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Consider the d-dimensional ARX4(p, ) model given by

A(R)Xn+1 - B(R) Un + €n+1

where

@ R the shift-back operator,
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where

@ R the shift-back operator,
Q X, the system output,

©Q U, the system input,
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Matrix Polynomials

The polynomials A and B are given for all z € C by

Az) = lg—Az—-— ApZP,
B(z) = lg+Biz+---+ Byz9,

where A; and B, are unknown square matrices of order d and Iy
is the identity matrix.

Definition

The matrix polynomial B is causal or minimum phase if for all
z e Cwith |z] <A1
det(B(z)) # 0.
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The Unknown Parameter

Denote by 6 the unknown parameter of the model
Qt: (A‘],,Ap,B‘],,Bq)

The ARX model can be rewritten as

Xn+1 = th’n + Un + €n41

where the regression vector

t t t t t
O, = (xn,...,x,,ipﬂ, U,H,...,Un_q) .
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About the Noise

We assume that (¢5) is a martingale difference sequence
adapted to F = (F},) such that for all n > 0,

E[€n+1€2+1 |fn] =T a.s.

where T is a positive definite covariance matrix. Moreover, we
assume that (e5,) has finite conditional moment of order > 2 so

1 n
M= exel — T a.s.
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Adaptative Control

Weighted least squares

The weighted least squares estimator 8, of 6 satisfies

é\n+1 = é\n + ans;1 (a)¢n (Xn+1 - Un - é\fsd)n)t

n
S,,(a) = Z aktbkcbf( + I
k=0

The standard least squares estimator is given by

an=1.
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Weighted Least Squares

The weighted least squares estimator is given for v > 0 by

1 1+~ n
ap = < ) where sp =) | ®]|?.

k=0
We always have the decomposition

6n— 6 = S, (a)Mn(a)
n—1

Mn(a) = Z ak¢k6k+1.
k=0
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Adaptive Control

The control U, forces X, to track a given trajectory (x,). We
use the persistently excited adaptive tracking control

Un = Xpp1 — é\,:q’n + Ent1

where (£,) is an exogenous noise with mean 0 and positive
definite covariance matrix A. The closed-loop system is

Xnt1 — Xn41 = T™n + €ng1 + Ent1

where the prediction error

Tn = (9 - é\n)tq)n
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Adaptative Control

We assume that the trajectory (x,) is bounded and satisfies

n
S X P=o(n)  as.
k=1

and that (¢,) satisfies the strong law of large numbers so
n

1
Tn= ;(ek + &) ek + &) — T+ A a.s.

Definition

The tracking is said to be residually optimal if

1 n
= n;(xk — X)X —x ) — T+ A a.s.
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Preliminars

For all z € C such that |z| < r, where r > 1 is strictly less than
the smallest modulus of the zeros of det(B(z)), we denote

B'(z) =) Dz
k=0

where Dy = Iy and for all kK > 1, the matrices Dy are given by

k—1

Dy = -) DB if k<gq,
/=0
q

Dy = - DB if k>aq.
j=1
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Strong Controllability

Let
P(z) = B~ '(2)(A(2) — ly) = Zsz

where all the matrices P, may be explicitly calculated as
functions of the matrices A; and B;

P = =) DA~ if k<p,

p
P = =Y DA it k>p.
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Strong Controllability

For all 1 < i < @, denote by H; be the square matrix of order d
Hi=Y PP i+ Y QA
k=i k=i—1

where Qx = Dy + P. In addition, let H be the symmetric
square matrix of order dq

Hi  Hp - Hgy Hyg
H  Hy Hy - Hyg

Hi y -+ HY H  H
S
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Strong Controllability

Forall1 <i<p,letKi= Pl + QA and, if g < p,

0 Ki Ko - - Kyo Ky
0 0 K - - Kys Ko

0 -~ 0 K Ko - Ky gt
0 -« -~ 0 K .- Ko g
while, if p < q,
0 K Ko—2 Kp_1
0 0 K Ko—2
K= 0 0 0 Ki
o o --- 0 0
o o --- 0 0
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Strong Controllability

Denote by L the block diagonal matrix of order dp

r+A 0 -~ 0 0
0 r+A 0 - 0
0 .0 T+A 0
0 0 -~ 0 T+A

Let A be the symmetric square matrix of order § = d(p + q)

L K!
(L.
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Strong Controllability

A Keystone Lemma

Lemma

Let S be the Schur complement of L in A

S=H- KL 'K!.

If the matrix polynomial B is minimum phase, then the
matrices S and A\ are invertible and A= is given by

Aot (LT HLTKISTIRLT —LTTKIS T
- ~STKLT st :
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Strong Controllability

If we use an adaptive control without excitation

nt
Un = Xpp1 — 0,®p,

then S and A are not always invertible. It is necessary to add a
new concept of strong controllability, really not restrictive,
which implies that S and A are invertible.

In the particular case d = 1, the strong controllability is
equivalent to the coprimness of the polynomials A — Iy and B
which corresponds to the usual notion of controllability.
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Theorem

Assume that B is minimum phase and that () has finite

conditional moment of order > 2. Then, for the LS estimator,
we have

Bercu and Vazquez
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Theorem

Assume that B is minimum phase and that () has finite

conditional moment of order > 2. Then, for the LS estimator,
we have

In addition, the tracking is residually optimal

log n
| Cn— n ||=o< g ) as.
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Theorem

Assume that B is minimum phase and that () has finite
conditional moment of order > 2. Then, for the LS estimator,

we have S
lim =2 =A as
n—oo N
In addition, the tracking is residually optimal
log n
| Cn— n ||=o< g ) as.

Finally, 8, converges almost surely to 6

~ logn
| 6p— 6 |2= O (f") as.
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Almost sure convergence
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Theorem

Assume that B is minimum phase. In addition, suppose that

either (ep) is a white noise or (¢) has finite conditional moment
of order > 2. Then, for the WLS estimator, we have

lim (log n)“”srga) =\ as.

n—oo
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Theorem

Assume that B is minimum phase. In addition, suppose that
either (ep) is a white noise or (¢) has finite conditional moment
of order > 2. Then, for the WLS estimator, we have

lim (log n)1+Vm

n—oo

=N a.s.

In addition, the tracking is residually optimal

log n)1+7
| Co— = I1= o [ 29T as
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Almost sure convergence
Central limit theorem
Main Results Law of iterated logarithm

Theorem

Assume that B is minimum phase. In addition, suppose that
either (ep) is a white noise or (¢) has finite conditional moment
of order > 2. Then, for the WLS estimator, we have

Sia) _

lim (log n)'+7

n—oo

a.s.

In addition, the tracking is residually optimal
log )+~
| Co—Enll=o(19T) o
n
Finally, On converges almost surely to 6

. log )1+~
| 60— 6 |2= O (gn) as.
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Almost sure convergence
Central limit theorem
Main Results Law of iterated logarithm

Theorem

Assume that B is minimum phase and that (¢,) and (¢5) have
both finite conditional moments of order oo > 2. Then, the LS
and WLS estimators share the same CLT

V(8 — 0) -5 N(0,A " @ T)

where the inverse matrix A=' may be explicitely calculated and
the symbol ® stands for the matrix Kronecker product.

V.
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Theorem

In addition, the LS and WLS estimators share the same LIL
which means that for any vectors u € R9 and v € R?,

lim sup

1/2
— "(6n— 0
n—oo <2Ioglog n> v (On Ju

= — liminf <
n—oo \ 2loglogn

= (v‘/\‘1 v) /2 (u’l‘u> 2 i)

12
) vi(6, — O)u

In particular,

Aminl . n A 2 Amaxl
) < -_— — = < .S.
(Amax/\> = e <2Iog log n) 160 =01F< { N ) 22

Bercu and Vazquez Usefulness of excitation in ARX adaptive tracking



Simulations

Outline

e Simulations

Usefulness of excitation in ARX adaptive track



Simulations

Simulations Without Excitation

Consider the ARX2(1, 1) process given by
Xny1 = AXn+ Up + BUp_1 + ent1

where
ot
Un = Xpy1 — 0,Pp,

2 0 1/3 0
A_<O 1) and B:4<0_2).

It is strongly controllable with limiting matrix

21 0 0 O
1 021 0 O
“21| 0 0 192 0
0 0 0 28
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Simulations

Simulations Without Excitation

Consider the ARX2(1, 1) process given by
Xny1 = AXn+ Up + BUp_1 + ent1

where
ot
Un = Xpy1 — 0,Pp,

2 0 1/3 0
A_<OO> and B_4<0_2).
It is not strongly controllable because the limiting matrix

21. 0 0 0
1 021 0 O
21| 0o 0 192 0

0 0 0 O

A=
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Central Limit Theorem for A
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Simulations

Simulations with Excitation

Consider the ARX2(1, 1) process given by
Xny1 = AXn+ Up + BUp_1 + ent1

where R
Un = Xpt1 — 0,;¢n + &n+1

20 1/3 0
A_<OO> and B_4<0_2).
Thanks to the exogenous excitation (¢,), A is invertible

42 0 21 0
1 0 42 0 21
21| 21 0 576 0

0 21 0 28

A=
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Central limit theorem

Central Limit Theorem for B
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Simulations

Strong Controllability

Consider the square matrix of order dq given, if p > q, by

Po Pot1v -+ Pprg2 Ppig
Pp—1 Pp Pp+1 Potq-2
Po-gr2 - Ppa Pp Ppi
Po-g+1 Pp—gi2 -+ Ppi Po
while, if p < q, by
Po Pp+1 R Pp+q—2 Pp+q—1
n— P; P> Pq_1 Pq
0 P Py -+ Pyo Py
o .- 0 P P,
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Simulations

Strong Controllability

Definition
The ARXq(p, q) process is said to be strongly controllable if
B is minimum phase and I is invertible,

det() # 0.

The concept of strong controllability is not really restrictive.
e lfp=qg=1,— det(Ay) #0,
e lfp=2,g=1, — det(A; — B{Ay) #0,
e lfp=1,g=2, — det(Ay) #0,
elfp=qgq=2, —

A As — By A )
det 0.
( As> — By A —B1A> + (512 — BQ)A-] 7
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