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π probability measure on state space (X , d).
f : X → R function.

Aim: estimate π(f ) :=
∫
X fdπ when classical numerical methods

fail (for instance when X is high-dimensional).

Classical Monte-Carlo method: simulate i.i.d. sequence
Z1,Z2, . . . ,ZT ∼ π and use Law of Large Numbers to estimate
π(f ) by

π̂(f ) :=
1

T

T∑
k=1

f (Zk ).

Central Limit Theorem gives the shape and fluctuation of the error
π̂(f )− π(f ).
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Problem: if π is complicated, difficult to simulate Zk .

Idea: the so-called Markov chain Monte Carlo method:
• Find an easy-to-simulate Markov chain (XN)N∈N on X with

stationary distribution π (waiting for a time T0 so that
L(XT0) ≈ π).

• Estimate π(f ) by

π̂(f ) :=
1

T

T0+T∑
k=T0+1

f (Xk ),

according to the ergodic theorem.

Various algorithms allows us to simulate a Markov chain for a
given π (Hastings-Metropolis, Gibbs sampler, etc...).
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Burn-in period: T0 generally chosen to be the mixing time

τ := inf{N ∈ N : ‖PN
x − π‖TV ≤ 1/4},

where the norm is classical total variation and PN
x is the law of XN

starting from x .

Main problem: in essence, LLN and CLT are asymptotic results,
whereas non-asymptotic estimates (in time) are required for
simulation purposes, i.e. when one wants to estimate the minimum
time to run the simulation algorithm in order to achieve a
prescribed level of accuracy.
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Literature for non-asymptotic concentration results of type:

P(|π̂(f )− π(f )| > r), r > 0.

• Lezaud (AAP 1998): discrete/continuous-time on X finite.
Approach through spectral gap.

• Wu (AIHP 2000), Cattiaux-Guillin (ESAIM 2008),
Guillin-Léonard-Wu-Yao (PTRF 2009): Markov processes, f
Lipschitz, regularity of the initial distribution. Approach through
functional inequalities (transportation, F-Sobolev, etc...) satisfied
by π.

• Joulin (Bernoulli 2009): pure-jump Markov processes, f
Lipschitz, initial measure: Dirac. Approach through curvature +
tensorization of Laplace transform.
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Our objectives: to give non-asymptotic bounds on bias/variance
and concentration of π̂(f )− π(f ), f Lipschitz, that:

• are new.

• recover the existing ones.

• are easily applicable on several examples
(discrete/continuous-time, finite or infinite space X , jump or
diffusion processes, etc...).

• need few informations on π.

• do not use reversibility.
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(XN)N∈N Markov chain on (X , d) with stationary distribution π
and transition probabilities (Px )x∈X .

Wasserstein distance between µ, ν ∈ P1(X ):

W1(µ, ν) := inf
γ∈Marg(µ,ν)

∫
X ×X

d(x , y)γ(dx , dy)

= sup

{∫
X

fdµ−
∫
X

fdν : ‖f ‖Lip ≤ 1

}
,

by the Kantorovich-Rubinstein duality theorem.
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Definition

(XN)n∈N has Ricci curvature on (X , d) bounded below by κ ≤ 1 if

W1(Px ,Py ) ≤ (1− κ)d(x , y), x , y ∈ X .

• Link with geometry: Ollivier (JFA 2009) recovers the classical
Ricci curvature on Riemannian manifolds.

• Discrete analogous of the Wasserstein curvature emphasized in
Joulin (Bernoulli 2009).

• Classical Dobrushin coefficient in statistical mechanics.
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Link with ergodicity: if κ > 0 then for any x ∈ X ,

W1(PN
x , π) ≤ (1− κ)NE (x) −→

N→∞
0,

with the eccentricity

E (x) =

∫
X

d(x , y)π(dy) ≤

{
diamX ;
1
κ

∫
X d(x , y)Px (dy).
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Diffusion constant and granularity controlling jumps of (XN)N∈N :

σ(x)2

nx
:= sup{Varx (f ) : ‖f ‖Lip ≤ 1};

σ∞ :=
1

2
sup
x∈X

diam Supp Px ,

where the variance is

Varx (f ) :=
1

2

∫
X

∫
X

(f (y)− f (z))2Px (dy)Px (dz).
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Mean quadratic error:

Ex

[
|π̂(f )− π(f )|2

]
= |Ex [π̂(f )]− π(f )|2 + Varx [π̂(f )]

= (bias)2 + variance

≤
(

(1− κ)T0+1

κT
E (x)‖f ‖Lip

)2

+ variance.

Hence a control of the variance is required to control the L2-error.
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Theorem

Assume that:
• Ricci curvature ≥ κ > 0;
• there exists a C -Lipschitz function S such that

σ(x)2

nxκ
≤ S(x), x ∈ X .

Then the variance of π̂(f ) := 1
T

∑T0+T
k=T0+1 f (Xk ) is bounded as:

Varx [π̂(f )] ≤
‖f |2Lip

κT

(
(1 + 1/κT )Eπ[S ] +

2C (1− κ)T0

κT
E (x)

)
.
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Theorem

Under the following assumptions:
• granularity σ∞ <∞;
• Ricci curvature ≥ κ > 0;

• there exists a C -Lipschitz function S such that σ(x)2

nxκ
≤ S(x),

we have the concentration result for any 1-Lipschitz function f and
any r > 0:

Px (|π̂(f )− π(f )| > r + bias) ≤

 2 exp

{
− r2

16V 2
T ,x

}
r ≤ rmax

2 exp
{
− rκT

max{2C ,3σ∞}

}
r > rmax

where Gaussian window is rmax := 4κTV 2
T ,x/max{2C , 3σ∞} and

V 2
T ,x is the latter variance bound.
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• Price to pay compared with the i.i.d. case: a κ-term at the
denominator of the variance bound. It is expected since

Varx [π̂(f )] ≈
T0→∞

Varπ [π̂(f )] ≤ 2

κT
Varπ[f ]

by the exponential decrease of correlations (at least in the
reversible case by using spectral gap).

• Allow to have a Lipschitz diffusion constant (convenient for
approximations), in contrast to the usual case where it is bounded.

• Estimate with δx → µ might be obtained. In this case, additional
variance term of order 1

(κT )2

∫
X
∫
X d(y , z)2µ(dy)µ(dz). In

particular, no regularity assumption on the initial distribution.

• Gaussian behaviour in accordance with the CLT when rescaling
(rmax =∞ in this case).
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Hypercube

Hypercube X = {0, 1}N equipped with Hamming metric:

d(x , y) =
N∑

k=1

|xk − yk | = Card {k ∈ {1, . . . ,N} : xk 6= yk}.

Uniform probability on X : π(x) = 2−N , invariant measure of the
lazy random walk:

Px (y) =

{
1/2 if y = x ;
1/2N if y ∼ x .

Quantities of interest:
• Ricci curvature κ = 1/N.
• granularity σ∞ = 1.
• diffusion constant σ(x)2/nx ≤ 1/2.
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Hypercube

Let f be 1-Lipschitz on the Hypercube.

• Bound on the bias:

|Ex [π̂(f )]− π(f )| ≤ N2

2T
exp {−T0/N} .

To ensure a small bias, choose T0 � N log(N) which is known to
be the mixing time.

• Bound on the variance:

Varx [π̂(f )] ≤ N2

2T
(1 + N/T ) .

• Concentration: for r = O(N) and T0 = 0:

Px (|π̂(f )− π(f )| > r + bias) ≤ 2 exp

{
− Tr 2

8N2

}
.
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M/M/∞ queueing process

Markov process (Xt)t≥0 on X = N endowed with the classical
metric d(x , y) = |x − y |. Transition probabilities:

Pt
x (y) =


λt + o(t) if y = x + 1;
xt + o(t) if y = x − 1;
1− (λ+ x)t + o(t) if y = x .

Invariant distribution: π ∼ Poisson(λ).

Using an approximation by Markov chain of binomial-type, one
obtains for π̂(f ) := 1

T

∫ T
0 f (Xs)ds, with f : N→ R 1-Lipschitz:

Px (|π̂(f )− π(f )| > r + bias) ≤

{
2 exp

{
− Tr2

16(2λ+(λ+x)/T )

}
r ≤ rmax

2 exp
{
− rT

12

}
r > rmax

where Gaussian window is rmax := (8λT + 4(λ+ x))/3T .
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M/M/∞ queueing process

• Difficulty of unbounded generator overcome by its Lipschitz
property.

• Estimate comparable to that of Guillin-Léonard-Wu-Yao (PTRF
2009) obtained through large deviations combined with
transportation-information inequalities, except that no regularity
assumption required on the initial distribution.
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Euler scheme for diffusions

Diffusion process on Euclidean space Rd :

dXt = b(Xt)dt +
√

2ρ(Xt)dWt , t > 0,

where (Wt)t≥0 Brownian motion on Rd , b : Rd → Rd and
ρ : Rd →Md×d (R).

Hilbert-Schmidt norm: ‖A‖HS =
√

tr(A∗A) =
√∑

i ,j a2
ij .

Operator (spectral) norm: ‖A‖ = supv 6=0
‖Av‖
‖v‖ =

√
λmax(A∗A).

Assume the following: the functions b and ρ are Lipschitz and
there exists α > 0 such that

(C) ‖ρ(x)−ρ(y)‖2
HS+〈x−y , b(x)−b(y)〉 ≤ −α‖x−y‖2, x , y ∈ Rd .
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Euler scheme for diffusions

Approximation by the Euler scheme

X
(δt)
N+1 = X

(δt)
N + b(X

(δt)
N )δt +

√
2δtρ(X

(δt)
N )YN ,

where (YN)N∈N i.i.d. standard Gaussian.

Quantities of interest:
• Ricci curvature ≥ κ ≥ αδt + O(δt2).
• granularity σ∞ → 0 as δt → 0.
• diffusion constant bounded by 2δt‖ρ(x)‖2.
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Euler scheme for diffusions

Corollary

Let π̂(f ) := 1
T

∫ T
0 f (Xs)ds, with f : Rd → R 1-Lipschitz. Under

the following assumptions:
• Condition (C) is fulfilled;
• there exists a C -Lipschitz function S : Rd → R such that

S(x) ≥ 2
α ‖ρ(x)‖2. Then

Varx [π̂(f )] ≤ 1

αT
Eπ[S ] +

CE (x)

(αT )2
=: V 2

T ,x ,

Px (|π̂(f )− π(f )| > r + bias) ≤

 2 exp

{
− r2

16V 2
T ,x

}
r ≤ rmax

2 exp
{
− rαT

8C

}
r > rmax

where Gaussian window is rmax := 2V 2
T ,xαT/C .
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Euler scheme for diffusions

• Basic example: OU-type process with ρ = Id and b = −∇V
(hence π(dx) = e−V dx).

In this case, Assumption (C) is equivalent to Bakry-Emery
criterion: Hess V ≥ α Id, and with C = 0 we obtain Gaussian
control of concentration.

• Convenient for processes with volatility ρ(x) growing like
√

x .
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