Variance bounds and concentration for Markov
chains

Aldéric Joulin* and Yann Ollivier!
*Institut de Mathématiques de Toulouse and TEcole Normale
Supérieure de Lyon

Fifth meeting BOSANTOUVAL - 06/03/2009
Parc Ornithologique du Teich

Aldéric Joulin Variance bounds and Concentration



Outline

© Introduction

© Notation and results

Examples
(3 p

Aldéric Joulin Variance bounds and Concentration



Introduction

Introduction

7 probability measure on state space (X, d).
f . X — R function.

Aim: estimate 7(f) := [, fdm when classical numerical methods
fail (for instance when X is high-dimensional).

Classical Monte-Carlo method: simulate i.i.d. sequence
21,25, ...,Z1 ~ m and use Law of Large Numbers to estimate

m(f) by
1 T
#(F) = 72 f(Zy).
k=1

Central Limit Theorem gives the shape and fluctuation of the error
() — w(f).
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Problem: if 7 is complicated, difficult to simulate Zj.

Idea: the so-called Markov chain Monte Carlo method:

e Find an easy-to-simulate Markov chain (Xy)nen on X with
stationary distribution 7 (waiting for a time Ty so that
E(XTO) ~ 7T).

e Estimate m(f) by

To+T

)= Y X),

k=To+1
according to the ergodic theorem.

Various algorithms allows us to simulate a Markov chain for a
given 7 (Hastings-Metropolis, Gibbs sampler, etc...).
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Burn-in period: Tg generally chosen to be the mixing time
7 :=inf{N e N: ||PN — n||rv < 1/4},

where the norm is classical total variation and P/ is the law of Xy
starting from x.

Main problem: in essence, LLN and CLT are asymptotic results,
whereas non-asymptotic estimates (in time) are required for
simulation purposes, i.e. when one wants to estimate the minimum
time to run the simulation algorithm in order to achieve a
prescribed level of accuracy.
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Literature for non-asymptotic concentration results of type:
P(|#(f) —n(f)] >r), r>0.

e Lezaud (AAP 1998): discrete/continuous-time on X’ finite.
Approach through spectral gap.

e Wu (AIHP 2000), Cattiaux-Guillin (ESAIM 2008),
Guillin-Léonard-Wu-Yao (PTRF 2009): Markov processes, f
Lipschitz, regularity of the initial distribution. Approach through
functional inequalities (transportation, F-Sobolev, etc...) satisfied
by 7.

e Joulin (Bernoulli 2009): pure-jump Markov processes, f
Lipschitz, initial measure: Dirac. Approach through curvature +
tensorization of Laplace transform.
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Our objectives: to give non-asymptotic bounds on bias/variance
and concentration of #(f) — m(f), f Lipschitz, that:

e are new.
e recover the existing ones.

e are easily applicable on several examples
(discrete/continuous-time, finite or infinite space X, jump or
diffusion processes, etc...).

e need few informations on 7.

e do not use reversibility.
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Notation and results

(Xn)nen Markov chain on (X, d) with stationary distribution 7
and transition probabilities (Py)xex -

Wasserstein distance between p, v € P1(X):
Wi(p,v) = inf

/ d(x,y)y(dx, dy)
v€Marg(p,v) Jx xx

= sup{/ fdp — /fdu HfHL1p<1}

by the Kantorovich-Rubinstein duality theorem.
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Notation and results

Definition
(XN)nen has Ricci curvature on (X, d) bounded below by k <1 if

Wl(P)mPy)S(l_H)d(X?y)a X:YEX-

e Link with geometry: Ollivier (JFA 2009) recovers the classical
Ricci curvature on Riemannian manifolds.

e Discrete analogous of the Wasserstein curvature emphasized in
Joulin (Bernoulli 2009).

e Classical Dobrushin coefficient in statistical mechanics.
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Link with ergodicity: if x > 0 then for any x € X,

Wi(PY, 7)< (1-k)NE(x) — 0,

N—oo

with the eccentricity

f)( P«(dy).
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Diffusion constant and granularity controlling jumps of (Xy)nen:

o(x)?

X

= sup{Var,(f) : || f|jLip < 1};

1
Oso := = sup diam Supp Py,
2 XEX

where the variance is

Vary(F) - / / ))2P.(dy)Py(d2).
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Mean quadratic error:

Ex [[#(F) = n(F)?] = [Ex[R(1)] —x(F)[* + Varc [2(F)]
= (bias)? + variance

(1 _H)To-&-l
~ 7 F
( kT

IN

2
(X)HfHLip> + variance.

Hence a control of the variance is required to control the L?-error.
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Assume that:
e Ricci curvature > k > 0;
e there exists a C-Lipschitz function S such that

o(x)*

Ny Kk

<S(x), xeX.

Then the variance of #(f) := + Zk";}zﬂ f(Xk) is bounded as:

2 0
Var, [#(F)] < HQ;P <(1 +1/kT)EL[S] + QC(IH_T“)TE(X)> .
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Under the following assumptions:

e granularity oo < 00;

e Ricci curvature > k > 0;

e there exists a C-Lipschitz function S such that J(XX) < S(x),
we have the concentration result for any 1-Lipschitz function f and
any r > 0:

X

2exp{—r2} r<n
Py (|&(f) — =(f)| > r + bias) < 16V7 m3
2eXp{_W,T3%}} r> rma

X

where Gaussian window is rmay = 4K TV%’X/ max{2C, 30} and

V% . Is the latter variance bound.
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e Price to pay compared with the i.i.d. case: a k-term at the
denominator of the variance bound. It is expected since

Van [#(F)] &~ Varg [#(F)] < %T Vars[f]

by the exponential decrease of correlations (at least in the
reversible case by using spectral gap).

e Allow to have a Lipschitz diffusion constant (convenient for
approximations), in contrast to the usual case where it is bounded.

e Estimate with , — 1 might be obtained. In this case, additional

variance term of order ﬁ [v [y d(v, 2)?u(dy)p(dz). In
particular, no regularity assumption on the initial distribution.

e Gaussian behaviour in accordance with the CLT when rescaling
(rmax = o0 in this case).
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Hypercube

Hypercube X = {0, 1}V equipped with Hamming metric:
N
d(x,y) = [xk —yi| = Card {k € {1,..., N} : xc # yi}-
k=1

Uniform probability on X' : 7(x) = 2=V, invariant measure of the
lazy random walk:

12 if y=x
PX(V)_{ 12N if y~x.

Quantities of interest:
e Ricci curvature k = 1/N.
e granularity oo = 1.
e diffusion constant o(x)?/n, < 1/2.
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Hypercube

Let f be 1-Lipschitz on the Hypercube.

e Bound on the bias:
2

Ec ()]~ 7(F)] < 3 exp {~To/N}.

To ensure a small bias, choose Ty =< Nlog(N) which is known to
be the mixing time.

e Bound on the variance:

Vary [#(f)] < N—Z (L+N/T).

2T
e Concentration: for r = O(N) and To = 0:

Tr2
P, (|7(f) — w(f)| > r + bias) < 2exp{—8l:/2}.
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M /M /oo queueing process

Markov process (X¢)¢>0 on X = N endowed with the classical
metric d(x,y) = |x — y|. Transition probabilities:

At + o(t) if y=x+1;
Pi(y) =< xt+ o(t) if y=x-1;
I1-(A+x)t+o(t) if y=x.

Invariant distribution: 7 ~ Poisson(\).

Using an approximation by Markov chain of binomial-type, one
obtains for #(f) := L [T £(X)ds, with f : N — R 1-Lipschitz;
Tr?
| G— <
P, (|7(f) — 7(f)| > r + bias) < ZGXP{ 16(2A+(A+x)/r)} F'= fmax
2exp{—% r> Fmax

where Gaussian window is fmax := (8AT + 4(A+ x))/3T.
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M /M /oo queueing process

e Difficulty of unbounded generator overcome by its Lipschitz
property.

e Estimate comparable to that of Guillin-Léonard-Wu-Yao (PTRF
2009) obtained through large deviations combined with
transportation-information inequalities, except that no regularity
assumption required on the initial distribution.
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Euler scheme for diffusions

Diffusion process on Euclidean space RY:
dX; = b(X)dt + V2p(X¢)dW,, t >0,

where (W;)>0 Brownian motion on RY, b:RY — RY and
p- R? — Maxd(R).

Hilbert-Schmidt norm: ||Aljus = \/tr(A*A) = i a,?j.

lav] _
I

Operator (spectral) norm: [|A]| = sup, 4 Amax(A*A).

Assume the following: the functions b and p are Lipschitz and
there exists a > 0 such that

(€)  llp(x)=pW)lIfis+(x—y, b(x)=b(y)) < —alx—yl’, x,y € R7.
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Euler scheme for diffusions

Approximation by the Euler scheme
X0 = X8 + b(X\ )6t + V26tp(X D) Y,
where (Yy)nen i.i.d. standard Gaussian.

Quantities of interest:
e Ricci curvature > k > adt + O(6t?).
e granularity 0o — 0 as t — 0.
e diffusion constant bounded by 25t||p(x)||?.
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Euler scheme for diffusions

Corollary

Let #(f) := + fo s)ds, with f : R? — R I-Lipschitz. Under
the following assumpt/ons

e Condition (C) is fulfilled;

e there exists a C-Lipschitz function S : R? — R such that
S(x) = 2 lp(x)|2. Then

A 1 CE(x) _.
VaI‘X[TF(f)] < ﬁET([S] + W - V%,x7

2
__r <
P, (|#(f) — w(f)| > r + bias) < 2“"{ 16V%,X} LS e

where Gaussian window is fmax :=2V2 « T/C.
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Euler scheme for diffusions

e Basic example: OU-type process with p =1d and b= -V V
(hence 7(dx) = e Vdx).

In this case, Assumption (C) is equivalent to Bakry-Emery
criterion: Hess V > «/1d, and with C = 0 we obtain Gaussian
control of concentration.

e Convenient for processes with volatility p(x) growing like v/x.
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