
Introduction
MCQMC computations of Gaussian integrals

Maxima of Gaussian processes

Computing the maximum of random processes and series

Computing the maximum of random processes
and series
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The lynx data
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Annual record of the number of the Canadian lynx ”trapped” in the
Mackenzie River district of the North-West Canada for the period
1821 - 1934, (Elton and Nicholson, 1942)
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After passage to the log and centering
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Testing

The maximum of absolute value of the series is 3.0224. An estimation
of the covariance with WAFO gives
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Can we judge the significativity of this quantity ?
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We assume the series is Gaussian.
Let ϕΣ the Gaussian density in R114. We have to compute∫∫ 3.0224

−3.0224
ϕΣ(x1, . . . , x114)dx1, . . . , dx114
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Wschebor (Université de Toulouse ) 6 / 22



Introduction
MCQMC computations of Gaussian integrals

Maxima of Gaussian processes

Computing the maximum of random processes and series

MCQMC computations of Gaussian integrals

Reduction of variance

Let us consider our problem in a general setting. Σ is a n× n
covariance matrix

I :=
∫ u1

l1
· · ·
∫ un

ln
ϕΣ(x)dx (1)

By conditioning or By Choleski decomposition we can write

x1 = T11z1

x2 = T12z1 + T22z2

.....................................

Where the Zi’s are independent standard. Integral I becomes

I :=
∫ u1/T11

l1/T11

ϕ(z1)dz1

∫ u2 − T12z1

T22
l2 − T12z1

T22

ϕ(z2)dz2 · · · · · · (2)
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Reduction of variance

Now making the change of variables ti = Φ(zi)

I :=
∫ Φ−1(u1/T11)

Φ−1(l1/T11)

dt1

∫ Φ−1(u2 − T12Φ−1(t1)
T22

)
Φ−1( l2 − T12Φ−1(t1)

T22

) dt2 · · · · · · (3)

And by a final scaling this integral can be written as an integral on the
hypercube [0, 1]n.

I :=
∫

[0,1]n
h(t)dt. (4)

At this stage, if form (4) is evaluated by MC it corresponds to an
important reduction of variance (10−2, 10−3) with respect to the form
(1). The transformation up to there is elementary but efficient.
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MCQMC

QMC

In the form (4) the MC evaluation is based on

Î = 1/M
M∑

i=1

h(ti)

it is well known that its convergence is slow : O(M−1/2).
The Quasi Monte Carlo Method is based on the of searching
sequences that are “more random than random”. A popular method is
based on lattice rules. Let Z1 be a “nice integer sequence” in Nn, the
rule consist of choosing

ti =
{ i.z

M

}
,

where the notation
{}

means that we have taken the fractional part
componentwise. M is chosen prime.
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Theorem
(Nuyens and cools, 2006) Assume that h is the tensorial product of
periodic functions that belong to a Koborov space (RKHS). Then the
minimax sequence and the worst error can be calculated by a
polynomial algorithm. Numerical results show that the convergence is
roughly O(M−1).

This result concerns the “worst case” so it is not so relevant
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MCQMC

A meta theorem

If h does not satisfies the conditions of the preceding theorem we can
still hope QMC to be faster than MC
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MCQMC

MCQMC

Let (ti, i) be the lattice sequence, the way of estimating the integral
can be turn to be random but exactly unbiased by setting

Î = 1/M
M∑

i=1

h
({

ti + U
})

where U is uniform on [0, 1]n.
By the meta theorem Î has small variance.

So we can make N independent replications of this calculation and
construct Student-type confidence intervals. It is correct whatever the
properties of the function h are.
N must be chosen small : in practical 12.

Conclusion : At the cost of a small loss in speed (
√

12 ) we have a
reliable estimation of error.
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Wschebor (Université de Toulouse ) 12 / 22



Introduction
MCQMC computations of Gaussian integrals

Maxima of Gaussian processes

Computing the maximum of random processes and series

MCQMC computations of Gaussian integrals

MCQMC

This method has been used to construct confidence bands for
electrical load curves prediction. Azaı̈s, Bercu, Fort, Lagnoux L é
(2009)
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Do processes exist ?

In this part X(t) is a Gaussian process defined on a compact interval
[0,T].
Since such a process is always observed in a finite set of times and
since the previous method work with say n = 1000, is it relevant to
consider continuous case ?
Answer yes : random process occur as limit statistics. Consider for
example the simple mixture model{

H0 : Y ∼ N(0, 1)
H1 : Y ∼ pN(0, 1) + (1− p)N(µ, 1) p ∈ [0, 1], µ ∈M ⊂ R (5)
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Theorem (Asymptotic distribution of the LRT)

Under some conditions the LRT of H0 against H1 has , under H0, the
distribution of the random variable

1
2

sup
t∈M
{Z2(t)}, (6)

where Z(.) is a centered Gaussian process covariance function

r(s, t) =
est − 1√

es2 − 1
√

et2 − 1
.

In this case there is no discretization.
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Wschebor (Université de Toulouse ) 15 / 22



Introduction
MCQMC computations of Gaussian integrals

Maxima of Gaussian processes

Computing the maximum of random processes and series

Maxima of Gaussian processes

The record method

P{M > u} = P{X(0) > u}+
∫ T

0
IE
(
X′(t)+1IX(s)≤u,∀s<t

∣∣X(t) = u)pX(t)(u)dt

(7)
after discretization of [0,T], Dn = {0,T/n, 2T/n, . . . ,T} Then

P{sup
t∈Dn

X(t) > u} ≤ P{M > u} ≤ P{X(0) > u}

+
∫ T

0
IE
(
X′(t)+1IX(s)≤u,∀s<t,s∈Dn

∣∣X(t) = u)pX(t)(u)dt (8)
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Now the integral is replaced by a trapezoidal rule using the same
discretization. Error of the trapezoidal rule is easy to evaluate .

Moreover that the different terms involved can be computed in a
recursive way.
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An example

Using MGP written by Genz , let us consider the centered stationary
Gaussian process with covariance exp(−t2/2)
[ pl, pu, el, eu, en, eq ] = MGP( 100000, 0.5, 50,
@(t)exp(-t.2/2), 0, 4);
pu upper bound with
eu = estimate for total error,
en = estimate for discretization error, and
eq = estimate for MCQMC error;
pl lower bound
el = error estimate (MCQMC)
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Extensions

Treat all the cases : maximum of the absolute value, non centered,
non-stationary. In each case some tricks have to be used.

A great challenge is to use such formulas for fields .
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Wschebor (Université de Toulouse ) 21 / 22



Introduction
MCQMC computations of Gaussian integrals

Maxima of Gaussian processes

Computing the maximum of random processes and series

Maxima of Gaussian processes

THANK-YOU
MERCI
GRACIAS
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