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Grenander’s pattern theory (1993)

Data : a set of n similar curves or images obtained through the
deformation of the same template

A general model : observation of Y, : 2 — R, m=1,... nwhere
Q c RY with d = 1, 2, 3 such that

Ym(X) = f(¢m(X)) + Wmn(X), for x € Q,

where
@ f : RY — R is a common unknown template
@ ¢m: RY — RY are unknown deformations, possibly random
@ W, some additive noise

Problem : to recoverf ash — +oo
@ In statistics work by Gasser, Kneip, Silverman, Ramsay, mainly on curve
alignment...
@ Inimage processing work by Amit, Grenander, Joshi, Miller, Trouvé,
Younes...
@ Recently work by Gamboa, Loubes, Maza, Vimond, Bigot, Gadat
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A second example of a template estimation problem

A connexion with deconvolution problems
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Estimating f a deconvolution problem ?

—— —— —

Direct mean of the observed images - blurring effect
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Different models for the deformations

A connexion with deconvolution problems

Rigid deformations

@ Translation : ¢(X) = x — b where b € R¢
@ Rotation + scaling (in R?) : ¢(x) = 1Agx where a € R* and

~a

cos(d) sin(#)
A =1 _gn(6) cos(f)

@ Affine (Translation + rotation + scaling) : ¢(x) = 2As(x — b), either
2D or 3D
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Different models for the deformations

Non-rigid deformations

@ Small deformations : ¢(x) = x + h(x) where h: RY — R%is an
unconstrained function . Problem ¢ is not necessarly invertible if
his large. (Work by Faugeras, Amit,....)

@ Large deformations (i.e. diffeomorphisms ) : ¢(x) is an invertible
and smooth deformation from RY to RY (Work by Grenander, Trouvé,

Younes, Miller,....)
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Simplest model : shifted 1D curves

Observations : independent realizations of n noisy and shifted
curves Yy, ... Y, coming from the model

dYm(X) = f (X — Tm)dX + edWin(x), x € [0,1], m=1,...,n
where

@ f :[0,1] — R is the unknown common shape of the curves (with
period 1)

@ W, are independent standard Brownian motions on [0, 1]
@ ¢ level of noise in each curve

Remark : ¢ — 0 corresponds to N — +oc in the model (with € = \/LN)

) i = 17 ceey Na and Zm,i ~i.i.d. N(07 1)

|
Ymi =T = Tm) + 0Zmi, X = 5
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Simplest model : shifted 1D curves

Observations : independent realizations of n noisy and shifted
curves Yy, ... Y, coming from the model

dYm(X) = f (X — 7m)dX + edWin(x), x € [0,1], m=1,...,n
Different models for the shifts 7, :

@ Deterministic shifts : the r, are fixed parameters to estimate :
semi-parameteric estimation in the setting n fixed and ¢ — 0
(Gamboa, Loubes & Maza (2007), Vimond (2008), extension to 2D
images by Bigot, Gamboa & Vimond (2009))

@ 71's are unknown random shifts independent of the W's such
that
Tm~iidd m=1....n

where g is a unknown density on R
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Simplest model : shifted 1D curves

Observations : independent realizations of n noisy and shifted
curves Yy, ... Y, coming from the model

dYm(X) = f (X — Tm)dX + edWin(x), x € [0,1], m=1,...,n

9

This talk : case of random shifts 7m ~iiq g, M= 1,...,n, with known
density g.

Problem : estimation of f in the asymptotic setting :
@ n— +oo and e is fixed (This talk)

@ n — +oo and e — 0 (Work in progress...)
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A simple model for randomly shifted curves

Observations : independent realizations of n noisy and randomly
shifted curves Yi, ... Y, coming from the model

dYm(X) = f (X — Tm)dX + edWin(x), x € [0,1], m=1,...,n

Main objectives : estimating the function f and to derive asymptotic
(as n — +o0) upper and lower bounds for the minimax risk

Rn(F) = inf supR(fy, T), where
fn feF

0 R(fo,f) = Elffa — |2 =E [ [fa(x) — f(x)|%dx
@ F C L?([0,1]) e.g a Sobolev or a Besov ball
@ f, a measurable function of the processes {Ym, m=1,...,n}
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Simplest case : no shifts

Observations : independent realizations of n noisy and curves
Yi,... Y

dYm(X) = f (X)dX + edWmn(x), x € [0,1], m=1,...

Classical result : if F = HS(A) (Sobolev ball of radius A) or
F = B} 4(A) (Besov ball of radius A) with smoothness index s
(“number of derivatives”) then

Ra(F) = inf sup R (Fn, ) ~ Cn~ =51
fo feF
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A connexion with a deconvolution problem

Model : dYm(X) = f(X — 7m)dX + edWiy(X), x € [0,1], m=1 n

geeey

A deconvolution problem ? The expectation of each oberved curve
is given by E [f(x — mn)] = [ f(x—7)g(7)dr = f x g(x)

Define

Em(%) = F(X— 7o) — / f(x — )g(r)dr

€(x) = 1> °n_1 &m(x), and taking the mean of the n curves yields

€
/fx—r T)drdx+  £(x)dx  + %dW(x) , X€[0,1],

Standard Gaussian Error

Non-Gaussian Error
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A connexion with a deconvolution problem

Case of standard deconvolution with a Gaussian error :

/f — 7)g(7)d7dx + TdW( ) x € [0,1],

Minimax rate of convergence :  let~, = [*°° e 27*g(x)dx. Assume
that for some real v > 0

Cmin|€|7y < |W| < Cmax|€|7u~

for all ¢ € Z.

Then for 7 = HS(A) (Sobolev ball) or 7 = B; 4(A) (Besov ball) with
smoothness index s (“number of derivatives”) then

Rn(F) = inf sup R(fy, f) ~ Cn~ o (instead of n™ %i1in the direct case)
fn feF
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Model in the Fourier domain

Forl{cZ,letd, = fol e~ 2™ (x)dx and Cm = fol e~ 24m™dYy(x). Then

Cme = 0,2 47y With 2o ~ii.a. Nc (0,1)
= 0rye + Eom+ emZem With & m = 0,672 — 0y,

where with v, = E (e~277) = [T e~12rlg(x)dx,

Then, average the Fourier coefficients over the n curves

1o €
Co=— Cem=10 — with 7, ~ii.q. Nc (0,1
0 nz em= 0+ &+ R ne ~ii.d. Ne (0, 1)
m=1 Non-Gaussian Error W—/

Standard Gaussian Error
. 1 n
with gé ~n Zm:l f@,m-
Note that 1
E|¢)? = ﬁlﬁelz(l — |7el)

Problem : the variance of &, depends on the unknown |6,|2
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Deconvolution in the Fourier domain

Assuming that the density g of the shifts is known, an estimation of 6,
is given by

with v, = E (e712707) = [ g=12mixg(x)dix.

Main assumption on g: polynomial decay of the ~,’s i.e for some
real v > 0,

Crinl€] ™" < 7e] < Crax[€] 7.
for all ¢ € Z.
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Filtering in the Fourier domain

Linear estimator for f by spectra cut-off:  take

w G

0y = —, forall [¢(| <M

e

and R

oY =0, forall |¢| > M
where M is some integer to be chosen. For fom(x) = 3, OMe 27,
one has . R

Rfam, ) =E [0 — 6,

LeZ
Bias-variance decomposition of the risk

1 €?
Rt = 25 o ()« ]
(o |[|¥M ,ES:M [yel? [yel?

N——
Bias Variance
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Filtering in the Fourier domain

Linear and nonadaptive estimator
Non-linear and adaptive estimator

Define the following Sobolev ball of radius A :

Hs(A) = {f € L2([0,2]) ;) _(1+1[%)6,[* < A, } with A>0,s>0

LEZ

Proposition

IfM = Mg~ n=r71, then SUPt i (A) R(fn,Mn,S,f) = O(n_zwgswl)

Problem :

o fAn,Mn~s depends on the unknown regularity s (non-adaptive
estimator)

o if f is piecewise C® with slarge, then f ¢ H,(A) for « > 1/2. So,
sup R (o, f) = O(n~ T72071)
fePiece-wise C°
(non-optimal estimator in standard deconvolution)
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Meyer wavelets

Let (¢jo.k, ¥i.k)j>jo,0<k<2—1 be the periodized Meyer wavelet basis of
L%([0,1]).

Advantages : Meyer wavelets are band-limited functions since for
¢j€,k :/ e_|2W£X¢j7k(X)dX, /c Z,
0

the set G = {/ € Z; Y}* # 0} is finite with #{C; = c2}.

Then, wavelet coefficients of f can be computed from its Fourier
coefficients as

1 _ 1
Bik = / () x()dx = > 9} 0, where 6, = / e 2 (x)dx.
0 teq 0

Meyer wavelets = usefull tool for deconvolution ( work by Johnstone et
al. (2004), Pensky & Sapatinas (2008), and fast WaveD algorithm by
Raimondo (2006) )
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Estimation by hard thresholding

Linear and nonadaptive estimator
Non-linear and adaptive estimator

Recall that

and estimation of the wavelet coefficients of f is then given by

Bj,k = Z ¢jg’kée and ¢, x = Z ¢J£°’kég.

LeC LeC,

Non-linear estimation by hard-thresholding

2Jo_1 j1 2-1
- o X |
= Godiok + Y D Audlys jox g ¥ik
k=0 i—=jo k=0

where )k is a threshold to be calibrated.
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Probability of deviation

Proposition

For0 < k < 2 — 1, define

i _ i 162 — |0
0f =27 |y 72,V = ||gl|o2 ’Z e and §j =27/2% " —.

= = e el

For any t > 0, define
[2t  [2VA t
Oz]',k(t) =2max | oj T —nj 2 5j§

P (16— Biad = aju(t)) < 2exp(-).

Then,
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Definition of the threshold

Estimation of ||? is given by

n
> (Icm e —€?) where [com|* = [6[°+ €|z m*— 2R (€772 1)

m=1

~ 2 1
o, ==
ol ==

For some contant i > 2, use random thresholds of the form

2| 2V2nlog(n) . pl
A= = 2max | o [221000) | ZHIOO0) | nioo(n)

S —j 9|2 2 _j 6
with V2 = [|g]|c277 Y e, 124 and §; = 273/2 %, 4, where

_ <2 /2log(n22
10c] =1/ 0], + €+ ¢ %

Then P (|Bj,k — ﬂj’k| > )\j) <2n™"
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Adaptive estimation over Besov spaces

Theorem

=
-

Assume that 21+ ~ ( )2"“ and 2 ~ log(n). Recall that

log(n)
2o_1 i 21—
= 2 Sondkt 2 > 5,0 Yik
j=lo k=0

Then,forl <p<o0,1<g<o00,A>0

) — =raT
ap it =0 (L) 7
fEBS 4(A) log(n)

with s> 1/p/, (s+1/2—1/p")p > v(2 — p) with p" = min(2, p)
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Asymptotic lower bound

Letl1<p<oo,1<g<oo s>1/pandA> 0. Then, if

s>v+1/2andv > 1/2,

there exists a constant C > 0 depending only on A;'s, p, g such that

lim n=sR,(BS4(A) > C

n——+4oo
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Likelihood ratio of the model

Hypothesis Hp : dYm(X) = edWmn(x), m=1,....n

Hypothesis H : dYm(X) = f (X — 7m)dX + edWin(x), m=1,....n

By conditionning with respect to the 7, 's and using the Girsanov
formula, one has that

dPy,
dPy,

n 1
= [ew </ (f(X—ﬂ)—h(X—ﬂ))in(X)Jr%Hth—%|f||2>-
i=1

An(f7 h) =
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Assouad’s cube technique (e.g HKPT (1998))

Letj > 0 and consider for any n = (1)keqo...2-1} € {ﬂ:l}21 the function
f., defined as

21
fig =" Y mjk with 55 = 21572 and ¢ such that f; ,, € B} 4(A)

k=0

Let also the vector 7' € {il}z' with components equal to those of n
except the i!" one.

Classically a lower bound for the minimax rate is obtained by
controlling (e.g HKPT (1998))

Pflv"] (An(fj:ni’an) 2 eﬁ)\) Z 7o
Problem : in this way, the inverse problem does not appear
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Adaptation of a classical Lemma (e.g HKPT (1998))

Let

71) — h(x — 7))dYi(x —h——f
o / e/ (x— X~ m)AN() + A2 - 2|

g(n) ...g(m)dr...dm

Lemma
Suppose there exists A > 0 and mp > 0 such that for all sufficiently

large n
]me <IIE;;(LW > e—A> > o,

7 (An(f5 fo))

forall fi, and alli € {0...2 — 1}. Then, there exists a positive
constant C, such that for all sufficiently large n and any estimator f,
max ]Efl " ||fn fj,nHz > Cwoe*’\Zsz
ne{£1}?
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Control of the expectation over the random shifts of
the likelihood ratio

Lemma

If j = j(n) such that 2" ~ n=r21, then there exists A > 0 and mo > 0
such that for all sufficiently large n

E, (An(fj n.,fo)) Y
Pt E; (An(fy,f0) > 7.
b (E Bl fo) — )77

provideds> v +1/2and v > 1/2.

Since v, = c2-1(s+1/2), the choice 21" ~ n=7%=1 implies that

~ H _ 2s
max B [|fy —f;,[|* > Cmoe 247 ~ n™mr2m
ne{£1}?
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Comparison with Procrustean mean

Iterative procedure (Kneip & Gasser (1988), Wang & Gasser
(2997))

@ Initialisation : fo = 2 S0, Ym
@ Forl<i<imado
@ For 1 < m< ncompute

Fing = argmin Yo +7) — fia|°

@ Thentake fi(x) = 237" | Ym(X + 7m;)

~n

Fast convergence (imax = 3 is enough) but it highly depends on the
initialisation f
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Wave example

Laplace distribution g(x) = ﬁ exp (—ﬁ'gi') for x € R, and

l .
Ve = Toee eV = 2

True f and a sample of 10 noisy curves out of n = 200
Curves are sampled at N = 256 equally spaced points on [0, 1]
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Wave example - Deconvolution step

Deconvolution of the direct mean without any smoothing/thresholding
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Wave example - Wavelet thresholding

Choice for the resolution levels : jo =3 and j; = 7=1og2(N) — 1

002]

0005

True wavelet coefficients - Noisy wavelet coefficients and threshold A
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HeaviSine example

Laplace distribution g(x) = ﬁ exp (—ﬁ'gi') for x € R, and

1 .
Ve = Traerer eV = 2

True f and a sample of 10 noisy curves out of n = 200
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HeaviSine example - Deconvolution step

Deconvolution of the direct mean without any smoothing/thresholding




HeaviSine example - Wavelet thresholding
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Choice for the resolution levels : jo =3 and j; = 7=1og2(N) — 1
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True wavelet coefficients - Noisy wavelet coefficients and threshold A
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Step example

Density of the shifts g : mixture of two Laplace densities

True f and a sample of 10 noisy curves out of n = 200



= 200 observed curves

Direct mean of the n

07

06

05

04

03

02

0.1




Step example - Deconvolution step

Deconvolution of the direct mean without any smoothing/thresholding

1
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Step example - Wavelet thresholding

] 50 100 150 200 250

True wavelet coefficients - Noisy wavelet coefficients and threshold )
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] 01 02 03 04 05 06 07 08 09 1% 01 02 03 04 05 06 07 08 09 1

Wavelet thresholding - Procrustean mean
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Some perspectives

@ Consider an asymptotic setting with n — 400 and ¢ — 0 (work in
progress) : in this case

@ estimation of the shifts 7 is possible
@ there is no inverse problem and the minimax risk becomes
(conjecture...)

. 2\ 71
Ra,e(F) = inf sup R(fne,f) ~ C <_)
fn feF n

@ Estimation of the density g

@ Extension to images and more complex deformations (first steps
in this direction by Bigot, Gamboa & Vimond (2009), Bigot,
Loubes & Vimond (2008), Bigot, Gadat & Loubes (2009))
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