Introduction Notation and results Examples

Variance bounds and concentration for Markov chains

Aldéric Joulin^{*} and Yann Ollivier[†] *Institut de Mathématiques de Toulouse and [†]Ecole Normale Supérieure de Lyon

Fifth meeting BOSANTOUVAL - 06/03/2009 Parc Ornithologique du Teich

Introduction Notation and results Examples

Introduction

 π probability measure on state space (\mathcal{X}, d) . $f : \mathcal{X} \to \mathbb{R}$ function.

Aim: estimate $\pi(f) := \int_{\mathcal{X}} f d\pi$ when classical numerical methods fail (for instance when \mathcal{X} is high-dimensional).

Classical Monte-Carlo method: simulate i.i.d. sequence $Z_1, Z_2, \ldots, Z_T \sim \pi$ and use Law of Large Numbers to estimate $\pi(f)$ by

$$\hat{\pi}(f) := \frac{1}{T} \sum_{k=1}^{I} f(Z_k).$$

Central Limit Theorem gives the shape and fluctuation of the error $\hat{\pi}(f) - \pi(f)$.

Introduction

Problem: if π is complicated, difficult to simulate Z_k .

Idea: the so-called Markov chain Monte Carlo method:

• Find an easy-to-simulate Markov chain $(X_N)_{N \in \mathbb{N}}$ on \mathcal{X} with stationary distribution π (waiting for a time T_0 so that $\mathcal{L}(X_{T_0}) \approx \pi$).

• Estimate $\pi(f)$ by

$$\hat{\pi}(f) := \frac{1}{T} \sum_{k=T_0+1}^{T_0+T} f(X_k),$$

according to the ergodic theorem.

Various algorithms allows us to simulate a Markov chain for a given π (Hastings-Metropolis, Gibbs sampler, etc...).

Burn-in period: T_0 generally chosen to be the mixing time

$$\tau := \inf\{\mathbf{N} \in \mathbb{N} : \|\mathbf{P}_x^{\mathbf{N}} - \pi\|_{\mathrm{TV}} \le 1/4\},\$$

where the norm is classical total variation and P_x^N is the law of X_N starting from x.

Main problem: in essence, LLN and CLT are asymptotic results, whereas non-asymptotic estimates (in time) are required for simulation purposes, i.e. when one wants to estimate the minimum time to run the simulation algorithm in order to achieve a prescribed level of accuracy.

Introduction

Literature for non-asymptotic concentration results of type:

$$\mathbb{P}(|\hat{\pi}(f)-\pi(f)|>r), \quad r>0.$$

 \bullet Lezaud (AAP 1998): discrete/continuous-time on ${\cal X}$ finite. Approach through spectral gap.

• Wu (AIHP 2000), Cattiaux-Guillin (ESAIM 2008), Guillin-Léonard-Wu-Yao (PTRF 2009): Markov processes, fLipschitz, regularity of the initial distribution. Approach through functional inequalities (transportation, F-Sobolev, etc...) satisfied by π .

• Joulin (Bernoulli 2009): pure-jump Markov processes, *f* Lipschitz, initial measure: Dirac. Approach through curvature + tensorization of Laplace transform.

Introduction

Our objectives: to give non-asymptotic bounds on bias/variance and concentration of $\hat{\pi}(f) - \pi(f)$, f Lipschitz, that:

- are new.
- recover the existing ones.
- are easily applicable on several examples (discrete/continuous-time, finite or infinite space \mathcal{X} , jump or diffusion processes, etc...).
- need few informations on π .
- do not use reversibility.

 $(X_N)_{N \in \mathbb{N}}$ Markov chain on (\mathcal{X}, d) with stationary distribution π and transition probabilities $(P_x)_{x \in \mathcal{X}}$.

Wasserstein distance between $\mu, \nu \in \mathcal{P}_1(\mathcal{X})$:

$$egin{aligned} &\mathcal{W}_1(\mu,
u) &:= &\inf_{\gamma\in\mathrm{Marg}(\mu,
u)}\int_{\mathcal{X} imes\mathcal{X}}d(x,y)\gamma(dx,dy)\ &= &\sup\left\{\int_{\mathcal{X}}\mathit{fd}\mu - \int_{\mathcal{X}}\mathit{fd}
u:\|\mathit{f}\|_{\mathrm{Lip}}\leq 1
ight\}, \end{aligned}$$

by the Kantorovich-Rubinstein duality theorem.

Definition

 $(X_N)_{n\in\mathbb{N}}$ has Ricci curvature on (\mathcal{X},d) bounded below by $\kappa\leq 1$ if

$$W_1(P_x, P_y) \leq (1 - \kappa)d(x, y), \quad x, y \in \mathcal{X}.$$

• Link with geometry: Ollivier (JFA 2009) recovers the classical Ricci curvature on Riemannian manifolds.

- Discrete analogous of the Wasserstein curvature emphasized in Joulin (Bernoulli 2009).
- Classical Dobrushin coefficient in statistical mechanics.

Link with ergodicity: if $\kappa > 0$ then for any $x \in \mathcal{X}$,

$$W_1(P_x^N,\pi) \leq (1-\kappa)^N E(x) \xrightarrow[N \to \infty]{} 0,$$

with the eccentricity

$$E(x) = \int_{\mathcal{X}} d(x, y) \pi(dy) \leq \begin{cases} \operatorname{diam} \mathcal{X}; \\ \frac{1}{\kappa} \int_{\mathcal{X}} d(x, y) P_x(dy). \end{cases}$$

Diffusion constant and granularity controlling jumps of $(X_N)_{N \in \mathbb{N}}$:

$$rac{\sigma(x)^2}{n_x} := \sup\{\operatorname{Var}_x(f) : \|f\|_{\operatorname{Lip}} \leq 1\};$$

$$\sigma_{\infty} := \frac{1}{2} \sup_{x \in \mathcal{X}} \operatorname{diam} \operatorname{Supp} P_x,$$

where the variance is

$$\operatorname{Var}_{x}(f) := \frac{1}{2} \int_{\mathcal{X}} \int_{\mathcal{X}} (f(y) - f(z))^{2} P_{x}(dy) P_{x}(dz).$$

Mean quadratic error:

$$\begin{split} \mathbb{E}_{x}\left[|\hat{\pi}(f) - \pi(f)|^{2}\right] &= |\mathbb{E}_{x}\left[\hat{\pi}(f)\right] - \pi(f)|^{2} + \operatorname{Var}_{x}\left[\hat{\pi}(f)\right] \\ &= (\operatorname{bias})^{2} + \operatorname{variance} \\ &\leq \left(\frac{(1 - \kappa)^{T_{0} + 1}}{\kappa T} E(x) \|f\|_{\operatorname{Lip}}\right)^{2} + \operatorname{variance}. \end{split}$$

Hence a control of the variance is required to control the L^2 -error.

Theorem

Assume that:

- Ricci curvature $\geq \kappa > 0$;
- there exists a C-Lipschitz function S such that

$$rac{\sigma(x)^2}{n_x\kappa} \leq S(x), \quad x \in \mathcal{X}.$$

Then the variance of $\hat{\pi}(f) := \frac{1}{T} \sum_{k=T_0+1}^{T_0+T} f(X_k)$ is bounded as:

$$\operatorname{Var}_{x}\left[\hat{\pi}(f)\right] \leq \frac{\|f\|_{\operatorname{Lip}}^{2}}{\kappa T} \left((1 + 1/\kappa T) \mathbb{E}_{\pi}[S] + \frac{2C(1-\kappa)^{T_{0}}}{\kappa T} E(x) \right).$$

Theorem

Under the following assumptions:

- granularity $\sigma_{\infty} < \infty$;
- Ricci curvature $\geq \kappa > 0$;

• there exists a C-Lipschitz function S such that $\frac{\sigma(x)^2}{n_x\kappa} \leq S(x)$, we have the concentration result for any 1-Lipschitz function f and any r > 0:

$$\mathbb{P}_{x}\left(|\hat{\pi}(f) - \pi(f)| > r + \text{bias}\right) \leq \begin{cases} 2\exp\left\{-\frac{r^{2}}{16V_{T,x}^{2}}\right\} & r \leq r_{\max}\\ 2\exp\left\{-\frac{r\kappa T}{\max\{2C, 3\sigma_{\infty}\}}\right\} & r > r_{\max}\end{cases}$$

where Gaussian window is $r_{max} := 4\kappa T V_{T,x}^2 / \max\{2C, 3\sigma_\infty\}$ and $V_{T,x}^2$ is the latter variance bound.

• Price to pay compared with the i.i.d. case: a κ -term at the denominator of the variance bound. It is expected since

$$\operatorname{Var}_{x}\left[\hat{\pi}(f)
ight] \underset{\mathcal{T}_{0} \to \infty}{pprox} \operatorname{Var}_{\pi}\left[\hat{\pi}(f)
ight] \leq rac{2}{\kappa T} \operatorname{Var}_{\pi}[f]$$

by the exponential decrease of correlations (at least in the reversible case by using spectral gap).

• Allow to have a Lipschitz diffusion constant (convenient for approximations), in contrast to the usual case where it is bounded.

• Estimate with $\delta_x \to \mu$ might be obtained. In this case, additional variance term of order $\frac{1}{(\kappa T)^2} \int_{\mathcal{X}} \int_{\mathcal{X}} d(y, z)^2 \mu(dy) \mu(dz)$. In particular, no regularity assumption on the initial distribution.

• Gaussian behaviour in accordance with the CLT when rescaling ($r_{max} = \infty$ in this case).

Introduction Notation and results Examples

Hypercube

Hypercube $\mathcal{X} = \{0,1\}^N$ equipped with Hamming metric:

$$d(x,y) = \sum_{k=1}^{N} |x_k - y_k| = \operatorname{Card} \{k \in \{1, \dots, N\} : x_k \neq y_k\}.$$

Uniform probability on \mathcal{X} : $\pi(x) = 2^{-N}$, invariant measure of the lazy random walk:

$$P_x(y) = \begin{cases} 1/2 & \text{if } y = x; \\ 1/2N & \text{if } y \sim x. \end{cases}$$

Quantities of interest:

- Ricci curvature $\kappa = 1/N$.
- granularity $\sigma_{\infty} = 1$.
- diffusion constant $\sigma(x)^2/n_x \leq 1/2$.

Hypercube

Let f be 1-Lipschitz on the Hypercube.

• Bound on the bias:

$$|E_x[\hat{\pi}(f)] - \pi(f)| \le \frac{N^2}{2T} \exp\{-T_0/N\}.$$

To ensure a small bias, choose $T_0 \simeq N \log(N)$ which is known to be the mixing time.

• Bound on the variance:

$$\operatorname{Var}_{X}\left[\widehat{\pi}(f)\right] \leq rac{N^{2}}{2T}\left(1+N/T
ight).$$

• Concentration: for r = O(N) and $T_0 = 0$:

$$\mathbb{P}_{x}\left(|\hat{\pi}(f) - \pi(f)| > r + ext{bias}
ight) \leq 2 \exp\left\{-rac{Tr^{2}}{8N^{2}}
ight\}$$

٠

$M/M/\infty$ queueing process

Markov process $(X_t)_{t\geq 0}$ on $\mathcal{X} = \mathbb{N}$ endowed with the classical metric d(x, y) = |x - y|. Transition probabilities:

$$P_x^t(y) = \begin{cases} \lambda t + o(t) & \text{if } y = x + 1; \\ xt + o(t) & \text{if } y = x - 1; \\ 1 - (\lambda + x)t + o(t) & \text{if } y = x. \end{cases}$$

Invariant distribution: $\pi \sim \text{Poisson}(\lambda)$.

Using an approximation by Markov chain of binomial-type, one obtains for $\hat{\pi}(f) := \frac{1}{T} \int_0^T f(X_s) ds$, with $f : \mathbb{N} \to \mathbb{R}$ 1-Lipschitz:

$$\mathbb{P}_{x}\left(|\hat{\pi}(f) - \pi(f)| > r + \text{bias}\right) \leq \begin{cases} 2\exp\left\{-\frac{Tr^{2}}{16(2\lambda + (\lambda + x)/T)}\right\} & r \leq r_{\max}\\ 2\exp\left\{-\frac{rT}{12}\right\} & r > r_{\max} \end{cases}$$

where Gaussian window is $r_{max} := (8\lambda T + 4(\lambda + x))/3T$.

$M/M/\infty$ queueing process

• Difficulty of unbounded generator overcome by its Lipschitz property.

• Estimate comparable to that of Guillin-Léonard-Wu-Yao (PTRF 2009) obtained through large deviations combined with transportation-information inequalities, except that no regularity assumption required on the initial distribution.

Diffusion process on Euclidean space \mathbb{R}^d :

$$dX_t = b(X_t)dt + \sqrt{2}\rho(X_t)dW_t, \quad t > 0,$$

where $(W_t)_{t\geq 0}$ Brownian motion on \mathbb{R}^d , $b: \mathbb{R}^d \to \mathbb{R}^d$ and $\rho: \mathbb{R}^d \to \mathcal{M}_{d\times d}(\mathbb{R})$.

Hilbert-Schmidt norm:
$$\|A\|_{\mathrm{HS}} = \sqrt{\mathrm{tr}(A^*A)} = \sqrt{\sum_{i,j}a_{ij}^2}.$$

Operator (spectral) norm: $||A|| = \sup_{v \neq 0} \frac{||Av||}{||v||} = \sqrt{\lambda_{\max}(A^*A)}.$

Assume the following: the functions b and ρ are Lipschitz and there exists $\alpha>$ 0 such that

(C)
$$\|\rho(x)-\rho(y)\|_{\mathrm{HS}}^2+\langle x-y,b(x)-b(y)\rangle\leq -\alpha\|x-y\|^2, \quad x,y\in\mathbb{R}^d.$$

Approximation by the Euler scheme

$$X_{N+1}^{(\delta t)} = X_N^{(\delta t)} + b(X_N^{(\delta t)})\delta t + \sqrt{2\delta t}\rho(X_N^{(\delta t)})Y_N,$$

where $(Y_N)_{N \in \mathbb{N}}$ i.i.d. standard Gaussian.

Quantities of interest:

- Ricci curvature $\geq \kappa \geq \alpha \delta t + O(\delta t^2)$.
- granularity $\sigma_{\infty} \rightarrow 0$ as $\delta t \rightarrow 0$.
- diffusion constant bounded by $2\delta t \|\rho(x)\|^2$.

Corollary

Let $\hat{\pi}(f) := \frac{1}{T} \int_0^T f(X_s) ds$, with $f : \mathbb{R}^d \to \mathbb{R}$ 1-Lipschitz. Under the following assumptions:

• Condition (C) is fulfilled;

• there exists a C-Lipschitz function $S : \mathbb{R}^d \to \mathbb{R}$ such that $S(x) \ge \frac{2}{\alpha} \|\rho(x)\|^2$. Then

$$\operatorname{Var}_{x}[\hat{\pi}(f)] \leq rac{1}{lpha T} \mathbb{E}_{\pi}[S] + rac{CE(x)}{(lpha T)^{2}} =: V_{T,x}^{2},$$

$$\mathbb{P}_{x}\left(|\hat{\pi}(f) - \pi(f)| > r + \text{bias}\right) \leq \begin{cases} 2\exp\left\{-\frac{r^{2}}{16V_{T,x}^{2}}\right\} & r \leq r_{\max}\\ 2\exp\left\{-\frac{r\alpha T}{8C}\right\} & r > r_{\max} \end{cases}$$

where Gaussian window is $r_{\max} := 2V_{T,x}^2 \alpha T/C$.

• Basic example: OU-type process with $\rho = \text{Id}$ and $b = -\nabla V$ (hence $\pi(dx) = e^{-V} dx$).

In this case, Assumption (C) is equivalent to Bakry-Emery criterion: Hess $V \ge \alpha \operatorname{Id}$, and with C = 0 we obtain Gaussian control of concentration.

• Convenient for processes with volatility $\rho(x)$ growing like \sqrt{x} .

Some references

P.

P. Cattiaux and A. Guillin.

Deviation bounds for additive functionals of Markov processes. ESAIM Probab. Stat., 12:12–29, 2008.

A. Guillin, C. Léonard, L. Wu, and N. Yao.

Transportation-information inequalities for Markov processes. To appear in Probab. Theory Relat. Fields, 2009.

A. Joulin.

A new Poisson-type deviation inequality for Markov jump processes with positive Wasserstein curvature. To appear in Bernoulli, 2009.

P. Lezaud.

Chernoff-type bound for finite Markov chains. Ann. Appl. Probab., 8(3):849–867, 1998.

Y. Ollivier.

Ricci curvature of Markov chains on metric spaces. J. Funct. Anal., 256(3):810–864, 2009.

L. Wu.

A deviation inequality for non-reversible Markov processes. Ann. Inst. H. Poincaré Probab. Statist., 36(4):435–445, 2000.