An inverse problem point of view for adaptive estimation in a shifted curves model

Jérémie Bigot & Sébastien Gadat

Insitut de Mathématiques de Toulouse Université de Toulouse

5èmes Rencontre Statistiques Mathématiques Bordeaux-Santander-Toulouse-Valladolid

Parc Ornithologique du Teich, June 2009

Upper bound for the minimax risk Lower bound for the minimax risk Simulations Motivations A connexion with deconvolution problems

Introduction

- Motivations
- A connexion with deconvolution problems
- Upper bound for the minimax risk
 Linear and nonadaptive estimator
 Non-linear and adaptive estimator

3 Lower bound for the minimax risk

4 Simulations

Motivations A connexion with deconvolution problems

Grenander's pattern theory (1993)

Data : a set of *n* similar curves or images obtained through the deformation of the same template

A general model : observation of $Y_m : \Omega \to \mathbb{R}, m = 1, ..., n$ where $\Omega \subset \mathbb{R}^d$ with d = 1, 2, 3 such that

$$Y_m(x) = f(\phi_m(x)) + W_m(x), \text{ for } x \in \Omega,$$

where

- $f : \mathbb{R}^d \to \mathbb{R}$ is a common unknown template
- $\phi_m : \mathbb{R}^d \to \mathbb{R}^d$ are unknown deformations, possibly random
- W_m some additive noise

Problem : to recover f as $n \to +\infty$

- In statistics work by Gasser, Kneip, Silverman, Ramsay, mainly on curve alignment...
- In image processing work by Amit, Grenander, Joshi, Miller, Trouvé, Younes...
- Recently work by Gamboa, Loubes, Maza, Vimond, Bigot, Gadat

Upper bound for the minimax risk Lower bound for the minimax risk Simulations Motivations A connexion with deconvolution problems

A first example of a template estimation problem

Jérémie Bigot & Sébastien Gadat

Inverse problem and shifted curves

Upper bound for the minimax risk Lower bound for the minimax risk Simulations Motivations A connexion with deconvolution problems

A first example of a template estimation problem

Jérémie Bigot & Sébastien Gadat

Inverse problem and shifted curves

Upper bound for the minimax risk Lower bound for the minimax risk Simulations Motivations A connexion with deconvolution problems

A second example of a template estimation problem

Jérémie Bigot & Sébastien Gadat

Upper bound for the minimax risk Lower bound for the minimax risk Simulations Motivations A connexion with deconvolution problems

Estimating f a deconvolution problem?

Direct mean of the observed images - blurring effect

Upper bound for the minimax risk Lower bound for the minimax risk Simulations Motivations A connexion with deconvolution problems

Different models for the deformations

Rigid deformations

- Translation : $\phi(x) = x b$ where $b \in \mathbb{R}^d$
- Rotation + scaling (in \mathbb{R}^2) : $\phi(x) = \frac{1}{a}A_{\theta}x$ where $a \in \mathbb{R}^+$ and

$$A_{ heta} = \left[egin{array}{cc} \cos(heta) & \sin(heta) \ -\sin(heta) & \cos(heta) \end{array}
ight]$$

• Affine (Translation + rotation + scaling) : $\phi(x) = \frac{1}{a}A_{\theta}(x-b)$, either 2D or 3D

Upper bound for the minimax risk Lower bound for the minimax risk Simulations Motivations A connexion with deconvolution problems

Different models for the deformations

Non-rigid deformations

Small deformations : φ(x) = x + h(x) where h : ℝ^d → ℝ^d is an unconstrained function. Problem φ is not necessarly invertible if h is large. (Work by Faugeras, Amit,...)

 Large deformations (i.e. diffeomorphisms) : φ(x) is an invertible and smooth deformation from R^d to R^d (Work by Grenander, Trouvé, Younes, Miller,...)

Upper bound for the minimax risk Lower bound for the minimax risk Simulations Motivations A connexion with deconvolution problems

Simplest model : shifted 1D curves

Observations : independent realizations of *n* noisy and shifted curves Y_1, \ldots, Y_n coming from the model

$$dY_m(x) = f(x - \tau_m)dx + \epsilon dW_m(x), \ x \in [0, 1], \ m = 1, \dots, n$$

where

- $f:[0,1] \rightarrow \mathbb{R}$ is the unknown common shape of the curves (with period 1)
- W_m are independent standard Brownian motions on [0, 1]
- ϵ level of noise in each curve

Remark : $\epsilon \to 0$ corresponds to $N \to +\infty$ in the model (with $\epsilon = \frac{\sigma}{\sqrt{N}}$)

$$Y_{m,i} = f(x_i - \tau_m) + \sigma z_{m,i}, \ x_i = \frac{i}{N}, \ i = 1, \dots, N, \ \text{and} \ z_{m,i} \sim_{i.i.d.} N(0,1)$$

Upper bound for the minimax risk Lower bound for the minimax risk Simulations Motivations A connexion with deconvolution problems

Simplest model : shifted 1D curves

Observations : independent realizations of *n* noisy and shifted curves Y_1, \ldots, Y_n coming from the model

$$dY_m(x) = f(x - \tau_m)dx + \epsilon dW_m(x), \ x \in [0, 1], \ m = 1, \dots, n$$

Different models for the shifts τ_m :

- Deterministic shifts : the τ_m are fixed parameters to estimate : semi-parameteric estimation in the setting *n* fixed and ε → 0 (Gamboa, Loubes & Maza (2007), Vimond (2008), extension to 2D images by Bigot, Gamboa & Vimond (2009))
- τ_m 's are unknown **random shifts** independent of the W_m 's such that

```
	au_m \sim_{i.i.d} g \quad m = 1, \ldots, n,
```

where g is a unknown density on \mathbb{R}

Upper bound for the minimax risk Lower bound for the minimax risk Simulations Motivations A connexion with deconvolution problems

Simplest model : shifted 1D curves

Observations : independent realizations of *n* noisy and shifted curves Y_1, \ldots, Y_n coming from the model

$$dY_m(x) = f(x - \tau_m)dx + \epsilon dW_m(x), \ x \in [0, 1], \ m = 1, \dots, n$$

This talk : case of random shifts $\tau_m \sim_{i.i.d} g$, m = 1, ..., n, with **known** density *g*.

Problem : estimation of f in the asymptotic setting :

• $n \to +\infty$ and ϵ is fixed (This talk)

• $n \to +\infty$ and $\epsilon \to 0$ (Work in progress...)

Motivations A connexion with deconvolution problems

A simple model for randomly shifted curves

Observations : independent realizations of *n* noisy and randomly shifted curves Y_1, \ldots, Y_n coming from the model

$$dY_m(x) = f(x - \tau_m)dx + \epsilon dW_m(x), \ x \in [0, 1], \ m = 1, \dots, n$$

Main objectives : estimating the function f and to derive asymptotic (as $n \rightarrow +\infty$) upper and lower bounds for the minimax risk

$$\mathcal{R}_n(\mathcal{F}) = \inf_{\hat{f}_n} \sup_{f \in \mathcal{F}} \mathcal{R}(\hat{f}_n, f), ext{ where }$$

- $\mathcal{R}(\hat{f}_n, f) = \mathbb{E} \|\hat{f}_n f\|^2 = \mathbb{E} \int_0^1 |\hat{f}_n(x) f(x)|^2 dx$
- $\mathcal{F} \subset L^2([0,1])$ e.g a Sobolev or a Besov ball
- \hat{f}_n a measurable function of the processes $\{Y_m, m = 1, ..., n\}$

Upper bound for the minimax risk Lower bound for the minimax risk Simulations Motivations A connexion with deconvolution problems

Simplest case : no shifts

Observations : independent realizations of *n* noisy and curves Y_1, \ldots, Y_n

$$dY_m(x) = f(x)dx + \epsilon dW_m(x), \ x \in [0, 1], \ m = 1, \dots, n$$

Classical result : if $\mathcal{F} = H^s(A)$ (Sobolev ball of radius *A*) or $\mathcal{F} = B^s_{p,q}(A)$ (Besov ball of radius *A*) with smoothness index *s* ("number of derivatives") then

$$\mathcal{R}_n(\mathcal{F}) = \inf_{\hat{f}_n} \sup_{f \in \mathcal{F}} \mathcal{R}(\hat{f}_n, f) \sim Cn^{-rac{2s}{2s+1}}$$

Upper bound for the minimax risk Lower bound for the minimax risk Simulations Motivations A connexion with deconvolution problems

A connexion with a deconvolution problem

Model :
$$dY_m(x) = f(x - \tau_m)dx + \epsilon dW_m(x), \ x \in [0, 1], \ m = 1, ..., n$$

A deconvolution problem ? The expectation of each observed curve is given by $\mathbb{E}[f(x - \tau_m)] = \int_{\mathbb{R}} f(x - \tau)g(\tau)d\tau = f \star g(x)$

Define

$$\xi_m(x) = f(x-\tau_m) - \int_{\mathbb{R}} f(x-\tau)g(\tau)d\tau,$$

 $\xi(x) = \frac{1}{n} \sum_{m=1}^{n} \xi_m(x)$, and taking the mean of the *n* curves yields

$$dY(x) = \int_0^1 f(x-\tau)g(\tau)d\tau dx + \underbrace{\xi(x)dx}_{\text{Non-Gaussian Error}} + \underbrace{\frac{\epsilon}{\sqrt{n}}dW(x)}_{\text{Standard Gaussian Error}}, x \in [0,1],$$

Upper bound for the minimax risk Lower bound for the minimax risk Simulations Motivations A connexion with deconvolution problems

A connexion with a deconvolution problem

Case of standard deconvolution with a Gaussian error :

$$dY(x) = \int_0^1 f(x-\tau)g(\tau)d\tau dx + \frac{\epsilon}{\sqrt{n}}dW(x) \ x \in [0,1],$$

Minimax rate of convergence : let $\gamma_{\ell} = \int_{-\infty}^{+\infty} e^{-i2\pi\ell x} g(x) dx$. Assume that for some real $\nu > 0$

$$C_{\min}|\ell|^{-\nu} \leq |\gamma_{\ell}| \leq C_{\max}|\ell|^{-\nu}.$$

for all $\ell \in \mathbb{Z}$.

Then for $\mathcal{F} = H^s(A)$ (Sobolev ball) or $\mathcal{F} = B^s_{p,q}(A)$ (Besov ball) with smoothness index *s* ("number of derivatives") then

$$\mathcal{R}_n(\mathcal{F}) = \inf_{\hat{f}_n} \sup_{f \in \mathcal{F}} \mathcal{R}(\hat{f}_n, f) \sim Cn^{-\frac{2s}{2s+2\nu+1}} \text{ (instead of } n^{-\frac{2s}{2s+1}} \text{ in the direct case)}$$

Upper bound for the minimax risk Lower bound for the minimax risk Simulations Motivations A connexion with deconvolution problems

Model in the Fourier domain

For
$$\ell \in \mathbb{Z}$$
, let $\theta_{\ell} = \int_0^1 e^{-2i\ell\pi x} f(x) dx$ and $c_{m,\ell} = \int_0^1 e^{-2i\ell\pi x} dY_m(x)$. Then

$$c_{m,\ell} = \theta_{\ell} e^{-i2\pi\ell\tau_m} + \epsilon_m z_{\ell,m} \text{ with } z_{\ell,m} \sim_{i.i.d.} N_{\mathbb{C}}(0,1)$$

= $\theta_{\ell} \gamma_{\ell} + \xi_{\ell,m} + \epsilon_m z_{\ell,m} \text{ with } \xi_{\ell,m} = \theta_{\ell} e^{-i2\pi\ell\tau_m} - \theta_{\ell} \gamma_{\ell},$

where with $\gamma_{\ell} = \mathbb{E}\left(e^{-i2\pi\ell\tau}\right) = \int_{-\infty}^{+\infty} e^{-i2\pi\ell x} g(x) dx$.

Then, average the Fourier coefficients over the *n* curves

with $\xi_{\ell} = \frac{1}{n} \sum_{m=1}^{n} \xi_{\ell,m}$.

Note that

$$\mathbb{E}|\xi_{\ell}|^2 = \frac{1}{n}|\theta_{\ell}|^2(1-|\gamma_{\ell}|^2)$$

Problem : the variance of ξ_{ℓ} depends on the unknown $|\theta_{\ell}|^2$

Upper bound for the minimax risk Lower bound for the minimax risk Simulations Motivations A connexion with deconvolution problems

Deconvolution in the Fourier domain

Assuming that the density *g* of the shifts is known, an estimation of θ_{ℓ} is given by

$$\hat{ heta}_\ell = rac{ ilde{c}_\ell}{\gamma_\ell} = heta_\ell + rac{\xi_\ell}{\gamma_\ell} + rac{\epsilon}{\sqrt{n}}rac{\eta_\ell}{\gamma_\ell}$$

with
$$\gamma_{\ell} = \mathbb{E}\left(e^{-i2\pi\ell\tau}\right) = \int_{-\infty}^{+\infty} e^{-i2\pi\ell x} g(x) dx.$$

1

Main assumption on g : polynomial decay of the γ_{ℓ} 's i.e for some real $\nu > 0$,

$$C_{\min}|\ell|^{-\nu} \leq |\gamma_{\ell}| \leq C_{\max}|\ell|^{-\nu}.$$

for all $\ell \in \mathbb{Z}$.

Upper bound for the minimax risk Lower bound for the minimax risk Simulations Linear and nonadaptive estimator Non-linear and adaptive estimator

Introduction

- Motivations
- A connexion with deconvolution problems

2 Upper bound for the minimax risk

- Linear and nonadaptive estimator
- Non-linear and adaptive estimator

3 Lower bound for the minimax risk

4 Simulations

Linear and nonadaptive estimator Non-linear and adaptive estimator

Filtering in the Fourier domain

Linear estimator for f by spectra cut-off : take

$$\hat{ heta}_\ell^M = rac{ ilde{c}_\ell}{\gamma_\ell}, ext{ for all } |\ell| \leq M$$

and

$$\hat{\theta}_{\ell}^{M}=0, \text{ for all } |\ell|>M$$

where *M* is some integer to be chosen. For $\hat{f}_{n,M}(x) = \sum_{\ell \in \mathbb{Z}} \hat{\theta}_{\ell}^{M} e^{-i2\pi\ell x}$, one has

$$\mathcal{R}(\hat{f}_{n,M},f) = \mathbb{E}\sum_{\ell\in\mathbb{Z}}|\hat{\theta}_{\ell} - \theta_{\ell}|^2.$$

Bias-variance decomposition of the risk

$$\mathcal{R}(\hat{f}_{n,M},f) = \underbrace{\sum_{|\ell| > M} |\theta_{\ell}|^2}_{Bias} + \underbrace{\frac{1}{n} \sum_{|\ell| \le M} \left[|\theta_{\ell}|^2 \left(\frac{1}{|\gamma_{\ell}|^2} - 1 \right) + \frac{\epsilon^2}{|\gamma_{\ell}|^2} \right]}_{Variance}.$$

Linear and nonadaptive estimator Non-linear and adaptive estimator

Filtering in the Fourier domain

Define the following Sobolev ball of radius A :

$$H_s(A) = \left\{ f \in L^2([0,1]) : \sum_{\ell \in \mathbb{Z}} (1+|\ell|^{2s}) |\theta_\ell|^2 \le A, \right\} \text{ with } A > 0, s > 0$$

Proposition

If
$$M = M_{n,s} \sim n^{\frac{1}{2s+2\nu+1}}$$
, then $\sup_{f \in H_s(A)} \mathcal{R}(\hat{f}_{n,M_{n,s}},f) = \mathcal{O}(n^{-\frac{2s}{2s+2\nu+1}})$

Problem :

- $\hat{f}_{n,M_{n,s}}$ depends on the unknown regularity *s* (non-adaptive estimator)
- if f is piecewise C^s with s large, then $f \notin H_{\alpha}(A)$ for $\alpha > 1/2$. So,

$$\sup_{f \in \mathsf{Piece-wise } C^{s}} \mathcal{R}(\hat{f}_{n,M_{n,s}},f) = \mathcal{O}(n^{-\frac{1}{1+2\nu+1}})$$

(non-optimal estimator in standard deconvolution)

Linear and nonadaptive estimator Non-linear and adaptive estimator

Meyer wavelets

Let $(\phi_{j_0,k}, \psi_{j,k})_{j \ge j_0, 0 \le k \le 2^j - 1}$ be the periodized Meyer wavelet basis of $L^2([0, 1])$.

Advantages : Meyer wavelets are band-limited functions since for

$$\psi_{\ell}^{j,k} = \int_0^1 e^{-i2\pi\ell x} \psi_{j,k}(x) dx, \ \ell \in \mathbb{Z},$$

the set $C_j = \{\ell \in \mathbb{Z}; \psi_\ell^{j,k} \neq 0\}$ is finite with $\#\{C_j = c2^j\}$.

Then, wavelet coefficients of f can be computed from its Fourier coefficients as

$$\beta_{j,k} = \int_0^1 f(x)\psi_{j,k}(x)dx = \sum_{\ell \in C_j} \psi_\ell^{j,k} \theta_\ell, \text{ where } \theta_\ell = \int_0^1 e^{-2i\ell\pi x} f(x)dx.$$

Meyer wavelets = usefull tool for deconvolution (work by Johnstone *et al.* (2004), Pensky & Sapatinas (2008), and fast WaveD algorithm by Raimondo (2006))

Linear and nonadaptive estimator Non-linear and adaptive estimator

Estimation by hard thresholding

Recall that

$$\hat{ heta}_\ell = rac{ ilde{c}_\ell}{\gamma_\ell} = heta_\ell + rac{\xi_\ell}{\gamma_\ell} + rac{\epsilon}{\sqrt{n}}rac{\eta_\ell}{\gamma_\ell}$$

and estimation of the wavelet coefficients of f is then given by

$$\hat{eta}_{j,k} = \sum_{\ell \in C_j} \psi_\ell^{j,k} \hat{ heta}_\ell$$
 and $\hat{c}_{j_0,k} = \sum_{\ell \in C_{j_0}} \phi_\ell^{j_0,k} \hat{ heta}_\ell.$

Non-linear estimation by hard-thresholding

$$\hat{f}_n^h = \sum_{k=0}^{2^{j_0}-1} \hat{c}_{j_0,k} \phi_{j_0,k} + \sum_{j=j_0}^{j_1} \sum_{k=0}^{2^j-1} \hat{\beta}_{j,k} \mathbf{1}_{\{|\hat{\beta}_{j,k}| \ge \lambda_{j,k}\}} \psi_{j,k}$$

where $\lambda_{i,k}$ is a threshold to be calibrated.

Linear and nonadaptive estimator Non-linear and adaptive estimator

Probability of deviation

Proposition

For $0 \le k \le 2^j - 1$, define

$$\sigma_j^2 = 2^{-j} \epsilon^2 \sum_{\ell \in \Omega_j} |\gamma_\ell|^{-2}, V_j^2 = \|g\|_{\infty} 2^{-j} \sum_{\ell \in \Omega_j} \frac{|\theta_\ell|^2}{|\gamma_\ell|^2} \text{ and } \delta_j = 2^{-j/2} \sum_{\ell \in \Omega_j} \frac{|\theta_\ell|}{|\gamma_\ell|}.$$

For any t > 0, define

$$\alpha_{j,k}(t) = 2 \max\left(\sigma_j \sqrt{\frac{2t}{n}}, \sqrt{\frac{2V_j^2 t}{n}} + \delta_j \frac{t}{3n}\right)$$

Then,

$$\mathbb{P}\left(|\hat{\beta}_{j,k}-\beta_{j,k}|\geq\alpha_{j,k}(t)\right)\leq 2\exp(-t).$$

Linear and nonadaptive estimator Non-linear and adaptive estimator

Definition of the threshold

Estimation of $|\theta_l|^2$ is given by

$$|\hat{\theta}|_{\ell}^{2} = \frac{1}{n} \sum_{m=1}^{n} (|c_{m,\ell}|^{2} - \epsilon^{2}) \text{ where } |c_{m,\ell}|^{2} = |\theta_{\ell}|^{2} + \epsilon^{2} |z_{\ell,m}|^{2} - 2\mathcal{R} \left(e^{i2\pi\ell\tau_{m}} z_{\ell,m} \right)$$

For some contant $\eta \geq 2$, use random thresholds of the form

$$\lambda_{j,k} = \lambda_j = 2 \max\left(\sigma_j \sqrt{\frac{2\eta \log(n)}{n}}, \sqrt{\frac{2\hat{V}_j^2 \eta \log(n)}{n}} + \hat{\delta}_j \frac{\eta \log(n)}{3n}\right)$$

with
$$\hat{V}_j^2 = \|g\|_{\infty} 2^{-j} \sum_{\ell \in \Omega_j} \frac{|\tilde{\theta}_{\ell}|^2}{|\gamma_{\ell}|^2}$$
 and $\hat{\delta}_j = 2^{-j/2} \sum_{\ell \in \Omega_j} \frac{|\tilde{\theta}_{\ell}|}{|\gamma_{\ell}|}$, where

$$|\tilde{ heta}_{\ell}| = \sqrt{|\hat{ heta}|_{\ell}^2 + \epsilon^2} + \epsilon \sqrt{\frac{2\log(n^2 2^j)}{n}}.$$

Then
$$\mathbb{P}\left(|\hat{eta}_{j,k}-eta_{j,k}|\geq\lambda_j
ight)\leq 2n^{-\eta}$$

Linear and nonadaptive estimator Non-linear and adaptive estimator

Adaptive estimation over Besov spaces

Theorem

Assume that
$$2^{j_1} \sim \left(rac{n}{\log(n)}
ight)^{rac{1}{2
u+1}}$$
 and $2^{j_0} \sim \log(n)$. Recall that

$$\hat{f}_n^h = \sum_{k=0}^{2^{j_0}-1} \hat{c}_{j_0,k} \phi_{j_0,k} + \sum_{j=j_0}^{j_1} \sum_{k=0}^{2^{j}-1} \hat{\beta}_{j,k} \mathbf{1}_{\{|\hat{\beta}_j| \ge \lambda_{j,k}\}} \psi_{j,k}$$

Then, for $1 \le p \le \infty$, $1 \le q \le \infty$, A > 0

$$\sup_{f\in B^s_{p,q}(A)}\|\hat{f}^h_n-f\|^2=\mathcal{O}\left(\left(\frac{n}{\log(n)}\right)^{-\frac{2s}{2s+2\nu+1}}\right),$$

with s>1/p' , $(s+1/2-1/p')p>\nu(2-p)$ with $p'=\min(2,p)$

- Motivations
- A connexion with deconvolution problems
- Upper bound for the minimax risk
 Linear and nonadaptive estimator
 Non-linear and adaptive estimator

Source bound for the minimax risk

Simulations

Asymptotic lower bound

Theorem

Let $1 \le p \le \infty$, $1 \le q \le \infty$, $s \ge 1/p$ and A > 0. Then, if

 $s > \nu + 1/2$ and $\nu > 1/2$,

there exists a constant C > 0 depending only on A, s, p, q such that

$$\lim_{n \to +\infty} n^{\frac{2s}{2s+2\nu+1}} \mathcal{R}_n(B^s_{p,q}(A)) \ge C$$

Likelihood ratio of the model

Hypothesis
$$H_0$$
: $dY_m(x) = \epsilon dW_m(x), m = 1, ..., n$
Hypothesis H_f : $dY_m(x) = f(x - \tau_m)dx + \epsilon dW_m(x), m = 1, ..., n$

By conditionning with respect to the $\tau_{\rm m}$'s and using the Girsanov formula, one has that

$$\begin{split} \Lambda_n(f,h) &= \frac{d\mathbb{P}_{H_f}}{d\mathbb{P}_{H_h}} \\ &= \prod_{i=1}^n \exp\left(\int_0^1 (f(x-\tau_i) - h(x-\tau_i)) dY_i(x) + \frac{1}{2} \|h\|^2 - \frac{1}{2} \|f\|^2\right) \end{split}$$

Assouad's cube technique (e.g HKPT (1998))

Let $j \ge 0$ and consider for any $\eta = (\eta_k)_{k \in \{0...2^j-1\}} \in \{\pm 1\}^{2^j}$ the function $f_{j,\eta}$ defined as

$$f_{j,\eta} = \gamma_j \sum_{k=0}^{2^j - 1} \eta_k \psi_{j,k}$$
 with $\gamma_j = c 2^{-j(s+1/2)}$, and c such that $f_{j,\eta} \in B^s_{p,q}(A)$

Let also the vector $\eta^i \in \{\pm 1\}^{2^i}$ with components equal to those of η except the i^{th} one.

Classically a lower bound for the minimax rate is obtained by controlling (e.g HKPT (1998))

$$\mathbb{P}_{f_{j,\eta}}\left(\Lambda_n(f_{j,\eta^i},f_{j,\eta})\geq e^{-\lambda}\right)\geq \pi_0$$

Problem : in this way, the inverse problem does not appear

Adaptation of a classical Lemma (e.g HKPT (1998))

Let

$$\mathbb{E}_{\tau} \left(\Lambda_n(f_{j,\eta^i}, f_0) \right) = \int_{\mathbb{R}^n} \prod_{i=1}^n e^{\int_0^1 (f(x-\tau_i) - h(x-\tau_i)) dY_i(x) + \frac{1}{2} \|h\|^2 - \frac{1}{2} \|f\|^2} g(\tau_1) \dots g(\tau_n) d\tau_1 \dots d\tau_n$$

Lemma

Suppose there exists $\lambda > 0$ and $\pi_0 > 0$ such that for all sufficiently large *n*

$$\mathbb{P}_{f_{j,\eta}}\left(rac{\mathbb{E}_{ au}\left(\Lambda_{n}(f_{j,\eta^{i}},f_{0})
ight)}{\mathbb{E}_{ au}\left(\Lambda_{n}(f_{j,\eta},f_{0})
ight)}\geq e^{-\lambda}
ight)\geq\pi_{0},$$

for all $f_{j,\eta}$ and all $i \in \{0 \dots 2^j - 1\}$. Then, there exists a positive constant *C*, such that for all sufficiently large *n* and any estimator \hat{f}_n

$$\max_{\eta \in \{\pm 1\}^{2^j}} \mathbb{E}_{f_{j,\eta}} \| \widehat{f}_n - f_{j,\eta} \|^2 \ge C \pi_0 e^{-\lambda} 2^j \gamma_j^2$$

Control of the expectation over the random shifts of the likelihood ratio

Lemma

If j = j(n) such that $2^{j(n)} \sim n^{\frac{1}{2s+2\nu+1}}$, then there exists $\lambda > 0$ and $\pi_0 > 0$ such that for all sufficiently large n

$$\mathbb{P}_{f_{j,\eta}}\left(rac{\mathbb{E}_{ au}\left(\Lambda_n(f_{j,\eta^i},f_0)
ight)}{\mathbb{E}_{ au}\left(\Lambda_n(f_{j,\eta},f_0)
ight)}\geq e^{-\lambda}
ight)\geq \pi_0.$$

provided $s > \nu + 1/2$ and $\nu > 1/2$.

Since $\gamma_j = c2^{-j(s+1/2)}$, the choice $2^{j(n)} \sim n^{\frac{1}{2s+2\nu+1}}$ implies that

$$\max_{\eta \in \{\pm 1\}^{2^j}} \mathbb{E}_{f_{j,\eta}} \| \hat{f}_n - f_{j,\eta} \|^2 \ge C \pi_0 e^{-\lambda} 2^j \gamma_j^2 \sim n^{-\frac{2s}{2s+2\nu+1}}$$

- Motivations
- A connexion with deconvolution problems
- Upper bound for the minimax risk
 Linear and nonadaptive estimator
 Non-linear and adaptive estimator

3 Lower bound for the minimax risk

Comparison with Procrustean mean

Iterative procedure (Kneip & Gasser (1988), Wang & Gasser (1997))

- Initialisation : $\hat{f}_0 = \frac{1}{n} \sum_{m=1}^n Y_m$
- For $1 \le i \le i_{\max}$ do

• For $1 \le m \le n$ compute

$$\hat{\tau}_{m,i} = \arg\min_{\tau\in\mathbb{R}} \|Y_m(\cdot+\tau) - \hat{f}_{i-1}\|^2$$

• Then take
$$\hat{f}_i(x) = \frac{1}{n} \sum_{m=1}^n Y_m(x + \hat{\tau}_{m,i})$$

Fast convergence ($i_{max} = 3$ is enough) but it highly depends on the initialisation \hat{f}_0

Wave example

Laplace distribution
$$g(x) = \frac{1}{\sqrt{2\sigma}} \exp\left(-\sqrt{2\frac{|x|}{\sigma}}\right)$$
 for $x \in \mathbb{R}$, and $\gamma_{\ell} = \frac{1}{1+2\sigma^2\pi^2\ell^2}$ i.e $\nu = 2$

True *f* and a sample of 10 noisy curves out of n = 200Curves are sampled at N = 256 equally spaced points on [0, 1]

Wave example - Direct mean

Direct mean of the n = 200 observed curves

Wave example - Deconvolution step

Deconvolution of the direct mean without any smoothing/thresholding

Wave example - Wavelet thresholding

Choice for the resolution levels : $j_0 = 3$ and $j_1 = 7 = \log 2(N) - 1$

True wavelet coefficients - Noisy wavelet coefficients and threshold λ_j

Wave example - Comparison with Procrustean mean

HeaviSine example

Laplace distribution
$$g(x) = \frac{1}{\sqrt{2\sigma}} \exp\left(-\sqrt{2}\frac{|x|}{\sigma}\right)$$
 for $x \in \mathbb{R}$, and $\gamma_{\ell} = \frac{1}{1+2\sigma^2\pi^2\ell^2}$ i.e $\nu = 2$

True f and a sample of 10 noisy curves out of n = 200

HeaviSine example - Direct mean

Direct mean of the n = 200 observed curves

HeaviSine example - Deconvolution step

Deconvolution of the direct mean without any smoothing/thresholding

HeaviSine example - Wavelet thresholding

Choice for the resolution levels : $j_0 = 3$ and $j_1 = 7 = \log 2(N) - 1$

True wavelet coefficients - Noisy wavelet coefficients and threshold λ_i

HeaviSine example - Comparison with Procrustean mean

Step example

Density of the shifts g : mixture of two Laplace densities

True f and a sample of 10 noisy curves out of n = 200

Step example - Direct mean

Direct mean of the n = 200 observed curves

Step example - Deconvolution step

Deconvolution of the direct mean without any smoothing/thresholding

Step example - Wavelet thresholding

True wavelet coefficients - Noisy wavelet coefficients and threshold λ_i

Step example - Comparison with Procrustean mean

Wavelet thresholding - Procrustean mean

Some perspectives

- Consider an asymptotic setting with n → +∞ and e → 0 (work in progress) : in this case
 - estimation of the shifts τ_m is possible
 - there is no inverse problem and the minimax risk becomes (conjecture...)

$$\mathcal{R}_{n,\epsilon}(\mathcal{F}) = \inf_{\hat{f}_n} \sup_{f \in \mathcal{F}} \mathcal{R}(\hat{f}_{n,\epsilon}, f) \sim C\left(\frac{\epsilon^2}{n}\right)^{\frac{2\epsilon}{2s+1}}$$

- Estimation of the density g
- Extension to images and more complex deformations (first steps in this direction by Bigot, Gamboa & Vimond (2009), Bigot, Loubes & Vimond (2008), Bigot, Gadat & Loubes (2009))