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Grenander’s pattern theory (1993)

Data : a set of n similar curves or images obtained through the
deformation of the same template

A general model : observation of Ym : Ω → R, m = 1, . . . , n where
Ω ⊂ R

d with d = 1, 2, 3 such that

Ym(x) = f (φm(x)) + Wm(x), for x ∈ Ω,

where
f : R

d → R is a common unknown template
φm : R

d → R
d are unknown deformations, possibly random

Wm some additive noise

Problem : to recover f as n → +∞
In statistics work by Gasser, Kneip, Silverman, Ramsay, mainly on curve
alignment...
In image processing work by Amit, Grenander, Joshi, Miller, Trouvé,
Younes...
Recently work by Gamboa, Loubes, Maza, Vimond, Bigot, Gadat
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Estimating f a deconvolution problem ?

Direct mean of the observed images - blurring effect
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Different models for the deformations

Rigid deformations

Translation : φ(x) = x − b where b ∈ R
d

Rotation + scaling (in R
2) : φ(x) = 1

a Aθx where a ∈ R
+ and

Aθ =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]

Affine (Translation + rotation + scaling) : φ(x) = 1
a Aθ(x − b), either

2D or 3D
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Different models for the deformations

Non-rigid deformations

Small deformations : φ(x) = x + h(x) where h : R
d → R

d is an
unconstrained function . Problem φ is not necessarly invertible if
h is large. (Work by Faugeras, Amit,...)

Large deformations (i.e. diffeomorphisms ) : φ(x) is an invertible
and smooth deformation from R

d to R
d (Work by Grenander, Trouvé,

Younes, Miller,...)
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Simplest model : shifted 1D curves

Observations : independent realizations of n noisy and shifted
curves Y1, . . .Yn coming from the model

dYm(x) = f (x − τm)dx + ǫdWm(x), x ∈ [0, 1], m = 1, . . . , n

where

f : [0, 1] → R is the unknown common shape of the curves (with
period 1)

Wm are independent standard Brownian motions on [0, 1]

ǫ level of noise in each curve

Remark : ǫ→ 0 corresponds to N → +∞ in the model (with ǫ = σ√
N
)

Ym,i = f (xi − τm) + σzm,i, xi =
i
N
, i = 1, . . . ,N, and zm,i ∼i.i.d. N(0, 1)
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Simplest model : shifted 1D curves

Observations : independent realizations of n noisy and shifted
curves Y1, . . .Yn coming from the model

dYm(x) = f (x − τm)dx + ǫdWm(x), x ∈ [0, 1], m = 1, . . . , n

Different models for the shifts τm :

Deterministic shifts : the τm are fixed parameters to estimate :
semi-parameteric estimation in the setting n fixed and ǫ→ 0
(Gamboa, Loubes & Maza (2007), Vimond (2008), extension to 2D
images by Bigot, Gamboa & Vimond (2009))

τm’s are unknown random shifts independent of the Wm’s such
that

τm ∼i.i.d g m = 1, . . . , n,

where g is a unknown density on R
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Simplest model : shifted 1D curves

Observations : independent realizations of n noisy and shifted
curves Y1, . . .Yn coming from the model

dYm(x) = f (x − τm)dx + ǫdWm(x), x ∈ [0, 1], m = 1, . . . , n

This talk : case of random shifts τm ∼i.i.d g, m = 1, . . . , n, with known
density g.

Problem : estimation of f in the asymptotic setting :

n → +∞ and ǫ is fixed (This talk)

n → +∞ and ǫ→ 0 (Work in progress...)
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A simple model for randomly shifted curves

Observations : independent realizations of n noisy and randomly
shifted curves Y1, . . . Yn coming from the model

dYm(x) = f (x − τm)dx + ǫdWm(x), x ∈ [0, 1], m = 1, . . . , n

Main objectives : estimating the function f and to derive asymptotic
(as n → +∞) upper and lower bounds for the minimax risk

Rn(F) = inf
f̂n

sup
f∈F

R(f̂n, f ), where

R(f̂n, f ) = E‖f̂n − f‖2 = E
∫ 1

0 |f̂n(x) − f (x)|2dx

F ⊂ L2([0, 1]) e.g a Sobolev or a Besov ball

f̂n a measurable function of the processes {Ym, m = 1, . . . , n}
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Simplest case : no shifts

Observations : independent realizations of n noisy and curves
Y1, . . .Yn

dYm(x) = f (x)dx + ǫdWm(x), x ∈ [0, 1], m = 1, . . . , n

Classical result : if F = Hs(A) (Sobolev ball of radius A) or
F = Bs

p,q(A) (Besov ball of radius A) with smoothness index s
(“number of derivatives”) then

Rn(F) = inf
f̂n

sup
f∈F

R(f̂n, f ) ∼ Cn− 2s
2s+1
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A connexion with a deconvolution problem

Model : dYm(x) = f (x − τm)dx + ǫdWm(x), x ∈ [0, 1], m = 1, . . . , n

A deconvolution problem ? The expectation of each oberved curve
is given by E [f (x − τm)] =

∫

R
f (x − τ)g(τ)dτ = f ⋆ g(x)

Define

ξm(x) = f (x − τm) −
∫

R

f (x − τ)g(τ)dτ,

ξ(x) = 1
n

∑n
m=1 ξm(x), and taking the mean of the n curves yields

dY(x) =

∫ 1

0
f (x − τ)g(τ)dτdx + ξ(x)dx

︸ ︷︷ ︸

Non-Gaussian Error

+
ǫ√
n

dW(x)
︸ ︷︷ ︸

Standard Gaussian Error

, x ∈ [0, 1],
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A connexion with a deconvolution problem

Case of standard deconvolution with a Gaussian error :

dY(x) =

∫ 1

0
f (x − τ)g(τ)dτdx +

ǫ√
n

dW(x) x ∈ [0, 1],

Minimax rate of convergence : let γℓ =
∫ +∞
−∞ e−i2πℓxg(x)dx. Assume

that for some real ν > 0

Cmin|ℓ|−ν ≤ |γℓ| ≤ Cmax|ℓ|−ν .

for all ℓ ∈ Z.

Then for F = Hs(A) (Sobolev ball) or F = Bs
p,q(A) (Besov ball) with

smoothness index s (“number of derivatives”) then

Rn(F) = inf
f̂n

sup
f∈F

R(f̂n, f ) ∼ Cn− 2s
2s+2ν+1 (instead of n− 2s

2s+1 in the direct case)
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Model in the Fourier domain

For ℓ ∈ Z, let θℓ =
∫ 1

0 e−2iℓπxf (x)dx and cm,ℓ =
∫ 1

0 e−2iℓπxdYm(x). Then

cm,ℓ = θℓe−i2πℓτm + ǫmzℓ,m with zℓ,m ∼i.i.d. NC (0, 1)

= θℓγℓ + ξℓ,m + ǫmzℓ,m with ξℓ,m = θℓe−i2πℓτm − θℓγℓ,

where with γℓ = E
(
e−i2πℓτ

)
=
∫ +∞
−∞ e−i2πℓxg(x)dx.

Then, average the Fourier coefficients over the n curves

c̃ℓ =
1
n

n∑

m=1

cℓ,m = θℓγℓ+ ξℓ
︸︷︷︸

Non-Gaussian Error

+
ǫ√
n
ηℓ

︸ ︷︷ ︸

Standard Gaussian Error

, with ηℓ ∼i.i.d. NC (0, 1)

with ξℓ = 1
n

∑n
m=1 ξℓ,m.

Note that
E|ξℓ|2 =

1
n
|θℓ|2(1 − |γℓ|2)

Problem : the variance of ξℓ depends on the unknown |θℓ|2
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Deconvolution in the Fourier domain

Assuming that the density g of the shifts is known, an estimation of θℓ

is given by

θ̂ℓ =
c̃ℓ

γℓ
= θℓ +

ξℓ
γℓ

+
ǫ√
n
ηℓ

γℓ

with γℓ = E
(
e−i2πℓτ

)
=
∫ +∞
−∞ e−i2πℓxg(x)dx.

Main assumption on g : polynomial decay of the γℓ’s i.e for some
real ν > 0,

Cmin|ℓ|−ν ≤ |γℓ| ≤ Cmax|ℓ|−ν .

for all ℓ ∈ Z.
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Filtering in the Fourier domain

Linear estimator for f by spectra cut-off : take

θ̂M
ℓ =

c̃ℓ

γℓ
, for all |ℓ| ≤ M

and
θ̂M

ℓ = 0, for all |ℓ| > M

where M is some integer to be chosen. For f̂n,M(x) =
∑

ℓ∈Z
θ̂M

ℓ e−i2πℓx,
one has

R(f̂n,M , f ) = E

∑

ℓ∈Z

|θ̂ℓ − θℓ|2.

Bias-variance decomposition of the risk

R(f̂n,M , f ) =
∑

|ℓ|>M

|θℓ|2

︸ ︷︷ ︸

Bias

+
1
n

∑

|ℓ|≤M

[

|θℓ|2
(

1
|γℓ|2

− 1

)

+
ǫ2

|γℓ|2
]

︸ ︷︷ ︸

Variance

.
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Filtering in the Fourier domain

Define the following Sobolev ball of radius A :

Hs(A) =

{

f ∈ L2([0, 1]) ;
∑

ℓ∈Z

(1 + |ℓ|2s)|θℓ|2 ≤ A,

}

with A > 0, s > 0

Proposition

If M = Mn,s ∼ n
1

2s+2ν+1 , then supf∈Hs(A) R(f̂n,Mn,s , f ) = O(n− 2s
2s+2ν+1 )

Problem :
f̂n,Mn,s depends on the unknown regularity s (non-adaptive
estimator)
if f is piecewise Cs with s large, then f /∈ Hα(A) for α > 1/2. So,

sup
f∈Piece-wise Cs

R(f̂n,Mn,s , f ) = O(n− 1
1+2ν+1 )

(non-optimal estimator in standard deconvolution)
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Meyer wavelets

Let (φj0,k, ψj,k)j≥j0,0≤k≤2j−1 be the periodized Meyer wavelet basis of
L2([0, 1]).

Advantages : Meyer wavelets are band-limited functions since for

ψj,k
ℓ =

∫ 1

0
e−i2πℓxψj,k(x)dx, ℓ ∈ Z,

the set Cj = {ℓ ∈ Z;ψj,k
ℓ 6= 0} is finite with #{Cj = c2j}.

Then, wavelet coefficients of f can be computed from its Fourier
coefficients as

βj,k =

∫ 1

0
f (x)ψj,k(x)dx =

∑

ℓ∈Cj

ψj,k
ℓ θℓ, where θℓ =

∫ 1

0
e−2iℓπxf (x)dx.

Meyer wavelets = usefull tool for deconvolution ( work by Johnstone et
al. (2004), Pensky & Sapatinas (2008), and fast WaveD algorithm by
Raimondo (2006) )
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Estimation by hard thresholding

Recall that

θ̂ℓ =
c̃ℓ

γℓ
= θℓ +

ξℓ
γℓ

+
ǫ√
n
ηℓ

γℓ

and estimation of the wavelet coefficients of f is then given by

β̂j,k =
∑

ℓ∈Cj

ψj,k
ℓ θ̂ℓ and ĉj0,k =

∑

ℓ∈Cj0

φj0,k
ℓ θ̂ℓ.

Non-linear estimation by hard-thresholding

f̂ h
n =

2j0−1∑

k=0

ĉj0,kφj0,k +

j1∑

j=j0

2j−1∑

k=0

β̂j,k11{|β̂j,k|>λj,k}ψj,k

where λj,k is a threshold to be calibrated.
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Probability of deviation

Proposition

For 0 ≤ k ≤ 2j − 1, define

σ2
j = 2−jǫ2

∑

ℓ∈Ωj

|γℓ|−2,V2
j = ‖g‖∞2−j

∑

ℓ∈Ωj

|θℓ|2
|γℓ|2

and δj = 2−j/2
∑

ℓ∈Ωj

|θℓ|
|γℓ|

.

For any t > 0, define

αj,k(t) = 2 max



σj

√

2t
n
,

√

2V2
j t

n
+ δj

t
3n





Then,
P

(

|β̂j,k − βj,k| ≥ αj,k(t)
)

≤ 2 exp(−t).

Jérémie Bigot & Sébastien Gadat Inverse problem and shifted curves



Introduction
Upper bound for the minimax risk
Lower bound for the minimax risk

Simulations

Linear and nonadaptive estimator
Non-linear and adaptive estimator

Definition of the threshold

Estimation of |θl|2 is given by

ˆ|θ|
2

ℓ =
1
n

n∑

m=1

(|cm,ℓ|2−ǫ2) where |cm,ℓ|2 = |θℓ|2+ǫ2|zℓ,m|2−2R
(
ei2πℓτmzℓ,m

)

For some contant η ≥ 2, use random thresholds of the form

λj,k = λj = 2 max



σj

√

2η log(n)

n
,

√

2V̂2
j η log(n)

n
+ δ̂j

η log(n)

3n





with V̂2
j = ‖g‖∞2−j

∑

ℓ∈Ωj

|θ̃ℓ|2
|γℓ|2 and δ̂j = 2−j/2∑

ℓ∈Ωj

|θ̃ℓ|
|γℓ| , where

|θ̃ℓ| =

√

ˆ|θ|
2

ℓ + ǫ2 + ǫ

√

2 log(n22j)

n
.

Then P

(

|β̂j,k − βj,k| ≥ λj

)

≤ 2n−η
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Adaptive estimation over Besov spaces

Theorem

Assume that 2j1 ∼
(

n
log(n)

) 1
2ν+1

and 2j0 ∼ log(n). Recall that

f̂ h
n =

2j0−1∑

k=0

ĉj0,kφj0,k +

j1∑

j=j0

2j−1∑

k=0

β̂j,k11{|β̂j|>λj,k}ψj,k

Then, for 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, A > 0

sup
f∈Bs

p,q(A)

‖f̂ h
n − f‖2 = O

((
n

log(n)

)− 2s
2s+2ν+1

)

,

with s > 1/p′, (s + 1/2 − 1/p′)p > ν(2 − p) with p′ = min(2, p)
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Asymptotic lower bound

Theorem

Let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, s ≥ 1/p and A > 0. Then, if

s > ν + 1/2 and ν > 1/2,

there exists a constant C > 0 depending only on A, s, p, q such that

lim
n→+∞

n
2s

2s+2ν+1 Rn(B
s
p,q(A)) ≥ C
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Likelihood ratio of the model

Hypothesis H0 : dYm(x) = ǫdWm(x), m = 1, . . . , n

Hypothesis Hf : dYm(x) = f (x − τm)dx + ǫdWm(x), m = 1, . . . , n

By conditionning with respect to the τm ’s and using the Girsanov
formula, one has that

Λn(f , h) =
dPHf

dPHh

=

n∏

i=1

exp

(
∫ 1

0
(f (x − τi) − h(x − τi))dYi(x) +

1
2
‖h‖2 − 1

2
‖f‖2

)

.
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Assouad’s cube technique (e.g HKPT (1998))

Let j ≥ 0 and consider for any η = (ηk)k∈{0...2j−1} ∈ {±1}2j
the function

fj,η defined as

fj,η = γj

2j−1∑

k=0

ηkψj,k with γj = c2−j(s+1/2), and c such that fj,η ∈ Bs
p,q(A)

Let also the vector ηi ∈ {±1}2j
with components equal to those of η

except the ith one.

Classically a lower bound for the minimax rate is obtained by
controlling (e.g HKPT (1998))

Pfj,η

(
Λn(fj,ηi , fj,η) ≥ e−λ

)
≥ π0

Problem : in this way, the inverse problem does not appear
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Adaptation of a classical Lemma (e.g HKPT (1998))
Let

Eτ

`

Λn(fj,ηi , f0)
´

=

Z

Rn

n
Y

i=1

e

Z 1

0
(f (x − τi) − h(x − τi))dYi(x) +

1
2
‖h‖2 −

1
2
‖f‖2

g(τ1) . . . g(τn)dτ1 . . . dτn

Lemma

Suppose there exists λ > 0 and π0 > 0 such that for all sufficiently
large n

Pfj,η

(

Eτ

(
Λn(fj,ηi , f0)

)

Eτ (Λn(fj,η, f0))
≥ e−λ

)

≥ π0,

for all fj,η and all i ∈ {0 . . . 2j − 1}. Then, there exists a positive
constant C, such that for all sufficiently large n and any estimator f̂n

max
η∈{±1}2j

Efj,η‖f̂n − fj,η‖2 ≥ Cπ0e−λ2jγ2
j
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Control of the expectation over the random shifts of
the likelihood ratio

Lemma

If j = j(n) such that 2j(n) ∼ n
1

2s+2ν+1 , then there exists λ > 0 and π0 > 0
such that for all sufficiently large n

Pfj,η

(

Eτ

(
Λn(fj,ηi , f0)

)

Eτ (Λn(fj,η, f0))
≥ e−λ

)

≥ π0.

provided s > ν + 1/2 and ν > 1/2.

Since γj = c2−j(s+1/2), the choice 2j(n) ∼ n
1

2s+2ν+1 implies that

max
η∈{±1}2j

Efj,η‖f̂n − fj,η‖2 ≥ Cπ0e−λ2jγ2
j ∼ n− 2s

2s+2ν+1
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Comparison with Procrustean mean

Iterative procedure (Kneip & Gasser (1988), Wang & Gasser
(1997))

Initialisation : f̂0 = 1
n

∑n
m=1 Ym

For 1 ≤ i ≤ imax do

For 1 ≤ m ≤ n compute

τ̂m,i = arg min
τ∈R

‖Ym(· + τ ) − f̂i−1‖
2

Then take f̂i(x) = 1
n

Pn
m=1 Ym(x + τ̂m,i)

Fast convergence (imax = 3 is enough) but it highly depends on the
initialisation f̂0
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Wave example

Laplace distribution g(x) = 1√
2σ

exp
(

−
√

2 |x|
σ

)

for x ∈ R, and

γℓ = 1
1+2σ2π2ℓ2 i.e ν = 2
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True f and a sample of 10 noisy curves out of n = 200
Curves are sampled at N = 256 equally spaced points on [0, 1]
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Wave example - Direct mean

Direct mean of the n = 200 observed curves
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Wave example - Deconvolution step

Deconvolution of the direct mean without any smoothing/thresholding
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Wave example - Wavelet thresholding

Choice for the resolution levels : j0 = 3 and j1 = 7 = log 2(N) − 1
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True wavelet coefficients - Noisy wavelet coefficients and threshold λj
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Wave example - Comparison with Procrustean mean
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Wavelet thresholding - Procrustean mean
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HeaviSine example

Laplace distribution g(x) = 1√
2σ

exp
(

−
√

2 |x|
σ

)

for x ∈ R, and

γℓ = 1
1+2σ2π2ℓ2 i.e ν = 2
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True f and a sample of 10 noisy curves out of n = 200
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HeaviSine example - Direct mean

Direct mean of the n = 200 observed curves
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HeaviSine example - Deconvolution step

Deconvolution of the direct mean without any smoothing/thresholding
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HeaviSine example - Wavelet thresholding

Choice for the resolution levels : j0 = 3 and j1 = 7 = log 2(N) − 1
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True wavelet coefficients - Noisy wavelet coefficients and threshold λj
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HeaviSine example - Comparison with Procrustean
mean
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Wavelet thresholding - Procrustean mean
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Step example

Density of the shifts g : mixture of two Laplace densities
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True f and a sample of 10 noisy curves out of n = 200
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Step example - Direct mean

Direct mean of the n = 200 observed curves
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Step example - Deconvolution step

Deconvolution of the direct mean without any smoothing/thresholding

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
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Step example - Wavelet thresholding
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True wavelet coefficients - Noisy wavelet coefficients and threshold λj
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Step example - Comparison with Procrustean mean
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Wavelet thresholding - Procrustean mean
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Some perspectives

Consider an asymptotic setting with n → +∞ and ǫ→ 0 (work in
progress) : in this case

estimation of the shifts τm is possible
there is no inverse problem and the minimax risk becomes
(conjecture...)

Rn,ǫ(F) = inf
f̂n

sup
f∈F

R(f̂n,ǫ, f ) ∼ C

„

ǫ
2

n

«
2s

2s+1

Estimation of the density g

Extension to images and more complex deformations (first steps
in this direction by Bigot, Gamboa & Vimond (2009), Bigot,
Loubes & Vimond (2008), Bigot, Gadat & Loubes (2009))
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