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Introduction

Consider the d-dimensional ARXd(p, q) model given by

A(R)Xn+1 = B(R)Un + εn+1

where

1 R the shift-back operator,
2 Xn the system output,
3 Un the system input,
4 εn the driven noise.
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Matrix Polynomials

The polynomials A and B are given for all z ∈ C by

A(z) = Id − A1z − · · · − Apzp,

B(z) = Id + B1z + · · ·+ Bqzq,

where Ai and Bj are unknown square matrices of order d and Id
is the identity matrix.

Definition
The matrix polynomial B is causal or minimum phase if for all
z ∈ C with |z| ≤ 1

det(B(z)) 6= 0.
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The Unknown Parameter

Denote by θ the unknown parameter of the model

θt = (A1, . . . , Ap, B1, . . . , Bq).

The ARX model can be rewritten as

Xn+1 = θtΦn + Un + εn+1

where the regression vector

Φn =
(

X t
n, . . . , X t

n−p+1, U t
n−1, . . . , U t

n−q

)t
.
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About the Noise

We assume that (εn) is a martingale difference sequence
adapted to F = (Fn) such that for all n ≥ 0,

E[εn+1ε
t
n+1|Fn] = Γ a.s.

where Γ is a positive definite covariance matrix. Moreover, we
assume that (εn) has finite conditional moment of order > 2 so

Γn =
1
n

n∑
k=1

εkεt
k −→ Γ a.s.
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Weighted least squares

The weighted least squares estimator θ̂n of θ satisfies

θ̂n+1 = θ̂n + anS−1
n (a)Φn

(
Xn+1 − Un − θ̂ t

nΦn

)
t

Sn(a) =
n∑

k=0

akΦkΦt
k + Iδ

The standard least squares estimator is given by

an = 1.
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Weighted Least Squares

The weighted least squares estimator is given for γ > 0 by

an =

(
1

log sn

)1+γ

where sn =
n∑

k=0

‖Φk ‖2 .

We always have the decomposition

θ̂n − θ = S−1
n−1(a)Mn(a)

Mn(a) =
n−1∑
k=0

akΦkεk+1.
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Adaptive Control
The control Un forces Xn to track a given trajectory (xn). We
use the persistently excited adaptive tracking control

Un = xn+1 − θ̂ t
nΦn + ξn+1

where (ξn) is an exogenous noise with mean 0 and positive
definite covariance matrix ∆. The closed-loop system is

Xn+1 − xn+1 = πn + εn+1 + ξn+1

where the prediction error

πn = (θ − θ̂n)
tΦn.
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We assume that the trajectory (xn) is bounded and satisfies

n∑
k=1

‖ xk ‖2= o(n) a.s.

and that (ξn) satisfies the strong law of large numbers so

Σn =
1
n

n∑
k=1

(εk + ξk )(εk + ξk )t −→ Γ + ∆ a.s.

Definition
The tracking is said to be residually optimal if

Cn =
1
n

n∑
k=1

(Xk − xk )(Xk − xk )t −→ Γ + ∆ a.s.
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Preliminars

For all z ∈ C such that |z| ≤ r , where r > 1 is strictly less than
the smallest modulus of the zeros of det(B(z)), we denote

B−1(z) =
∞∑

k=0

Dkzk

where D0 = Id and for all k ≥ 1, the matrices Dk are given by

Dk = −
k−1∑
j=0

DjBk−j if k ≤ q,

Dk = −
q∑

j=1

Dk−jBj if k > q.
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Let

P(z) = B−1(z)(A(z)− Id) =
∞∑

k=1

Pkzk

where all the matrices Pk may be explicitly calculated as
functions of the matrices Ai and Bj

Pk = −
k−1∑
j=0

DjAk−j if k ≤ p,

Pk = −
p∑

j=1

Dk−jAj if k > p.
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For all 1 ≤ i ≤ q, denote by Hi be the square matrix of order d

Hi =
∞∑

k=i

PkΓP t
k−i+1 +

∞∑
k=i−1

Qk∆Qt
k−i+1

where Qk = Dk + Pk . In addition, let H be the symmetric
square matrix of order dq

H =


H1 H2 · · · Hq−1 Hq
H t

2 H1 H2 · · · Hq−1
· · · · · · · · · · · · · · ·

H t
q−1 · · · H t

2 H1 H2

H t
q H t

q−1 · · · H t
2 H1

 .
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For all 1 ≤ i ≤ p, let Ki = PiΓ + Qi∆ and, if q ≤ p,

K =


0 K1 K2 · · · · · · Kp−2 Kp−1
0 0 K1 · · · · · · Kp−3 Kp−2
· · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 K1 K2 · · · Kp−q+1
0 · · · · · · 0 K1 · · · Kp−q


while, if p ≤ q,

K =



0 K1 · · · Kp−2 Kp−1
0 0 K1 · · · Kp−2
· · · · · · · · · · · · · · ·
0 · · · 0 0 K1
0 0 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · 0 0


.
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Denote by L the block diagonal matrix of order dp

L =


Γ + ∆ 0 · · · 0 0

0 Γ + ∆ 0 · · · 0
· · · · · · · · · · · · · · ·
0 · · · 0 Γ + ∆ 0
0 0 · · · 0 Γ + ∆

 .

Let Λ be the symmetric square matrix of order δ = d(p + q)

Λ =

(
L K t

K H

)
.
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A Keystone Lemma

Lemma
Let S be the Schur complement of L in Λ

S = H − KL−1K t .

If the matrix polynomial B is minimum phase, then the
matrices S and Λ are invertible and Λ−1 is given by

Λ−1 =

(
L−1 + L−1K tS−1KL−1 −L−1K tS−1

−S−1KL−1 S−1

)
.
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Strong Controllability
Remark
If we use an adaptive control without excitation

Un = xn+1 − θ̂ t
nΦn,

then S and Λ are not always invertible. It is necessary to add a
new concept of strong controllability, really not restrictive,
which implies that S and Λ are invertible.

Strong Controllability

Remark
In the particular case d = 1, the strong controllability is
equivalent to the coprimness of the polynomials A− Id and B
which corresponds to the usual notion of controllability.

Bercu and Vazquez Usefulness of excitation in ARX adaptive tracking 20 / 37



Introduction
Estimation and Adaptive Control

On the Schur Complement
Main Results
Simulations

Almost sure convergence
Central limit theorem
Law of iterated logarithm

Outline
1 Introduction

The ARX Model
Matrix Polynomials

2 Estimation and Adaptive Control
Estimation
Adaptative Control

3 On the Schur Complement
Preliminars
Schur Complement
Strong Controllability

4 Main Results
Almost sure convergence
Central limit theorem
Law of iterated logarithm

5 Simulations

Bercu and Vazquez Usefulness of excitation in ARX adaptive tracking 21 / 37



Introduction
Estimation and Adaptive Control

On the Schur Complement
Main Results
Simulations

Almost sure convergence
Central limit theorem
Law of iterated logarithm

Theorem
Assume that B is minimum phase and that (εn) has finite
conditional moment of order > 2. Then, for the LS estimator,
we have

lim
n→∞

Sn

n
= Λ a.s.

In addition, the tracking is residually optimal

‖ Cn − Σn ‖= O
(

log n
n

)
a.s.

Finally, θ̂n converges almost surely to θ

‖ θ̂n − θ ‖2= O
(

log n
n

)
a.s.
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Theorem
Assume that B is minimum phase. In addition, suppose that
either (εn) is a white noise or (εn) has finite conditional moment
of order > 2. Then, for the WLS estimator, we have

lim
n→∞

(log n)1+γ Sn(a)

n
= Λ a.s.

In addition, the tracking is residually optimal

‖ Cn − Σn ‖= o

(
(log n)1+γ

n

)
a.s.

Finally, θ̂n converges almost surely to θ

‖ θ̂n − θ ‖2= O
(

(log n)1+γ

n

)
a.s.
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Theorem
Assume that B is minimum phase and that (εn) and (ξn) have
both finite conditional moments of order α > 2. Then, the LS
and WLS estimators share the same CLT

√
n(θ̂n − θ)

L−→ N (0, Λ−1 ⊗ Γ)

where the inverse matrix Λ−1 may be explicitely calculated and
the symbol ⊗ stands for the matrix Kronecker product.
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Theorem
In addition, the LS and WLS estimators share the same LIL
which means that for any vectors u ∈ Rd and v ∈ Rδ,

lim sup
n→∞

(
n

2 log log n

)1/2

v t(θ̂n − θ)u

= − lim inf
n→∞

(
n

2 log log n

)1/2

v t(θ̂n − θ)u

=
(

v tΛ−1v
)1/2(

utΓu
)1/2

a.s.

In particular,(
λminΓ

λmaxΛ

)
≤ lim sup

n→∞

(
n

2 log log n

)
‖ θ̂n − θ ‖2≤

(
λmaxΓ

λminΛ

)
a.s.
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Consider the ARX2(1, 1) process given by

Xn+1 = AXn + Un + BUn−1 + εn+1

where
Un = xn+1 − θ̂ t

nΦn,

A =

(
2 0
0 1

)
and B =

1
4

(
3 0
0 −2

)
.

It is strongly controllable with limiting matrix

Λ =
1
21


21 0 0 0
0 21 0 0
0 0 192 0
0 0 0 28

 .
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Simulations Without Excitation

Consider the ARX2(1, 1) process given by

Xn+1 = AXn + Un + BUn−1 + εn+1

where
Un = xn+1 − θ̂ t

nΦn,

A =

(
2 0
0 0

)
and B =

1
4

(
3 0
0 −2

)
.

It is not strongly controllable because the limiting matrix

Λ =
1

21


21 0 0 0
0 21 0 0
0 0 192 0
0 0 0 0

 .
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Simulations with Excitation

Consider the ARX2(1, 1) process given by

Xn+1 = AXn + Un + BUn−1 + εn+1

where
Un = xn+1 − θ̂ t

nΦn + ξn+1

A =

(
2 0
0 0

)
and B =

1
4

(
3 0
0 −2

)
.

Thanks to the exogenous excitation (ξn), Λ is invertible

Λ =
1
21


42 0 21 0
0 42 0 21

21 0 576 0
0 21 0 28

 .
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Strong Controllability

Consider the square matrix of order dq given, if p ≥ q, by

Π =


Pp Pp+1 · · · Pp+q−2 Pp+q−1

Pp−1 Pp Pp+1 · · · Pp+q−2
· · · · · · · · · · · · · · ·

Pp−q+2 · · · Pp−1 Pp Pp+1
Pp−q+1 Pp−q+2 · · · Pp−1 Pp


while, if p ≤ q, by

Π =



Pp Pp+1 · · · · · · Pp+q−2 Pp+q−1
· · · · · · · · · · · · · · · · · ·
P1 P2 · · · · · · Pq−1 Pq
0 P1 P2 · · · Pq−2 Pq−1
· · · · · · · · · · · · · · · · · ·
0 · · · 0 P1 · · · Pp

 .
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Strong Controllability
Definition
The ARXd(p, q) process is said to be strongly controllable if
B is minimum phase and Π is invertible,

det(Π) 6= 0.

The concept of strong controllability is not really restrictive.
If p = q = 1, −→ det(A1) 6= 0,
If p = 2, q = 1, −→ det(A2 − B1A1) 6= 0,
If p = 1, q = 2, −→ det(A1) 6= 0,
If p = q = 2, −→ Strong Controllability

det
(

A1 A2 − B1A1
A2 − B1A1 −B1A2 + (B2

1 − B2)A1

)
6= 0.
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