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Introduction

F-ratio statistics

F-ratio is a widely used tool in Statistical Data Analysis

F =
Between Groups Variance

Within Groups Variance

F =
Bk

Wk
=

∑k
j=1 nj

∥∥y j − y
∥∥2∑k

j=1

∑nj

i=1

∥∥yi ,j − y j

∥∥2

Supervised (known group ownerships):

ANOVA
Testing the existence of differences between the groups means.
Linear Discriminant Analysis
Derivation of the canonical variates.

Unsupervised (unknown group ownerships):

Maximal F-Ratio in Cluster Analysis
Testing the number of clusters.
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The Maximal F -ratio

k−means (I)

McQueen (1967), Hartigan and Wong (1979).

Well-known and widely used (non-hierarchical) clustering method.

x1, x2, ..., xn: p-variate observations.

C1, ...,Ck : partition into k groups. m1, ...,mk : groups sample means.

k-means mn
1 , ...,m

n
k : Solution of the Minimization problem

min
C1,...,Ck

k∑
j=1

∑
xi∈Cj

‖xi −mj‖2 = min
m1,...,mk

n∑
i=1

inf
1≤j≤k

‖xi −mj‖2

Within-groups sum of squares:

W n
k =

n∑
i=1

inf
1≤j≤k

∥∥xi −mn
j

∥∥2
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The Maximal F -ratio

k−means (II)

x1, x2, ..., xn: p-variate observations

C1, ...,Ck : partition into k groups. m1, ...,mk : groups sample means.

mn: overall mean

n1, ..., nk : groups sizes

k-means mn
1 , ...,m

n
k : Solution of Maximization problem

max
C1,...,Ck

k∑
j=1

nj‖mj −mn‖2

Between-groups sum of squares:

Bn
k =

k∑
j=1

nj‖mn
j −mn‖2
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The Maximal F -ratio

Maximal F−Ratio Statistic (I)

Rn
k =

Bn
k

W n
k

Maximal F−Ratio Statistic to test two clusters structure:
Engelman and Hartigan (1969) proposed a test for “clusters structure”
for univariate data and k = 2.
The test divides the sample into two subsets maximizing the likelihood
ratio that the two subsets are sampled from two normals with different
means, against the null hypothesis that the means are equal.
The test reject H0 when the 2-means centers are “separated” enough.

Maximal F−Ratio Statistic to check k clusters structure:
Calinski and Harabasz (1974): Extension to check “k − 1 or less
groups” against “at least k groups”.

It is not straightforward: We need to specify the distribution in H0.
“Pseudo F−test”: Descriptive Criterion for choosing k.
Good results in Milligan and Cooper (1985)’s study among 30
procedures for determining the number of clusters.

Hartigan (1978) proved the asymptotic normality for the k-mean
centers and the Maximal F -ratio in the univariate case.
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The Maximal F -ratio

Maximal F−Ratio Statistic (II)

Extension to the multivariate setting

Lee (1979) extended the Maximal F−Ratio principle to test clusters
structure in the multivariate case.
Pollard (1982) extended Hartigan’s results to the multivariate case by
using Empirical Process Theory.

Main drawbacks:

Hartigan and Pollard’s results need some moment conditions on the
underlying distribution to be applied.
Lack of Robustness: k−means and Maximal F -ratio can be severely
affected by a small amount of anomalous observations
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The Maximal F -ratio
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(a) 100 observations: 95% N(0, 1) and 5% outliers.
(b) 100 observations: 99% N(0, 1) and 1% remote outliers.
(c) 200 observations drawn from a normal mixture.
(d) 200 observations: 95% from a normal mixture and 5% background noise.
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A Trimmed version of the Maximal F -ratio

Robust Maximal F -ratio based on Trimmed k−means

Trimming data in clustering problems is not an easy task.
Gordaliza (1991) introduced “impartial” trimming.
Cuesta-Albertos et al (1997) extended the idea to clustering.
Trimmed k−means: mn

1 , ...,m
n
k solution of the Minimization problem:

min
Y

min
m1,...,mk

∑
xi∈Y

inf
1≤j≤k

‖xi −mj‖2 ,

α ∈ (0, 1) is the trimming proportion.
Y ranges over all subsets Y ⊂ {x1, ..., xn} with [n(1− α)] elements.
The trimmed k-means mn

1 , ...,m
n
k induce a partition of the

non-trimmed observations onto k clusters C n
1 ∪ ... ∪ C n

k .
The clusters are balls having the same radius.

Trimmed Maximal F-Ratio:

Rn
k (α) :=

Bn
k (α)

W n
k (α)

:=

∑k
j=1 nj

∥∥∥mn
j −mn

∥∥∥2

∑k
j=1

∑
xi∈Cn

j

∥∥∥xi −mn
j

∥∥∥2
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A Trimmed version of the Maximal F -ratio
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(a) 100 observations: 95% N(0, 1) and 5% outliers.
(b) 100 observations: 99% N(0, 1) and 1% remote outliers.
(c) 200 observations drawn from a normal mixture.
(d) 200 observations: 95% from a normal mixture and 5% background noise.
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Asymptotics for the Trimmed Maximal F -ratio

Population version

Population version of Trimmed k−means. m0
1, ...,m

0
k solution of:

min
A0 : P(A0)=1−α

min
m0

1,...,m
0
k

∫
A0

inf
1≤j≤k

∥∥x −m0
j

∥∥2
dP(x)

Population version of Trimmed Maximal F−ratio:

R0
k (α) :=

B0
k (α)

W 0
k (α)

:=

∑k
j=1 P(C 0

j )
∥∥∥m0

j −m0
∥∥∥2

∑k
j=1

∫
C0

j

∥∥∥x −m0
j

∥∥∥2
dP(x)

.

C 0
1 , ...,C

0
k : partition of the non trimmed area into k disjoint groups.

m0
1, ...,m

0
k : groups sample means (Trimmed k−means).

m0: overall trimmed mean.
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Asymptotics for the Trimmed Maximal F -ratio

Asymptotic properties

Theorem: Consistency
Let α ∈ (0, 1) and P be a continuous probability distribution and
assume that there exists a unique α-trimmed k-mean. Then

Rn
k (α)→ R0

k (α) P−a.e.

Theorem: Asymptotic Normality
If P has bounded density not identically null on the boundary of the
optimal trimming set and there exists a unique α-trimmed k-mean,
then: √

n(Rn
k (α)− R0

k (α))
L→ N(0, LVL′)

Proof based on Empirical Processes Theory.
No moment conditions on P are needed.
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Asymptotics for the Trimmed Maximal F -ratio

Asymptotic means and variances of Rn
k (α)

k = 2

α: .0001 .001 .01 .05 .1 .2

Asymp. mean 1.756 1.776 1.877 2.097 2.263 2.483
Asymp. var. 6.515 6.485 7.605 12.841 19.462 34.475

k = 3

α: .0001 .001 .01 .05 .1 .2

Asymp. mean 4.273 4.347 4.698 5.412 5.921 6.568
Asymp. var. 74.775 75.119 79.328 95.600 115.570 160.341

Table: Asymptotic means and variances of the maximal F -ratio for the N(0, 1)
distribution, k = 2 and k = 3 and different trimming levels.
Hartigan (1978)’s values for the untrimmed (α = 0) case, when k = 2:
- Asymptotic mean: 2/(π − 2) = 1.752
- Asymptotic variance:8/π · (1− 3/π)/(1− 2/π)4 = 6.582
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Hypothesis Testing

Hypothesis Testing

Asymptotic results can be used to test H0 : k = 1 against H1 : k > 1.

Reject H0 when Rn
k (α) is greater than the (asymptotic) critical value.

The test depends on the assumed model for H0.

Large sample size n will be required because of the asymptotic
character of the results.

We conduct a simulation study in the univariate normal case to
analyze:

The empirical power of the test.
The gain in robustness provided by the trimming.
The behavior for finite sample sizes.
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Hypothesis Testing

Empirical powers
ε = .0 ε = .01

α: 0 .01 .05 0 .01 .05

D = 0 n = 500 .08 .08 .05 .87 .33 .02
n = 1000 .06 .06 .04 .95 .26 .01
n = 10000 .05 .05 .04 1.00 .03 .00

D = 2 n = 500 .94 .90 .76 .41 .60 .66
n = 1000 1.00 .99 .94 .42 .62 .89
n = 10000 1.00 1.00 1.00 .47 .63 1.00

D = 3 n = 500 1.00 1.00 1.00 .06 .67 1.00
n = 1000 1.00 1.00 1.00 .01 .72 1.00
n = 10000 1.00 1.00 1.00 .00 .98 1.00

Table: Empirical powers based on 5000 random samples.
Significance level: 0.05.
fD,ε(x) = (1− ε)fD(x) + εϕ(x − 20)
fD(x) = 0.5ϕ(x) + 0.5ϕ(x − D) with ϕ(·) being the density of N(0, 1).
Powers obtained using the asymptotic distributions of Rn

2 and Rn
2 (α).
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An Example in Genetics

Ordering and selecting genes

Characteristics of genetical studies:

Genetical studies usually involve a large number of genes.
The presence of noise is frequent (genomic and proteomic data are
frequently affected by measurement errors)

Selection of genes:

We look for informative genes exhibiting differences between the
expression levels across the individuals in the study.
When group ownerships are known, ordering genes according to their
F -Ratios can be used as a first screening phase in gene selection
(Dudoit et al. 2002).
When group ownerships are unknown, we can resort to Maximal
F−Ratios to order genes and select a reduced set of informative genes
to apply clustering methods.
The presence of noise suggests the use of Robust Maximal F−Ratios
to order and select genes.
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An Example in Genetics

Golub’s leukemia dataset (I)

Example based on the training set of the famous Golub’s leukemia
dataset (Golub et al 1999).

We study the data subset leukemia which accompanies the
contributed package supclust in the R-project repository.(Dettling and
Bühlmann 2004)

Study of gene expression in two types of acute leukemias:

Acute lymphoblastic leukemia (ALL).
Acute myeloid leukemia (AML).

The data set consists of 250 gene expressions measured on 38
individuals.

We will assume that no leukemia type classification is available
(unsupervised study).
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An Example in Genetics

Golub’s leukemia dataset (II)

We obtain an “importance” index of genes according to the values of
the statistics

Maximal F−Ratio Statistic: Rn
2 (Rank)

Trimmed Maximal F−Ratio Statistic: Rn
2 (.08) (T-Rank).

The trimming size α = .08 is fixed to avoid the influence of the 3
most outlying observations.

Genes with smallest values in Rank and T-Rank are marked as the
most “interesting” ones.
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An Example in Genetics

Gene 1

Rank: 48 and T−Rank: 216
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Rank: 130 and T−Rank: 137
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Gene 230

Rank: 1 and T−Rank: 1
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An Example in Genetics

Ordering subsets of p genes

The statistic Rn
2 (α) can be computed from p-dimensional samples.

The trimmed maximal F -ratio can be used for ranking subsets of p
variables which jointly serve to detect interesting clusters structures.

This is a computationally hard problem if the number of genes J is
large as long as

(J
p

)
subsets need to be explored.
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An Example in Genetics
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An Example in Genetics

Thank you very much

Merci beaucoup
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