we will consider the four methods described in the previous sections: SIR, SIRoneslice, and
their recursive versions (recursive SIR and recursive SIRoneslice). In Section 4.1, we describe the simulated model which
will be used in the simulation study. We compare in Section 4.2 the computational times of the four methods and we will
observe that the recursive versions are the fastest ones as it was expected. Let us recall here that SIR and recursive SIR
(resp. SIRoneslice and recursive SIRoneslice) applied on the same data {(xi, yi), i = 1, . . . , n} provide the same estimations,
only the manner to calculate the estimate differs (recursive version or non-recursive one). For this reason, we only compare
the quality of the estimations obtained from SIR and SIRoneslice in Section 4.3. We also provide in this subsection a naive
bootstrap criterion in order to select the number H of slices for SIRoneslice. In Section 4.4, we exhibit the evolution of the
quality of the recursive SIRoneslice estimator according to the sample size n.

Finally a real data application is postponed in Section 4.5 in order to show the predictive performance of SIRoneslice
versus SIR.

4.1. Presentation of the simulated model

In the simulation study, we consider the following regression model in order to generate simulated datasets:

y = (x′β)2 exp(x′β/A) + ε, (21)

where x has a p-dimensional centered normal distribution with covariance matrix Σ defined below, ε follows the normal
distribution N (0, σ ) with σ = 1.5, and β = (1, −1, 2, −2, 0, . . . , 0)′. The covariance matrix Σ is chosen as follows:
Σ = Λ′Λ + 0.5Ip where the p2 components of the p × p matrix Λ have been generated from the uniform distribution on
[−2, 2], the second term 0.5Ip allows to avoid numerical inversion problem for Σ . In this simulation study, for each value
p of the dimension, we generate a covariance matrix Σ which will be used for each replication. The parameter A has an
influence on the form on the dependence between the index x′β and y.

• When the value of A is small (for instance A = 1), the model presents ‘‘no symmetric dependence’’ since the exponential
part in (21) is predominant. Since each slice is informative on the direction of β , SIR which is based on the H slices
will performs pretty well to recover the EDR direction as well as the proposed SIRoneslice which is based on only one
(‘‘optimal’’) slice.
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Table 1
Computational times (in seconds) for calculating estimators b̂n of the direction of β (for n going from N0 = 30 to N) with SIR, recursive SIR, SIRoneslice and
recursive SIRoneslice methods (with H = 10): mean and standard deviation in parentheses, calculated on B = 100 replicated samples from the model
(21) with A = 2.5 and different values of p and N .

p = 5 p = 10 p = 15 p = 20

N = 300

SIR 1.790 (0.055) 2.318 (0.012) 2.881 (0.016) 3.486 (0.011)
Recursive SIR 0.502 (0.008) 0.547 (0.009) 0.608 (0.010) 0.708 (0.011)
SIRoneslice 1.671 (0.007) 2.113 (0.008) 2.608 (0.010) 3.126 (0.016)
Recursive SIRoneslice 0.255 (0.010) 0.260 (0.006) 0.262 (0.002) 0.282 (0.005)

N = 600

SIR 3.908 (0.043) 5.099 (0.017) 6.366 (0.009) 7.740 (0.014)
recursive SIR 1.044 (0.017) 1.147 (0.019) 1.258 (0.014) 1.478 (0.018)
SIRoneslice 3.580 (0.016) 4.683 (0.014) 5.795 (0.011) 6.976 (0.016)
Recursive SIRoneslice 0.526 (0.006) 0.536 (0.004) 0.546 (0.006) 0.580 (0.002)

N = 900

SIR 6.120 (0.009) 8.128 (0.022) 10.235 (0.030) 12.523 (0.030)
Recursive SIR 1.594 (0.015) 1.735 (0.017) 1.921 (0.027) 2.245 (0.021)
SIRoneslice 5.665 (0.028) 7.487 (0.016) 9.358 (0.015) 11.327 (0.013)
Recursive SIRoneslice 0.796 (0.007) 0.816 (0.006) 0.826 (0.003) 0.881 (0.004)

N = 1200

SIR 8.522 (0.014) 11.380 (0.014) 14.390 (0.058) 17.901 (0.045)
Recursive SIR 2.137 (0.018) 2.325 (0.029) 2.564 (0.019) 2.952 (0.024)
SIRoneslice 7.909 (0.009) 10.537 (0.016) 13.200 (0.013) 16.253 (0.046)
Recursive SIRoneslice 1.071 (0.005) 1.098 (0.010) 1.113 (0.005) 1.187 (0.008)

• When the value of A is medium (for instance A = 2.5), the model presents a ‘‘moderate symmetric dependence’’, the
influence of the exponential part tends to disappears in favor of the squared polynomial part. In this case, SIR may not
perform well contrary to the SIRoneslice which can recover information on the EDR direction from the ‘‘best’’ selected
slice which does not potentially suffer of symmetric dependence.

• When the value of A is high (for instance A = 5), themodel presents a ‘‘strong symmetric dependence’’ since the squared
polynomial part in (21) is predominant. Each slice suffers of symmetry dependence and then the two approaches, SIR and
SIRoneslice, will not properly recover the EDR direction. However SIRoneslice may possibly provide suitable estimation
obtained from an ‘‘optimal’’ selected slice which escapes from symmetric dependence if the number of slices is large
enough.

These comments will be illustrated in Section 4.3. From this model, we will generate n × p datasets for various values
of A (=1, 2.5 and 5), p (=5, 10, 15 and 20) and n (=300, 600, 900 and 1200). For each simulated sample, we estimate
the direction of β with SIR, recursive SIR, SIRoneslice and/or recursive SIRoneslice. Let us denote by b̂ the corresponding
estimated EDR direction. Since only the direction of β is identifiable, we use the following efficiency measure in order to
evaluate the numerical quality of the estimator:

cos2(b̂, β) =
(b̂′Σβ)2

(b̂′Σ b̂)(β ′Σβ)
.

The closer this squared cosine of the angle between b̂ and β is to one, the better is the estimation.
All the methods (SIR, SIRoneslice, recursive SIR and recursive SIRoneslice) have been implemented in R. The simulation

study has been made with this software. The corresponding codes are available from the authors.

4.2. Comparison of computational times between non-recursive and recursive approaches of SIR and SIRoneslice

In this part of the simulation study, we only focus on the computational times of the four estimators SIR, recursive SIR,
SIRoneslice and recursive SIRoneslice. For each method and for a given simulated sample of size n, we measure in seconds
the computational time needed to calculate the corresponding estimators b̂n of the EDR direction for n going from N0 = 30
to N , where b̂n is the estimator only based on the first n observations of the sample. More precisely, the computational time
is the global time needed to calculate the N − N0 + 1 estimators: b̂N0 , b̂N0+1, . . . , b̂N−1 and b̂N .

For various values of p and N , we generate B = 100 replicated samples from model (21) with A = 2.5. Then, for each
method and each simulated sample, we estimate the EDR direction for various values of H .

In Table 1, we set the number H of slices to 10 and we give the means of computational times and the corresponding
standard deviations evaluated on the B = 100 replicated samples for different values of p (=5, 10, 15, 20) and N (=300,
600, 900 and 1200). In Table 2, we set the size N to 900 andwe give thesemeans and the corresponding standard deviations
evaluated on the B = 100 replicated samples for different values of p (=5, 10, 15, 20) and H (=5, 10, 15 and 20). From the
reading of these tables, one can exhibit the following comments.

• From Table 1, one can observe that SIR and Sironeslice provide nearly the same computational times in mean with
a slight advantage for SIRoneslice which does not require an eigenvalue decomposition. Not surprisingly, the larger
are the dimension p or the size N , the larger is the mean of computational times. The recursive versions of SIR and
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Table 2
Computational times (in seconds) for calculating estimators b̂n of the direction of β (for n going from N0 = 30 to N) with SIR, recursive SIR, SIRoneslice
and recursive SIRoneslice methods for different values of H: mean and standard deviation in parentheses, calculated on B = 100 replicated samples from
the model (21) with A = 2.5, N = 900 and different values of p.

p = 5 p = 10 p = 15 p = 20

H = 5

SIR 4.888 (0.053) 5.824 (0.152) 7.365 (0.060) 9.063 (0.014)
Recursive SIR 1.421 (0.013) 1.554 (0.017) 1.750 (0.018) 2.077 (0.020)
SIRoneslice 3.534 (0.010) 4.686 (0.007) 5.976 (0.010) 7.318 (0.009)
Recursive SIRoneslice 0.481 (0.001) 0.496 (0.005) 0.504 (0.002) 0.540 (0.005)

H = 10

SIR 6.120 (0.009) 8.128 (0.022) 10.235 (0.030) 12.523 (0.030)
Recursive SIR 1.594 (0.015) 1.735 (0.017) 1.921 (0.027) 2.245 (0.021)
SIRoneslice 5.665 (0.028) 7.487 (0.016) 9.358 (0.015) 11.327 (0.013)
Recursive SIRoneslice 0.796 (0.007) 0.816 (0.006) 0.826 (0.003) 0.881 (0.004)

H = 15

SIR 7.489 (0.007) 10.081 (0.022) 12.832 (0.054) 15.697 (0.096)
Recursive SIR 1.766(0.016) 1.918 (0.019) 2.319 (0.023) 2.470 (0.006)
SIRoneslice 7.594 (0.050) 9.992 (0.047) 12.457 (0.043) 15.031 (0.091)
Recursive SIRoneslice 1.092 (0.009) 1.117 (0.006) 1.135 (0.008) 1.207 (0.005)

H = 20

SIR 9.046(0.014) 12.251 (0.028) 15.646 (0.032) 19.231 (0.061)
Recursive SIR 1.922 (0.014) 2.082 (0.021) 2.325 (0.021) 2.728 (0.011)
SIRoneslice 9.628 (0.013) 12.660 (0.042) 15.760 (0.013) 19.006 (0.083)
Recursive SIRoneslice 1.394 (0.005) 1.432 (0.006) 1.459 (0.009) 1.544 (0.007)

Sironeslice provide very smallermeanof computational times in comparisonwith their non-recursive versions.Moreover
the recursive SIRoneslice method is clearly the fastest one: recursive SIRoneslice seems to be twice faster than recursive
SIR. One explanation of this gain in term of computational time is certainly due to the recursive calculation of the p × p
matrix inverse Σ−1

n . Note that when the dimension p increases, the computational time in mean of recursive methods
only slightly increases contrary to the non-recursive ones: for instance, the computational time is multiplied by around
2 from p = 5 to p = 20 for the non-recursive approaches, whereas it is multiplied by around 1.4 (resp. 1.1) for recursive
SIR (resp. recursive SIRoneslice). For all the methods, the computational time increases at the same rate according to
size N .

• From Table 2, the main information is that the computational times in mean are penalized by the number H of slices.
The recursive approaches are always widely the fastest ones. One can however mention that for SIR and recursive SIR,
the computational times are multiplied by around 2 from H = 5 to H = 20 for all values of pwhile these computational
times are multiplied by around 3 for SIRoneslice and recursive SIRoneslice. This phenomenon is explained by the cost
of the research of the ‘‘optimal’’ slice which spends more times for large value of H . Nevertheless, the advantage of the
recursive approaches remain very important in terms of computational times: for instance when p = 20 and H = 20,
the recursive SIRoneslice is still around 12 times (resp. around 1.8 times) faster than SIR (resp. recursive SIR).

4.3. SIRoneslice versus SIR

In this part of this simulation, the goal is to study the numerical behavior of SIRoneslice and to compare it with SIR. To this
end, we generate B = 500 datasets of size n = 300 frommodel (21) with p = 10 and for different values of A (=1, 2.5, 5).
For each simulated sample, we estimate the EDR direction with the non-recursive versions of SIR and SIRoneslice. We first
illustrate the efficiency of the choice of the ‘‘optimal’’ slice ĥo

n by our proposed criterion on an examplewhenH = 5 (arbitrary
fixed) and A = 1. Thenwe consider several values ofH in order to evaluate the possible influence of this tuning parameter on
the quality of the estimators for various values of A. From the obtained results, the parameterH needs to be properly chosen
and therefore we provide a naive bootstrap choice for the number of slices for SIRoneslice. Finally we provide simulation
results of comparison of SIRoneslice versus SIR when the tuning parameter H is chosen by the bootstrap criterion.

Illustration of the efficiency of the choice of ĥo
n for SIRoneslice

We only present here an example results obtained from B = 500 replicated samples from the model (21) with A = 1
and n = 300. For SIRoneslice, we set H = 5 slices. We plot on Fig. 1(a) the boxplots of the B = 500 values of k̂2h,n for
h = 1, . . . , 5. Clearly, for all the B simulated samples, the value of ĥo

n = argmaxh (k̂h,n)2 is 5. In Fig. 1(b), we represent
the boxplots of the square cosines cos2(b̂h,n, β) for h = 1, . . . , 5. When h = ĥo

n = 5, the corresponding boxplot is very
close to one contrary to those associated with the other values of h. Hence, one can observe that the proposed choice for the
‘‘optimal’’ slice seems to be efficient on this example. We do not exhibit other examples (with different values for A and H)
since they provide the same conclusions.

Influence of the number H of slices on SIR and SIRoneslice estimates
We consider here B = 500 replicated samples of size n = 300 from the model (21) with p = 10 and A = 1, 2.5

or 5. For each simulated sample, we estimate the EDR direction with SIRoneslice and SIR for various values of
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(a) Boxplots of the square cosines of k̂2h,n . (b) Boxplots of the square cosines of b̂h,n .

Fig. 1. Illustration of the efficiency of the choice of ĥo
n for SIRoneslice using model (21) with A = 1, n = 300, p = 10 and for a fixed number of slices

H = 5.

Table 3
Means of quality measures obtained with SIRoneslice and SIR over B = 500 samples
generated from model (21) with A = 1, n = 300, p = 10 for different values of H .

H SIRoneslice SIR Percent of ‘‘SIRoneslice ≻ SIR’’

3 0.890 0.888 57.8
4 0.924 0.921 55.0
5 0.935 0.934 52.2
6 0.947 0.946 51.2
7 0.946 0.947 47.2
8 0.946 0.950 43.4
9 0.948 0.952 37.6

10 0.944 0.953 32.8
15 0.925 0.953 17.4
20 0.903 0.952 11.0
25 0.886 0.951 8.0
30 0.866 0.949 4.8

H (=3, 4, . . . , 10, 15, 20, 25, 30). For each H , the chosen slice for the SIRoneslice method is selected by the proposed
criterion: the slice ĥo

n is used for estimating the EDR direction. For each value of A, we calculate the mean of the quality
measures of each estimator over the B = 500 samples, see Tables 3–5. Moreover, we indicate in these tables the percent of
times when SIRoneslice dominates SIR. From the reading of Tables 3–5, one can observe that:

• When the model presents ‘‘no symmetric dependence’’ (A = 1), SIRoneslice and SIR methods does not seem to be very
sensible to the numberH of slices. This is particularly true for SIR and this has been alreadymentioned by several authors.
Even if themeans of the square cosines obtainedwith SIRoneslice are greater than 0.89 formost values ofH , a good choice
for H (here between 6 and 10) will provide in mean square cosine greater than 0.94.
With this kind of nonsymmetric dependentmodel, all slices bring information on the EDR direction.When the numberH
of slices becomes large, the number of observations in each slice decreases and straightforwardly the qualitymeasures of
the SIRoneslice estimates (based only on one slice) will be penalized whereas the SIR estimates still provide high quality
measures. Finally, note that for values of H lower than 7 (that is for moderate values of H according to sample size n),
half the time SIRoneslice performs better than SIR.

• When the model present a moderate symmetric dependence (A = 2.5) or a strong symmetric dependence (A = 5), the
twomethods are sensitive to the choice of the parameterH . In Table 5, for instance themean of square cosine varies from
0.286 (when H = 3) to 0.714 (when H = 30) for SIRoneslice. Therefore, a good choice of H appears to be important from
a computational point of view. We propose in the next paragraph a naive bootstrap choice for H which provides suitable
results.
The symmetric dependence of themodel leads to non-informative slices to retrieve the EDR direction.When the number
of slices is large, we havemore chance to obtain an informative slice which is not affected by the symmetric dependence.
Note that when A = 2.5 or 5, most of the time SIRoneslice performs better than SIR (with percents around 75% for A = 5
and H ≥ 8) and provides quality measures close to 0.71 (in mean, with H = 30) versus 0.57 for SIR.

A naive bootstrap choice for the number H of slices for SIRoneslice
We propose hereafter a criterion in order to choose an ‘‘optimal’’ number H of slices for SIRoneslice. This criterion could

also be used for SIR. The idea is to provide a value of H such that the quality measure of the estimator remains stable over
bootstrap replications of the available sample s(r) = {(xi, yi), i = 1, . . . , n}.
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Table 4
Means of quality measures obtained with SIRoneslice and SIR over B = 500 samples
generated from model (21) with A = 2.5, n = 300, p = 10 for different values of H .

H SIRoneslice SIR Percent of ‘‘SIRoneslice ≻ SIR’’

3 0.610 0.605 56.0
4 0.704 0.682 64.2
5 0.781 0.755 75.6
6 0.804 0.774 74.8
7 0.822 0.789 73.6
8 0.846 0.814 72.2
9 0.865 0.841 69.8

10 0.877 0.857 70.6
15 0.891 0.873 61.2
20 0.885 0.870 59.0
25 0.876 0.870 48.6
30 0.862 0.862 47.2

Table 5
Means of quality measures obtained with SIRoneslice and SIR over B = 500 samples
generated from model (21) with A = 5, n = 300, p = 10 for different values of H .

H SIRoneslice SIR Percent of ‘‘SIRoneslice ≻ SIR’’

3 0.286 0.287 47.0
4 0.382 0.357 56.0
5 0.418 0.374 65.4
6 0.487 0.441 66.0
7 0.533 0.477 71.0
8 0.593 0.504 78.0
9 0.641 0.540 76.0

10 0.566 0.487 72.4
15 0.661 0.536 78.8
20 0.687 0.523 77.4
25 0.701 0.556 79.8
30 0.714 0.574 76.6

Let B∗ be the number of bootstrap replications. For r = 1, . . . , B∗, let us consider {(x(r)
i , y(r)

i ), i = 1, . . . , n} a non-
parametric bootstrap replication. According to Efron (1982) naive bootstrap estimate of the mean of the expectation of the
quality measure cos2(b̂ĥon,n, β) is defined by:

ĝn(H) =
1
B∗

B∗
r=1

q̂(r)
n

with

q̂(r)
n =


b̂(r)′

ĥo(r)n ,n
Σnb̂ĥon,n

2


b̂(r)′

ĥo(r)n ,n
Σnb̂

(r)

ĥo(r)n ,n


b̂′

ĥon,n
Σnb̂ĥon,n


where b̂(r)

ĥo(r)n ,n
is the SIRoneslice estimator based on the bootstrap replication sample s(r). In practice, this criterion will be

computed for values of H from Hmin to Hmax with Hmin and Hmax chosen by the user. An optimal number of slices can then
be defined as:Hn = argmaxH ĝn(H).

To illustrate the numerical behavior of our criterion, we first consider a simulated sample of size n = 300 from model
(21) with A = 2.5 and p = 10. We set B∗

= 200 and choose Hmin = 3 and Hmax = 25. In Fig. 2, for each value of H
in [Hmin;Hmax] the boxplot of the values q̂(r)

n , r = 1, . . . , B∗ are plotted. One can see that the dispersion of the q̂(r)
n ’s are

large for too small or too large values of H . The solid line links the points (H, ĝn(H)) in order to easily see the values of the
criterion. One can observe that the criterion chooses in this example the valueHn = 7. Note that the corresponding boxplot
of the q̂(r)

n ’s shows a small dispersion of these values. Let us finally mention that our R code provides the numerical values
of ĝn(H) for all H and the optimal valueHn if the user is not interested in graphical representation of the criterion.

In order to show the efficiency of the criterion, we generate 50 samples of size n = 300 from model (21) with p = 10
and A = 2.5. We keep the same parameter values for the criterion: B∗

= 200,Hmin = 3 and Hmax = 25. For each simulated
sample, we estimate the EDR direction with SIRoneslice using the optimal valueHn obtained with the bootstrap criterion.
We also estimate this direction for all values ofH in [Hmin;Hmax], and we select the value ofH which provides themaximum
value of the quality measure. In Fig. 3, we plot the boxplot of the square cosines obtainedwith SIRoneslice based onHn slices



B. Bercu et al. / Journal of the Korean Statistical Society 41 (2012) 17–36 27

Fig. 2. An example of the bootstrap criterion on a simulated sample from model (21) with n = 300, p = 10 and A = 2.5.

Fig. 3. Illustration of the efficiency of the proposed bootstrap criterion via a simulation study using model (21) with n = 300, p = 10 and A = 2.5.

(named ‘‘Bootstrap criterion’’ in the graphic), the boxplot of the ‘‘best’’ square cosines as defined above (named ‘‘with best
value forH ’’ in the graphic) and the boxplot of the square cosines obtainedwith SIRoneslice based on all possible values ofH
in [Hmin;Hmax] (named ‘‘for various values of H ’’ in the graphic). Let us mention that the selection of the ‘‘best’’ number H of
slices can only be done in a simulation studywhen the true direction β is knownwhereas our bootstrap criterion can always
be used in practice. One can observe that the qualitymeasures obtainedwith the proposed bootstrap criterion are very close
to the ‘‘best’’ ones. Note that if the choice of H is arbitrary made by the user, the quality of the corresponding estimated
direction could behave worse, see the large dispersion of the corresponding boxplot. From these simulation results, the
proposed naive bootstrap criterion to select H seems to be useful in practice and we use it in what follows.

SIRoneslice versus SIR
We consider B = 500 replicated samples of size n = 300 from the model (21) with p = 10 and A = 1, 2.5 or 5. For

each simulated sample, we estimate the EDR directionwith SIR and SIRoneslice. Note that, for the twomethods, the number
H of slices has been chosen by the proposed bootstrap criterion introduced in the previous paragraph (with Hmin = 3 and
Hmax = 25).

For each value of A, we plot in Fig. 4(a), (c) and (e) the boxplots of theB = 500 values of the corresponding square cosines
of SIR and SIRoneslice estimates. In addition, we represent, in Fig. 4(b), (d) and (f), the scatter plots of the square cosines of
the SIR estimates versus those of SIRoneslice estimates. From this figure, one can point out the following comments.

• When there is no symmetric dependence (A = 1), the two methods provide very good estimations with square cosines
greater than 0.8. Moreover, the quality measures for SIRoneslice and SIR are very close.

• When there is moderate symmetric dependence (A = 2.5), SIRoneslice seems to be better than SIR. We clearly see on
the scatter plot that the great majority of the point are over the first bisecting line.

• When there is strong symmetric dependence (A = 5), the qualitymeasures of the SIRoneslice estimates are largely better
than those obtained with SIR. The corresponding scatter plot confirms a uniformly advantage in favor of SIRoneslice. An
intuitive explanation of the fact that for a large symmetric dependence SIRoneslice performsmost of the time better than
SIR is the following. SIRoneslice is often able to find a slice such that zh is nonnull and thus the corresponding estimate
performs well, while SIR always uses all the slices and the corresponding estimate is then polluted by the numerous
‘‘non-informative’’ slices in this case.
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(a) A = 1. (b) A = 1.

(c) A = 2.5. (d) A = 2.5.

(e) A = 5. (f) A = 5.

Fig. 4. Simulation results obtained with SIR and SIRoneslice for B = 500 samples generated from model (21) with n = 300, p = 10 and different values
of A: boxplots and scatter plots of square cosines.

Dealing with high-dimensional x
We also evaluate the numerical performance of SIRoneslice on high-dimensional data (p = 50, 100, 150 and 200). We

generate B = 500 simulated samples of size n = 1000 from model (21) for three different values of A (=1, 2.5 and 5).
We present in Fig. 5 all the boxplots of square cosines obtained with SIRoneslice and we compare them with the square
cosines obtained with classical SIR approach on the same dataset. As in the previous simulation, the number H of slices has
been chosen by the proposed bootstrap criterion with Hmin = 3 and Hmax = 25 for SIR or SIRoneslice. One can observe
that the performance of SIRoneslice and SIR are very similar when A = 1 (no symmetric dependence). When the model
present a moderate symmetric dependence (A = 2.5), SIRoneslice seems to be slightly better than SIR. When A = 5
(strong symmetric dependence), SIRoneslice clearly outperforms SIR. Not surprisingly, the quality measure decreases as
the dimension p increases and as the symmetric dependence increases.
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Fig. 5. Boxplots of square cosines obtainedwith SIR and SIRoneslice forB = 100 samples generated frommodel (21)with high dimensions p of x, different
values of A and n = 1000.

4.4. Recursive SIRoneslice simulation results

We consider here a samples of size n = 1200 frommodel (21) with p = 10 and A = 1, 2.5 or 5. We arbitrary set H = 15
slices. For each simulated sample, we estimate for n = N0 = 60 until N = 1200, the EDR direction with the recursive
SIRoneslice method and we calculate the corresponding quality measures cos2(b̂ĥon,n, β).

In Fig. 6, we represent the evolution of the quality measures cos2(b̂ĥon,n, β) according to n. Not surprisingly, we clearly
observe that the more the sample size n is important, the greater is the quality measure. As previously mentioned, the
parameter A have influence on the dependence between the index x′β and y in (21) and then it has an effect on the
estimator b̂ĥon,n. For instance, in Fig. 6, the estimations are clearly better for small sample size when the value of A is
small.

In Fig. 7, we provide, for some various values of n (=100, 200, 300, 600, 900 and 1200), the boxplots of cos2(b̂ĥon,n, β)

calculated on B = 500 samples simulated from model (21) with p = 10 and A = 2.5. We observe the same kind of
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(c) A = 5.

Fig. 6. Evolution, according to n, of the quality measures cos2(b̂ĥon,n, β) obtained with recursive SIRoneslice for three simulated samples from model (21)
with p = 10 and various values of A.

phenomenon as those described in the corresponding case on Fig. 6. Since the sample size n is sizable, the quality of
estimations are very good. For example, the boxplots of the cos2(b̂ĥon,n, β)’s are very concentrated around the value 0.95
when n ≥ 600.

4.5. Real data application

We illustrate our approach on a real dataset. We consider the horse mussel data which is prevalent in the literature (see
for instance Cook, 1998 or Cook & Weisberg, 1999). The observations correspond to n = 82 horse mussels captured in the
Marlborough Sounds at the Northeast of New Zealand’s South Island. These data are available thanks to the R package ‘‘dr’’.
Following the results obtained by Cook (1998) which used SIR and found an unique EDR direction (via a test procedure), we
apply SIRoneslice with the muscle mass (M) in g as response variable and 4 regressors (H,W 0.36, S0.11 and L) where H is the
shell height inmm,W is the shell width inmm, S is the shell mass in g and L the shell length inmm. Note that the dependent
variable is slightly translated as y + ϵ where ϵ ∼ N (0, 0.012) in order to improve the slicing step of SIR and SIRoneslice.
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Fig. 7. Simulation results obtained with recursive SIRoneslice for B = 500 samples generated from model (21) with p = 10 and A = 2.5: boxplots of
square cosines for various values of n.

The optimal number of slices has been determined via our bootstrap approach for SIRoneslice and SIR (see Fig. 8(a) and
(b)). One can observe in Fig. 8(b) that SIR is insensitive to the choice of H and we chose H = 6 in order to estimate the EDR
direction. For SIRoneslice, the bootstrap criterion in Fig. 8(a) indicates that a good choice forH can be 2 or 7.We compute the
corresponding EDR direction for these two values ofH and the square cosines between these two directions are around 0.95.
We plot in Fig. 8(c) the scatter plot of the dependent variable versus the estimated EDR indices (obtained with SIRoneslice
based on H = 7). We add on this plot the kernel estimator of Y given the estimated index, the bandwidth is obtained by
cross validation. A strong decreasing link between the muscle mass and the index clearly appears in this graphic. Note that
the square cosines between this EDR direction calculated with SIRoneslice and SIR are around 0.98.

Finally we compare the prediction reached on test samples with SIR and SIRoneslice using the following algorithm.

• Step (i). We split the data into two subsets: SJ = {(yj, x′

j), j ∈ J} the training sample containing almost 75% of the total
number of observations, and SI = {(yi, x′

i), i ∈ I} the test sample of the remaining observations. Let nJ = card(J) = 62
and nI = card(I) = 20.

• Step (ii). We use the training sample SJ to compute the estimated EDR direction with SIR, denoted b̂SIR, and with
SIRoneslice, denoted b̂SIRoneslice.

• Step (iii). We compute the kernel estimate ŷi of E(y|x′

ib̂) for i ∈ I using the sample {(yj, x′

jb̂), j ∈ J} where b̂ is either
b̂SIRoneslice or b̂SIR. Thus, we get for i ∈ I, ŷi, SIR for SIR and ŷi, SIRoneslice for SIRoneslice.

• Step (iv). We compute the Mean Square Relative Error (MSRE) for both SIR and SIRoneslice estimates as follows:

MSRE =
1
nI


i∈SI


yi − ŷi

yi

2

,

where ŷi stands for ŷi, SIR or ŷi, SIRoneslice.

This algorithm is repeated N = 1000 times. Fig. 8(d) shows the boxplots of the MSRE values obtained with SIRoneslice
and SIR. SIRoneslice seems to be more efficient than SIR: the range of the boxplot is smaller with SIRoneslice. Note that
nevertheless the median of the MSRE obtained with SIR is lower to the SIRoneslice one.

5. Concluding remarks

In this paper, we first proposed an estimator of the direction of β based on the use of only one ‘‘optimal’’ slice chosen
among the H slices of the slicing step. We called this method SIRoneslice. We also proposed recursive versions of the
SIR and SIRoneslice estimators. We established the almost sure convergence together with a rate of convergence for the
SIRoneslice estimator. Finally, we illustrated on simulation the good numerical performances of our SIRoneslice procedure.
From a practical point of view, we proposed a naive bootstrap criterion in order to choose the number H of slices. We
clearly exhibited the main advantage of using recursive versions of the SIR and SIRoneslice methods from a computational
times point of view. The SIRoneslice, recursive SIR and recursive SIRoneslice methods have been implemented in R and the
corresponding codes are available from the authors.
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(a) Bootstrap criterion for SIRoneslice. (b) Bootstrap criterion for SIR.

(c) Scatter plot for SIRoneslice. (d) Boxplots of MSRE for SIRoneslice and SIR.

Fig. 8. Application on mussels data.

Interesting extensions of this work concern the development of recursive versions for other dimension reduction
approaches such as SAVE (see for instance Cook, 2000), pHd (see for example Li, 1992) or SIRα (see for instance Gannoun &
Saracco, 2003, or Li, 1991). Moreover, in order to save computational time when the dependent variable y is multivariate,
recursive estimators could be also introduced in multivariate SIR methods (see for example Barreda, Gannoun, & Saracco,
2007 or Li, Aragon, Shedden, & Thomas Agnan, 2003; Saracco, 2005).

Appendix A

From the LC, we have

E[x | x′β] = µ +
Σββ ′(x − µ)

β ′Σβ
.

From model (1) we get

E[x | T (y)] = E{E[x | x′β, T (y)] | T (y)} = E{E[x | x′β] | T (y)}.

We straightforwardly deduce that

E[x | T (y)] = µ +
E[β ′(x − µ) | T (y)]

β ′Σβ
Σβ.

Hence, when T is a slicing, we obtain for the hth slice:

mh := E[x | y ∈ sh] = µ + khΣβ

where kh =
E[β ′(x−µ)|y∈sh]

β ′Σβ
.
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Appendix B. Proof of Theorem 3.1

For h = 1, . . . ,H , we have b̂h,n − bh = (Σ−1
n − Σ−1)ẑh,n + Σ−1(ẑh,n − zh) where bh = Σ−1zh and b̂h,n = Σ−1

n ẑh,n. Then,
we can deduce the following inequality:

∥b̂h,n − bh∥2
≤ 2∥ẑh,n∥2

∥Σ−1
n − Σ−1

∥
2
+ 2∥Σ−1

∥
2
∥ẑh,n − zh∥2. (22)

In the following proof, we first specify the rate of convergence of ẑh,n based on the rates of convergence of x̄n and mh,n.
Then, applying Riccati equation for the inversematrix, we obtain the rate of convergence of Σ−1

n . Finally, we deduce the rate
of convergence of b̂h,n.

For a matrixM , we denote by λmax(M) (resp. λmin(M)) its largest (resp. smallest) eigenvalue.
Step 1: Study of the rate of convergence of (ẑh,n)

For h = 1, . . . ,H , we have ẑh,n − zh = (mh,n − mh) − (x̄n − µ). We clearly have

∥ẑh,n − zh∥2
≤ 2∥mh,n − mh∥

2
+ 2∥x̄n − µ∥

2. (23)

Study of the rate of convergence of x̄n.
Under assumption (A1), from the Hartman–Wintner law of the iterated logarithm (see Theorem 3.2.9, page 136 of Stout,

1974) we have

lim sup
∥Sn − nµ∥

2

2n log(log n)
≤ λmax(Σ) a.s.

where Sn =
n

i=1 xi. It follows that

lim sup


n
2 log(log n)


∥x̄n − µ∥

2
≤ λmax(Σ) a.s.

leading to

∥x̄n − µ∥
2

= O


log(log n)

n


a.s. (24)

Study of the rate of convergence of mh,n.
We havemh,n − mh = mh,n −

n
n̂h,n

E[xI[y∈sh]] +
n

n̂h,n
E[xI[y∈sh]] − mh

with

mh,n =
1

n̂h,n

n
i=1

xiI[yi∈sh] and n̂h,n =

n
i=1

I[yi∈sh].

Similarly to the study of x̄n, we get

∥mh,n − mh∥
2

≤ 2

mh,n −
n

n̂h,n
E[xI[y∈sh]]


2

+ 2

 n
n̂h,n

E[xI[y∈sh]] − mh


2

. (25)

Let us focus on the first term. We have

n̂h,nmh,n =

n
i=1

xiI[yi∈sh] =

n
i=1

εi(h) + nE[xI[y∈sh]]

where εi(h) = xiI[yi∈sh] − E[xiI[yi∈sh]] = xiI[yi∈sh] − E[xI[y∈sh]]. Let

Mn(h) =

n
i=1

εi(h).

The sequence (εn(h)) is a sequence of independent random variables with E[εi(h)] = 0 and E[εi(h)ε′

i(h)] ≤ Σ + µµ′. We
deduce again from the Hartman–Wintner law of the iterated logarithm thatMn(h)

2 = O

n log(log n)


a.s.

which ensures thatn̂h,nmh,n − nE[xI[y∈sh]]

2 = O

n log(log n)


a.s.
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Since we have n̂h,n
n

a.s.
−→ ph where ph = P(y ∈ sh) > 0 (see assumption (A2)), we finally obtainmh,n −

n
n̂h,n

E[xI[y∈sh]]


2

= O


log(log n)

n


a.s. (26)

Let us now study the second term. Sincemhph = E[xI[y∈sh]], we have

n
n̂h,n

E[xI[y∈sh]] − mh =
n

n̂h,n
mhph − mh =

mh

n̂h,n


nph − n̂h,n


. (27)

Moreover, as n̂h,n =
n

i=1 Zi(h) + nph with Zi(h) = I[yi∈sh] − E[I[yi∈sh]], we have

n̂h,n − nph = Mn =

n
i=1

Zi(h).

By the Hartman–Wintner law of the iterated logarithm, we getn̂h,n − nph
2 = O


n log(log n)


a.s.

Then, using the fact that n̂h,n ∼ phn, we deduce from (27) that n
n̂h,n

E[xI[y∈sh]] − mh


2

= O


log(log n)

n


a.s. (28)

Finally, using the rates obtained in (26) and (28), we deduce from (25) that

∥mh,n − mh∥
2

= O


log(log n)

n


a.s. (29)

Study of the rate of convergence of ẑh,n.
Using (24) and (29), we obtain from (23) that

∥ẑh,n − zh∥2
= O

 log(log n)
n


a.s. (30)

Step 2: Study of the rate of convergence of (Σ−1
n ).

According to the Riccati equation for the matrix inverse (see for instance Duflo, 1997, page 96), we can write Σ̂−1
n asΣ−1

n = Σ−1
− Σ−1(Σn − Σ)Σ−1

+ Rn

where Rn = Σ−1(Σ − Σn)Σ−1
n (Σ − Σn)Σ

−1. Straightforwardly, we get

∥Σ−1
n − Σ−1

∥
2

≤ 2∥Rn∥
2
+ 2∥Σ−1(Σn − Σ)Σ−1

∥
2. (31)

Study of the rate of convergence of Σn.
Since

Σn =
1
n

n
i=1

(xi − x̄n)(xi − x̄n)′ =
1
n

n
i=1

(xi − µ)(xi − µ)′ − (x̄n − µ)(x̄n − µ)′,

we can write Σn − Σ =
1
n

n
i=1 ei − (x̄n − µ)(x̄n − µ)′, where ei = (xi − µ)(xi − µ)′ − Σ . Therefore, we obtain that

∥Σn − Σ∥
2

≤
2
n2

 n
i=1

ei


2

+ 2∥x̄n − µ∥
4. (32)

LetMN(u) = u′

n
i=1 ei


u =

n
i=1 u

′eiu =
n

i=1 ei(u), where ei(u) = u′eiu = u′(xi − µ)(xi − µ)′u − u′Σu.

We have E[ei(u)] = E[(u′(xi − µ)(xi − µ)′u − u′Σu)] = u′Σu − u′Σu = 0and

E[(ei(u))2] = E[(u′(xi − µ)(xi − µ)′u − u′Σu)2]
= E[u′(xi − µ)(xi − µ)′uu′(xi − µ)(xi − µ)′u] − (u′Σu)2

≤ E[(u′(xi − µ)(xi − µ)′u)2]

≤ E

∥xi − µ∥

4


× ∥u∥4.
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We can deduce again from the Hartman–Wintner law of the iterated logarithm that

lim sup

 n
i=1

ei(u)
2

2n log(log n)
≤ τ 4

× ∥u∥4 a.s.

where τ 4
= E


∥xi − µ∥

4

. It follows that n

i=1

ei


2

= O

n log(log n)


a.s. (33)

From the rates obtained in (24) and (33), we deduce from (32) that

∥Σn − Σ∥
2

= O


1
n2

n log(log n)


+ O


log(log n)

n

2


a.s.

= O


log(log n)

n


a.s. (34)

Study of the rate of convergence of Rn.
We obtain from the expression of Rn that

Rn ≤ λmax(Σ−1
n )Σ−1(Σ − Σn)

2Σ−1

≤
1

λmin(Σn)
Σ−1(Σ − Σn)

2Σ−1.

Then, we have

∥Rn∥ ≤
λmax(Σ

−2)∥Σn − Σ∥
2

λmin(Σn)

∥Rn∥ ≤
∥Σn − Σ∥

2

λmin(Σn)λmin(Σ2)
.

From (34), we find that

∥Rn∥ = O


log(log n)

n2


a.s. (35)

Study of the rate of convergence of Σ−1
n .

Using (34) and (35), we straightforwardly deduce from (31) that

∥Σ−1
n − Σ−1

∥
2

= O


log(log n)

n


a.s. (36)

Step 3: Study of the rate of convergence of b̂ĥon,n.
Finally, from the rates of convergence obtained in (30) and (36), we infer from (22) that, for all h = 1, . . . ,H ,

∥b̂h,n − bh∥2
= O


log(log n)

n


a.s. (37)

Obviously, this result still remains true for h = ho. In addition, since we have ∀h, k̂hn,n → kh, then, under (A3), one can find
no such that ∀n > no, (k̂ho,n)2 > (k̂h,n)2. According to the definitions of ho and ĥo

n given in (8) and (9), we have ĥo
n → ho.

From this result and (37), we obtain that

∥b̂ĥon,n − bho∥2
= O


log(log n)

n


a.s.

This completes the proof of Theorem 3.1. �
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