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Abstract. Assuming the Generalized Riemann Hypothesis, Bach has shown
that the ideal class group C`K of a number field K can be generated by the

prime ideals of K having norm smaller than 12
(
log |Discriminant(K)|

)2
. This

result is essential for the computation of the class group and units of K by
Buchmann’s algorithm, currently the fastest known. However, once C`K has
been computed, one notices that this bound could have been replaced by a much
smaller value, and so much work could have been saved. We introduce here a
short algorithm which allows us to reduce Bach’s bound substantially, usually
by a factor 20 or so. The bound produced by the algorithm is asymptotically
worse than Bach’s, but favorable constants make it useful in practice.
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1. Introduction

In the 1980’s, building on earlier work of Hafner and McCurley [Ha], Buch-
mann [Bu] introduced a remarkable probabilistic algorithm for computing a finite
presentation for the ideal class group C`K and units U(K) of a number field K.
Buchmann’s algorithm selects first a factor base

B = B(T ) := {p : p prime ideal of OK , Np < T} ,
which is a set of ideals of norm less than T whose classes generate C`K , for a large
enough T . We then looks for relations among the elements of B in C`K: given a
random product I of ideals from the factor base, the LLL algorithm produces an
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element α of small height in I, hence a supposedly nicer representative J = I/(α)
in the ideal class of I. If J factors on the factor base, we have found a relation
in C`K. To check whether enough relations have been accumulated, a tentative
class number ĥ is computed from the available relations via linear algebra. The
latter elimination produces trivial relations (α) = (α′), hence units α/α′, from

which a tentative regulator R̂ is computed. It now computes an approximation

ĥR of the product of the class number by the regulator, from a truncated Euler
product converging to the residue of the Dedekind zeta function of K. Finally,

ĥR̂ is an integral multiple of hR; so, if ĥR̂/ĥR is not close enough to 1, we look
for more relations, otherwise we are done (see also [Co] for algorithmic details).

As far as linear algebra goes, it is desirable to take T as small as possible,
such that B(T ) generates C`K . (Of course, relations are correspondingly harder
to find; on the other hand, fewer are needed.) To date the best unconditional
result known is Zimmert’s T < C

√
∆K, see [Zi, dM], where ∆K is the absolute

value of the discriminant of K and C is an explicit constant depending on the
signature of K. Although Zimmert’s bound is a considerable improvement on
Minkowski’s [La, V §4], its exponential dependence on log ∆K thwarts any hope
of a subexponential algorithm.

Let Tmin = Tmin(K) ≥ 1 be the minimal value of T such that the primes
in B(Tmin) generate C`K , and let tmin(K) := Tmin(K)/(log ∆K)2. Assuming the
Generalized Riemann Hypothesis (GRH), Bach [Ba] showed tmin ≤ 12. In fact,
he even showed that for large discriminants, tmin < 4 + ε for any ε > 0. Still
under GRH, a companion result [Ba2] shows that a small Euler product yields a
good enough approximation to hR that we may apply our halting criterion. On
these grounds, Buchmann’s algorithm conjecturally runs in probabilistic subex-
ponential time. If K is quadratic, and GRH holds, this is actually a theorem
([Ha, Bu]).

The above factor of 12 (and even of 4 + ε), is much too large in practice:
to our knowledge, experimental evidence thus far has not yielded any example
where tmin(K) > 1

2
. It even looks plausible that the average value of Tmin(K)

as the discriminant of K increases is O(log ∆K)1+ε for any ε > 0. This is true,
for instance, under GRH for the related problem of finding small generators of
F∗

p [Mu]. To take advantage of this, one fixes an arbitrary factor base B(T0), for
some

T0(K) ≤ T (K) (1)

independently optimized so as to balance the cost of the linear algebra and the
relation search. A priori B(T0) now generates a subgroup H ⊂ C`K. Then one
proves directly that the elements of B(T ) \ B(T0) belong to H, using the same
ideas as to find relations, thereby proving that H = C`K. (If that check fails, we
increase T0 and restart.) When building tables of class groups of “small” fields,
most of the computing time is spent in this last phase.
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In Bach’s approach, GRH is needed to control the size of two sums, say A and
B, appearing in Weil’s explicit formula [We]. Sum A is over the zeroes of an
L-function attached to a non-trivial character of C`K , while B is over the zeroes
of the Dedekind zeta function of K.

In this paper we introduce two modifications to Bach’s method in order to
obtain a smaller T . Weil’s formula involves an auxiliary function carefully chosen
by Bach so as to heavily weigh the prime ideals of small norm. Still assuming
GRH, we modify Bach’s choice of auxiliary function so that A ≥ 0. This allows
us to simply drop A, instead of having to estimate it unfavorably as Bach did.

Our second modification is not to estimate B either, even though its sign
is unfavorable. Instead, we compute it quickly and exactly using Weil’s very
formula [We, Po]. We remark that A involves a non-trivial character of C`K , so
it cannot be computed without prior knowledge of C`K.

The cost of these changes is that we do not obtain a general constant, such as
Bach’s 12. Instead, we calculate a permissible value of T for each field K using
the following result.

Theorem 1.1. Let K be a number field of degree n, having exactly r1 real embed-
dings, and which satisfies the Riemann Hypothesis for each L-function attached
to a non-trivial character of its ideal class group C`K . Then the inequality

∑

Npm<T

logNp

Npm/2

(
1 − log(Npm)

logT

)
>

1

2
log ∆K − 1.9n− .785 r1 +

2.468n+ 1.832 r1
logT

(2)
is a sufficient condition for C`K to be generated by the ideal classes corresponding
to the prime ideals of K having norm strictly smaller than T .

The sum above is over all prime ideals p ofK and all positive integers m satisfying
Npm < T . It is a divergent sum as T → +∞ (see Lemma 4.1), so inequality (2)
is certainly satisfied for some large enough T .

Definition 1.2. We call T (K) the integral part of the smallest value of T ≥ 1
satisfying the inequality (2), and let t(K) := T (K)/(log ∆K)2.

Unfortunately, we are not able to prove that (2) will be satisfied for a T smaller
than Bach’s bound, i.e. that t(K) < 12. In fact, as ∆K → +∞ while the degree
n remains fixed, we shall see that t(K) → +∞ (see Theorem 4.3), whereas Bach
proves that tmin(K) . 4. Nonetheless, t(K) grows so very slowly that, in practical
computations, its value is usually around 1

2
, and very rarely above 1 (see §6). In

any case, computing T (K) takes negligible time (essentially, quadratic time),
compared with the cost of running the rest of Buchmann’s algorithm (see §3).

It is possible, and in fact quite frequent, that T (K) < T0, the value estimated
by balancing linear algebra and relation search. In this case we choose T = T0 as
in (1), and happily skip the final checks.
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2. Proof of Theorem

We begin by sketching Bach’s main idea. Suppose S is a set of prime ideals
whose classes we would like to show generate the ideal class group C`K . Let
〈S〉 ⊂ C`K be the subgroup generated by the classes in S. If 〈S〉 6= C`K , then
there exists a nontrivial character κ : C`K → C∗ which is trivial on 〈S〉. If we
specialize S to be the set of all prime ideals of norm at most T (with T chosen
large enough below), we find that the beginning of the Euler product of the
non-trivial L-function L(s, κ) coincides with that of the Dedekind zeta function
L(s, χ0).

More generally, weighted sums of character values begin identically for κ and χ0.
If we take weights of compact support, we can make the (finite) weighted sums
identical. However, Weil’s formula [We, La] for a weighted sum involving κ differs
from that involving χ0 by a large term coming from the pole of L(s, χ0). They
also differ by another term involving the zeroes ρ of the L-functions in the critical
strip 0 < Re(ρ) < 1, but these are controlled by assuming GRH. Taking T large
enough, Bach shows that the pole term dominates the term coming from the
zeroes. This contradiction implies that S generates C`K, as desired.

To flesh out the sketch above we need to recall Weil’s formula. We let K denote
a number field of degree n = [K : Q], having exactly r1 real embeddings, and
whose discriminant has absolute value ∆K. If χ is a character of the ideal class
group of K, Weil’s explicit formula [We, La], as simplified by Poitou [Po], is the
identity

∑

ρχ

Φ(ρχ) = 4δχ

∫ +∞

0

F (x) cosh(x/2) dx+ F (0)
(
log ∆K − nγ − n log(8π) − r1π

2

)

−
∑

p

logNp

+∞∑

m=1

F (m logNp)

Npm/2
(χ(p)m + χ(p)−m) (3)

+ r1

∫ +∞

0

F (0) − F (x)

2 cosh(x/2)
dx+ n

∫ +∞

0

F (0) − F (x)

2 sinh(x/2)
dx.

We begin by explaining the notation on the right-hand side of Weil’s formula and
the assumptions we make. We have let δχ = 1 if χ is trivial, and δχ = 0 otherwise.
The “arbitrary” weight function F : [0,+∞) → C is assumed to be continuous

and such that for some ε > 0, the function F (x)e( 1

2
+ε)x is of bounded variation

and integrable over [0,+∞). We also assume that
(
F (0) − F (x)

)
/x is itself of

bounded variation on [0,+∞). By γ we mean Euler’s constant 0.5772 · · · . This
takes care of the right-hand side of first line.

On the second line, p runs over all prime ideals of the ring of algebraic integers
of K, the absolute norm of p is denoted by Np, and χ(p) is the value of the
character χ on the ideal class of p. The third line is self-explanatory, but we
must add that it was not at all so in Weil’s version [We, La], where it was a
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principal value of a related integral. Poitou [Po] simplified the term coming from
the archimedean places appearing on the third line.

The sum on the left-hand side of (3) runs over all zeroes ρχ in the critical
strip of the L-function L(s, χ), with multiple zeroes repeated accordingly. The
transform Φ(s) of F is defined by

Φ(s) := 2

∫ +∞

0

F (x) cosh
(
x(s− 1

2
)
)
dx (0 ≤ Re(s) ≤ 1). (4)

Under the above assumptions on F , the sum over ρχ converges when understood
as

lim
R→+∞

∑

|Im(ρχ)|<R

Φ(ρχ).

In comparing the above version of Weil’s formula against those in the litera-
ture [We, La, Po], the reader should bear in mind that we have taken advan-
tage of some minor simplifications. Following Poitou [Po], instead of taking
F : R → C, we have taken F : [0,+∞) → C, implicitly extending F to R

by requiring F (−x) = F (x). This allows us to rewrite all integrals over R as in-
tegrals over [0,+∞) and simplifies the sum over m in (3). We have also required
F to be continuous, instead of allowing jump discontinuities, since the F in our
applications below will be continuous. A more substantial simplification stems
from the assumption that χ is an unramified character, rather than the ray class
character allowed by Weil in general. This makes the contribution to the formula
for χ coming from the archimedean places of K, and also from the finite places
ramified in K/Q, identical with that of the trivial character χ0. We can therefore
take advantage of Poitou’s carefully proved and simplified form of Weil’s formulas
[Po, pp. 6-7].

We now turn to our main result, where all notation is as in (3).

Theorem 2.1. Let K be a number field satisfying the Riemann Hypothesis for all
L-functions attached to non-trivial characters of its ideal class group C`K, and let
F : [0,+∞) → R satisfy the assumptions in Weil’s explicit formula (3). Assume
furthermore that F (0) = 1, that F is supported on a finite interval [0, logT ], and
that its Fourier cosine transform is non-negative. Then the inequality

2
∑

p

logNp

+∞∑

m=1

F (m logNp)

Npm/2
> log ∆K − nγ − n log(8π) − r1π

2

+ r1

∫ +∞

0

1 − F (x)

2 cosh(x/2)
dx+ n

∫ +∞

0

1 − F (x)

2 sinh(x/2)
dx (5)

is a sufficient condition for C`K to be generated by the classes of prime ideals p

of K having norm Np < T .

Proof. Assume that the prime ideals of norm smaller than T do not generate C`K .
As explained above, there is then a non-trivial character κ of C`K which is trivial
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on the classes of all primes of norm smaller than T . Since we are assuming GRH,
Re(ρκ) = 1

2
for the zeroes ρκ appearing in (3). Writing,

ρκ =
1

2
+ iγκ,

we have Φ(ρκ) = F̂ (γκ), where F̂ is the Fourier cosine transform of F

F̂ (t) := 2

∫ +∞

0

F (x) cos(xt) dx. (6)

Since we have assumed κ(p) = 1 = χ0(p) for Np < T , and F (m logNp) = 0 for
Npm ≥ T , we obtain the equality between the finite sums corresponding to the
second line of (3) for the characters κ and χ0. Now subtract Weil’s formula (3)
for κ from Weil’s formula for χ0. As several terms cancel, we simply obtain

∑

ρχ0

Φ(ρχ0
) −

∑

ρκ

Φ(ρκ) = 4

∫ +∞

0

F (x) cosh(x/2) dx. (7)

Since Φ(ρκ) = F̂ (γκ), and we have assumed F̂ (t) ≥ 0 for all real t, we may drop
the sum over the ρκ to obtain

∑

ρ

Φ(ρ) ≥ 4

∫ +∞

0

F (x) cosh(x/2) dx, (8)

where we have now written ρ instead of ρχ0
. Thus, ρ runs over all zeroes of the

Dedekind zeta function of K in the critical strip. If we now substitute the value of∑
ρ Φ(ρ) given by (3) for χ = χ0, we obtain exactly the negation of inequality (5).

This contradiction shows that κ cannot exist, i.e., the class group is generated
by the primes of norm not exceeding T . �

In Theorem 2.1, let us consider the function

FT (x) :=

{
1 − x

L
if 0 ≤ x ≤ L,

0 if x ≥ L,
(9)

with L = log T . Theorem 1.1 is the numerical version of the following.

Corollary 2.2. Suppose K satisfies GRH as above and that for some T > 1 we
have

2
∑

p,m
Npm<T

logNp

Npm/2

(
1 − log(Npm)

logT

)
> log ∆K − n

(
γ + log(8π) − c1

log T

)

− r1

(
π

2
− c2

log T

)
, (10)
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where

c1 :=

∫ +∞

0

x

2 sinh(x/2)
dx =

π2

2
, c2 :=

∫ +∞

0

x

2 cosh(x/2)
dx = 4C.

(Here C =
∑

k≥0(−1)k(2k + 1)−2 = 0.915965 · · · is Catalan’s constant.)
Then the ideal class group of K is generated by the prime ideals of K having

norm less than T .

Proof. The function FT satisfies the hypotheses on F made in the Theorem.

Indeed, only F̂T ≥ 0 is not obvious. One can either compute directly

F̂T (t) = L

(
sin(tL/2)

tL/2

)2

, (11)

or note that FT (x) = (1/L)(f ∗ f)(x), where f is the characteristic function of
the interval (−L/2, L/2) and ∗ is the convolution product (here we regard FT as
an even function on R). Let

k(x) :=
n

2 sinh(x/2)
+

r1
2 cosh(x/2)

, (12)

and calculate
∫ +∞

0

(
1 − FT (x)

)
k(x) dx =

1

L

∫ L

0

xk(x) dx +

∫ +∞

L

k(x) dx

=
1

L

∫ +∞

0

xk(x) dx +

∫ +∞

L

(1 − x

L
)k(x) dx

=
1

L
(nc1 + r1c2) +

∫ +∞

L

(1 − x

L
)k(x) dx (13)

<
1

L
(nc1 + r1c2).

Hence (10) implies (5). �

The reader may be surprised at our dropping of
∫ +∞

L
(1 − x

L
)k(x) dx at the

end of the above proof, as we could have kept it at little computational cost.
However, the term dropped is of order n/

√
T while the left-hand side of (10) is

the beginning of a divergent series. In practice, we are willing to compute up to
primes of norm T much larger than n2. Admittedly, this is because we cannot
yet compute the ideal class group of a field of large degree.

3. An algorithm

Corollary 2.2 leads to a simple and fast algorithm for computing a T such
that B(T ) generates C`K, assuming GRH. We assume that K is given in the form
Q[x]/

(
f(x)

)
, where f ∈ Z[x] is an irreducible monic polynomial, and we compute

a Z-basis for the ring of algebraic integers ZK of K. We also compute the absolute
7



value of the discriminant ∆K and r1, the number of real places of K. We then
store

D = D(K) := log ∆K − n(γ + log(8π)) − r1
π

2
.

Let

S(T ) = −nc1 + r1c2
log T

+ 2
∑

p,m
Npm<T

logNp

Npm/2

(
1 − log(Npm)

logT

)
. (14)

We may find T (K) by dichotomy once we know an upper bound for it, 1
being an obvious lower bound. As an initial guess, we set T = T0(K), with T0

chosen as in (1), and double this value until S(T ) > D or T > 12(log ∆K)2,
whichever comes first. In the latter case, we are not able to improve Bach’s
bound; this unwelcome outcome has not occurred in our calculations, but will
occur as ∆K → +∞ (see Theorem 4.3). Otherwise, we may compute the exact
value of T (K) by dichotomy (O(logD) evaluations of S). Whenever we evaluate
S(T ) we calculate and save the splitting pattern in K/Q of all primes p < T not
stored so far.

Lemma 3.1. We fix the degree n, so that D ∼ log ∆K. Disregarding the time
needed to compute splitting patterns of primes, the above dichotomy computes the
value T (K) in time On(D2(logD)2) and space On(D2).

Proof. We are only concerned with values of T which are O(D2) = On(D
2), since

we abort the computation when reaching Bach’s bound. We need to store the
splitting patterns in K/Q of all primes p < T , each of which takes constant space
if the degree is fixed. For 0 < x < T let

gT (x) :=
1√
x

(
1 − log(x)

log T

)
. (15)

Given this data, an evaluation of logNp · gT (Npm) for Npm < T , requires
O(log2 T ) bit operations using näıve arithmetic. On the other hand, using the
standard formulae

∑

1≤m≤M

qm =
q(1 − qM)

1 − q
,

∑

1≤m≤M

mqm =
q(1 − qM(M + 1 −Mq))

(1 − q)2
,

where M = blog T/ logNpc and q = Np−1/2, we need only sum O(T/ logT )
terms to evaluate S(T ), hence O(T log T ) bit operations. We make O(logD)
such evaluations. �

Note that the splitting patterns of all primes less than T are needed in any
case to apply Buchmann’s algorithm with factor base B(T ). In fact, it requires
further technical data, so as to be able to multiply them and compute valuations.

Fixing n is realistic, since it is bounded by 50 or so in practice.
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4. How good is T (K) ?

Recall that T (K) is the integral part of the minimal T ≥ 1 such that S(T ) > D,
where S is defined in (14). We shall use ∼K below for asymptotic estimates with
implied constants depending on ∆K, and ∼ when they depend only on [K : Q].

Lemma 4.1. As T tends to +∞, we have S(T ) ∼K 8
√
T/ logT .

Proof. By the prime ideal theorem

ψK(x) :=
∑

p,m
Npm<x

logNp ∼K x.

Integration by parts yields

2
∑

p,m
Npm<T

logNp · gT (Np
m) = −2

∫ T

1

ψK(x) dgT (x) ∼K
8
√
T

logT
,

where gT was defined in (15). The lemma now follows from the definition of S(T )
in (14). �

Assume now that we can drop the dependency on K in Lemma 4.1. Then the
equality S(T ) = D would imply logT ∼ 2 logD, and suggests the following

Guess 4.2. We fix the degree n, so that D ∼ log ∆K . As ∆K → +∞, we have

T (K)
?∼

(
1

4
D logD

)2

.

If our guess is correct, we expect to lose against Bach’s (4 + o(1))(log ∆K)2 when
(1

4
logD)2 ≈ 4, that is log ∆K ≈ e8 ≈ 2980.96, so T (K) would stand a good

chance of being more useful for any practical computation. In fact, we are not
aware of a single successful application of Buchmann’s algorithm for a field K
with log ∆K > 150, say. Rigorously, we can prove

Theorem 4.3. Fix the degree n; as ∆K → +∞, we have

T (K) >

(
1 + o(1)

4n
log ∆K log log ∆K

)2

.

Proof. We need the sum S(T ) to satisfy S(T ) > log ∆K + O(1). Let L = log T
and g(x) = x(1 − x/L)e−x/2, so that g′(x) has the sign of x2 − (4 + L)x + 2L.
Since the latter is positive at 0 and negative at 2, it has a root in [0, 2]; the other
root is > L since their product is 2L. Hence g is decreasing on [2, L]. It follows
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that
∑

p,m
Npm<T

logNp

Npm/2

(
1 − log(Npm)

log T

)
≤

∑

p,m
Npm<T

g(m logNp)

≤ n
∑

p,m
pm<T

g(m log p) ∼ 8n

√
T

log T

by Lemma 4.1 applied to K = Q and the fact that the sum for m ≥ 2 is O(logT ).

It follows that (8n + o(1))
√

T
log T

> log ∆K as T → +∞ from which we obtain(
1
2

+ o(1)
)
log T > log log ∆K and

√
T >

( 1

4n
+ o(1)

)
log ∆K log log ∆K .

�

5. Unconditional results

In this section we drop GRH and prove

Theorem 5.1. Let K be a number field of of degree n, having exactly r1 real
embeddings. Suppose that f : [0,+∞) → R is supported on a finite interval
[0, logT ], that f has a non-negative Fourier cosine transform, f(0) = 1, and that
F (x) := f(x)/ cosh(x/2) satisfies the assumptions in Weil’s explicit formula (3).
Then the inequality

4
∑

p

logNp

+∞∑

m=1

f(m logNp)

1 +Npm
> log ∆K − nγ − n log(4π) − r1

+ r1

∫ +∞

0

1 − f(x)

2 cosh2(x/2)
dx+ n

∫ +∞

0

1 − f(x)

sinh(x)
dx (16)

is a sufficient condition for C`K to be generated by the classes of prime ideals p

of K having norm Np < T .

Proof. Reviewing the proof in §2, we see that GRH. was not used until after
equation (7). On taking real parts in (7) we obtain

∑

ρχ0

Re
(
Φ(ρχ0

)
)
−

∑

ρκ

Re
(
Φ(ρκ)

)
= 4

∫ +∞

0

f(x) dx. (17)

We now need Re
(
Φ(ρκ)

)
≥ 0 for all ρκ in the critical strip, rather than just on the

critical line. Faced with a similar problem in his work on discriminant bounds,
Odlyzko observed [Po] that the maximum principle for harmonic functions implies
that Re

(
Φ(s)

)
≥ 0 for s in a strip if and only if Re

(
Φ(s)

)
≥ 0 for s on its
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boundary. As Φ(s) = Φ(1− s) (see (4)), Odlyzko deduced that Re
(
Φ(s)

)
≥ 0 for

s in the critical strip follows from Re
(
Φ(1 + it)

)
≥ 0 for t ∈ R. Now,

Re
(
Φ(1 + it)

)
= 2

∫ +∞

0

Re
(
F (x) cosh(x

2
+ ixt)

)
dx

= 2

∫ +∞

0

F (x) cosh(x/2) cos(xt) dx = f̂(t) ≥ 0, (18)

by assumption. Thus, from(17),

∑

ρ

Re
(
Φ(ρ)

)
≥ 4

∫ +∞

0

f(x) dx, (19)

where we have again written ρ for ρχ0
.

To evaluate the sum over ρ above it proves useful to re-write Weil’s formula
(3) in terms of f(x) = F (x) cosh(x/2), rather than F (x). On taking real parts,
the result is [Po]

∑

ρ

Re
(
Φ(ρ)

)
= 4

∫ +∞

0

f(x) dx+ log ∆K − nγ − n log(4π) − r1

− 4
∑

p

logNp

+∞∑

m=1

f(m logNp)

1 +Npm
(20)

+ r1

∫ +∞

0

1 − f(x)

2 cosh2(x/2)
dx+ n

∫ +∞

0

1 − f(x)

sinh(x)
dx.

Here ρ again runs over all zeroes (counting multiplicities) of the Dedekind zeta
function of K and

Φ(ρ) = 2

∫ +∞

0

f(x)

cosh(x/2)
cosh

(
x(ρ− 1

2
)
)
dx. (21)

As before, the Theorem is proved by observing that (19) and (20) contradict
inequality (16), which we had assumed. �

Exactly as in §2, on taking

f(x) :=





1 − x

logT
if 0 ≤ x ≤ logT ,

0 if x ≥ log T .
(22)

we obtain,
11



Corollary 5.2. Suppose that for some T > 1 we have

4
∑

p,m
Npm<T

logNp

1 +Npm

(
1 − log(Npm)

log T

)
> log ∆K − n

(
γ + log(4π) − h1

log T

)

− r1

(
1 − h2

logT

)
, (23)

where

h1 :=

∫ +∞

0

x

sinh(x)
dx =

π2

4
, h2 :=

∫ +∞

0

x

2 cosh2(x/2)
dx = log 4.

Then the ideal class group of K is generated by the prime ideals of K having
norm less than T .

Now, let

Suncond(T ) = −nh1 + r1h2

log T
+ 4

∑

p,m
Npm<T

logNp

1 +Npm

(
1 − log(Npm)

log T

)
. (24)

Since this sum diverges again, we may easily adapt the algorithm of §3 to try and
improve on Zimmert’s bound in practice:

Lemma 5.3. As T tends to +∞, we have Suncond(T ) ∼K 2 logT .

Proof. Let g(x) := (1 + x)−1(1 − log x/ logT ). Integration by parts yields

2
∑

p,m
Npm<T

logNp · g(Np
m) = − 2

∫ T

1

ψK(x) dg(x) ∼K 2 logT.

�

The analog of our Guess 4.2 is now to expect that the value of the smallest T
such that Suncond(T ) > ∆K is of the order of

√
∆K.

6. Numerical experiments

All computations were performed with the PARI/GP system [PARI] on a
1.6GHz Pentium IV. For any K with log ∆K > 150, it would be a major compu-
tation to try and find C`K with the PARI implementation: at least a few weeks,
with little hope of success.

We start with a very simple example, the 11-th cyclotomic field K = Q(ζ11),
which is of course principal, so Tmin(K) = 1. We compute T (K) = 19, so
t(K) ≈ 0.0408 � 12. Using the value T = 0.05, the PARI implementation of
Buchmann’s algorithm experimentally succeeds in 0.03s on average. Without our
algorithm, checking the remaining primes up to 4(log ∆K)2 requires 1s, and 3s up
to Bach’s universal bound. In fact, running over all cyclotomic fields K = Q(ζp)
for prime p ≤ 101, the largest value seen is t(K) ≈ 0.257. On the other hand,
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the imaginary quadratic field of discriminant −4
∏

p<3000 p ≈ −1.3 ·101274 satisfies

t(K) ≈ 4.87 and the pure field K = Q(
∏

p<500 p
1/30) of discriminant ≈ 1.28·106201

has t(K) ≈ 6.75 (p runs over primes in both products).
The small value of t(K) for cyclotomic fields is typical for fields of small dis-

criminant, given a signature. We ran our algorithm on all quadratic fields of
discriminant less than 106 and all fields in the Bordeaux database [NF], which
contains fields of degree ≤ 7, sorted by signature and increasing discriminant.
We stigmatize a field K as bad if t(K) > 0.7. The results are as follows

n r1 average t(K) maxK t(K) # of fields # of bad fields
2 0 0.326 1.86 303968 5525

2 0.255 1.39 303957 559
3 1 0.155 0.806 182417 12

3 0.137 0.528 112444 0
4 0 0.123 0.450 81322 0

2 0.107 0.301 90671 0
4 0.107 0.238 13073 0

5 1 0.0819 0.200 28993 0
3 0.0839 0.169 10800 0
5 0.0758 0.171 22740 0

6 0 0.0768 0.107 442 0
2 0.0780 0.100 1179 0
4 0.0760 0.0994 405 0
6 0.0695 0.0880 398 0

7 1 0.0671 0.0750 121 0
3 0.0654 0.0718 162 0
5 0.0608 0.0681 201 0
7 0.0550 0.0633 154 0

We next try abelian fields: for a fixed integer d, we pick ten random n < 105

such that d | φ(n), then apply the algorithm to all subfields of degree d of the
cyclotomic field Q(ζn).

d average t(K) maxK t(K) average log ∆K # of fields # of bad fields
3 0.283 0.571 13.3 19 0
4 0.178 1.04 18.4 876 1
5 0.261 0.674 28.2 20 0
6 0.249 1.06 33.8 89 5
7 0.309 0.809 48.9 10 1
8 0.235 1.30 47.3 3198 97
9 0.147 0.435 49.4 40 0
10 0.236 0.903 54.6 89 5
15 0.264 0.800 112.7 39 3
20 0.365 1.38 126.8 256 30
30 0.390 1.52 201.4 257 43
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We finish with pure fields: for each d, we pick ten integers α at random in
(−216, 216] such that Xd − α is irreducible. This time the discriminants are huge
and the asymptotics speak: most fields are bad, but t(K) remains way below 4.

d average t(K) maxK t(K) average log ∆K # of fields # of bad fields
3 0.588 0.533 40.4 10 2
4 0.767 1.29 66.2 10 5
5 0.878 0.985 89.5 10 9
6 0.879 1.31 107.2 10 7
7 1.02 1.20 129.4 10 9
8 0.964 1.51 153.6 10 9
9 1.19 1.45 171.8 10 10
10 1.19 1.49 200.3 10 10
15 1.40 1.65 311.1 10 10
20 1.44 1.86 406.0 10 10
30 1.97 2.42 673.4 10 10
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