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What are we going to talk about?

I am going to present a general method which (in me opinion) is
simple
easy to compute
reasonable
...

OK, OK, OK,... but, where is the trick?

This method is optimum under NO circumstance

Then?

“...simple methods typically yield performance almost as good as more
sophisticated methods to the extent that the difference in perfor-
mance may be swamped by other sources of uncertainty...”

Hand, D.J., 2006. Classifier technology and the illusion of progress.
Statist. Sci., 21(1) 1-14.

•
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The basic result (in Hilbert spaces):

How many one-dimensional marginals

are required to determine a probability measure

on a separable Hilbert space?

Only a one-dimensionial projection suffices

if it is randomly chosen

(under some assumptions on the moments)

•
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Notation:

I IH will denote a separable Hilbert space
‖ − ‖ and 〈·, ·〉 its norm and scalar product

I Given P a probability on IH and v ∈ IH

Pv is the marginal of P on the subspace generated by v

I Given P,Q two probabilities

IE (P,Q) := {v ∈ IH : Pv = Qv}
•
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The result. Separable Hilbert spaces.

Assume that:

1. P is determined by its moments

2. Q 6= P

Then µ[IE (P,Q)] = 0 (remember: IE (P,Q) = {v : Pv = Qv})

Here µ is any continuous distribution

For instance:

µ absolutely continuous w.r.t. the Lebesgue measure

µ Gaussian, with non-degenerate 1-dimensional marginals
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The result. Separable Hilbert spaces.

Assume that:

1. P is determined by its moments

2. Q 6= P

Then µ[IE (P,Q)] = 0 (remember: IE (P,Q) = {v : Pv = Qv})

Extension to Banach spaces in Cuevas & Fraiman (2009)
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The result. How to apply it.

Assume that:

1. P is determined by its moments

2. Q 6= P

Then µ[IE (P,Q)] = 0 (remember: IE (P,Q) = {v : Pv = Qv})

If you want to test H0 : P = Q

only select v at random at test Hv
0 : Pv = Qv

because, with probability one, H0 and Hv
0 are equivalent

•
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How to choose v in practice?

1. On IRd Simulate v (for instance) from Nd(0, Id).

2. Functional case.
We need v with a Gaussian distribution µ

Data are discretized ⇒ data belong to IRd with, perhaps, d � 1

Two possibilites.

2.1 Simulate v from Nd(0, Id).

Multiply v by the appropriate matrix and add a function m

2.2 Apply a property of µ

Assume that (theoretically) v ∈ L2[0, 1]

Assume that we have measured the data at points t1 < . . . < td

Assume that µ is the distribution of the standard Brownian motion

take δi , i = 1, . . . , d i.i.d. N(0,1)

define
v(t0) = 0, where t0 = 0,

v(ti ) = v(ti−1) + (ti − ti−1)
1/2δi , i = 1, . . . , d

•
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Two-way factorial ANOVA for functional data

We have two factors with R and S levels respectively

Thus, for every r = 1, . . . ,R and s = 1, . . . ,S we have
Thus, Xr ,s

i , i = 1, ..., nr ,s ∈ IN random functions in L2[0, 1]

Xr ,s
i (t) = m(t) + f r (t) + g s(t) + hr ,s(t) + εr ,si (t), t ∈ [0, 1],

1. m ∈ L2[0, 1] is non random. Describes the overall shape of the process

2. f r , g s , hr ,s ∈ L2[0, 1] are non random. Account for the main
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2. f r , g s , hr ,s ∈ L2[0, 1] are non random. Account for the main
effects of the factors and for the interaction between them; and∑

r

f r (t) =
∑

s
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∑

r

hr ,s0(t) =
∑

s

hr0,s(t) = 0,∀t, r0, s0
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2. for each r , s, εr ,si are i.d.
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1. m ∈ L2[0, 1] is non random. Describes the overall shape of the process

2. f r , g s , hr ,s ∈ L2[0, 1] are non random. Account for the main
effects of the factors and for the interaction between them;

3. εr ,si ∈ L2[0, 1], are random, independent and E [εr ,si ] = 0
2. for each r , s, εr ,si are i.d.

We want to test the null hypotheses:

HA
0 : f 1 = . . . = f R = 0 the first factor has no effect

HB
0 : g1 = . . . = gS = 0 the second factor has no effect

H I
0 : h1,1 = . . . = hR,S = 0 there is no interaction between factors

•
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The theorem

Theorem (Cuesta-Albertos and Febrero-Bande, 2009)

Let us assume the previous model. If µ is Gaussian, then

1. If HA
0 fails, then µ

{
v ∈ L2[0, 1] : 〈v , f 1〉 = . . . = 〈v , f R〉

}
= 0

2. If HB
0 fails, then µ

{
v ∈ L2[0, 1] : 〈v , g1〉 = . . . = 〈v , gS〉

}
= 0

3. If H I
0 fails, then µ

{
v ∈ L2[0, 1] : 〈v , h1,1〉 = . . . = 〈v , hR,S〉

}
= 0

PROOF.- Let r ∈ {1, ...,R}, and let P r be such that P r [f r ] = 1

Obviously, P r is determined by its moments

Thus, we can apply the result on random projections to every pair of
probability distributions P r1 and P r2

The proofs of 1 and 2 are identical. •
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Two-way factorial ANOVA. The procedure

To test HA
0 :

Select a vector v ∈ L2[0, 1] (with the distribution of a Brownian motion)
Compute the (real) projections of the sample

〈v ,Xr ,s
i 〉, i = 1, . . . , nr ,s , r = 1, . . . ,R, s = 1, . . . ,S

Apply an ANOVA procedure to test the null hypothesis

HA,v
0 : 〈v , f 1〉 = . . . = 〈v , f R〉 = 0
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But, what does it happen if there are covariables?

Nothing!
We only need a (one-dimensional) procedure allowing covariables
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Two-way factorial ANOVA. The procedure

To test HA
0 :

Select a vector v ∈ L2[0, 1] (with the distribution of a Brownian motion)
Compute the (real) projections of the sample

〈v ,Xr ,s
i 〉, i = 1, . . . , nr ,s , r = 1, . . . ,R, s = 1, . . . ,S

Apply an ANOVA procedure to test the null hypothesis

HA,v
0 : 〈v , f 1〉 = . . . = 〈v , f R〉 = 0

But, what does it happen if ...?

Nothing!
Well, at least if we have a (one-dimensional) procedure allowing ...

•
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Therefore

The random ANOVA for functional data is a procedure which is

I Simple

I Easy to compute

I Flexible (it can be applied to many situations and designs)

I ...

Where is the price we have paid for this?

We are replacing functions by numbers

We are losing information, this should bring some loss of power

A solution: Choose v1, ..., vk at random.

Apply the ANOVA to the hypotheses HA,v1
0 , . . . ,HA,vk

0

And base the decision on the k tests
•
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Technical problem: How to handle multiple tests?

Apply the ANOVA to the hypotheses HA,v1
0 , . . . ,HA,vk

0

And base the decision on the k tests

Compute the p-value of each test: p1, . . . , pk
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0

And base the decision on the k tests

Compute the p-value of each test: p1, . . . , pk

Take p0 = min(p1, . . . , pk)
Correct via Bonferroni → too conservative
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Technical problem: How to handle multiple tests?

Apply the ANOVA to the hypotheses HA,v1
0 , . . . ,HA,vk

0

And base the decision on the k tests

Compute the p-value of each test: p1, . . . , pk

Take p0 = min(p1, . . . , pk)
Correct via Bootstrap → too time consuming
Cuesta-Albertos et al, 2007
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Technical problem: How to handle multiple tests?

Apply the ANOVA to the hypotheses HA,v1
0 , . . . ,HA,vk

0

And base the decision on the k tests

Compute the p-value of each test: p1, . . . , pk

Use the FDR = The expected proportion of erroneous rejections when
testing k null hypotheses Benjamini&Hochberg, 1995
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Use the FDR = The expected proportion of erroneous rejections when
testing k null hypotheses Benjamini&Hochberg, 1995

= the level of the test in our case, all hypotheses coincide
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Technical problem: How to handle multiple tests?

Apply the ANOVA to the hypotheses HA,v1
0 , . . . ,HA,vk

0

And base the decision on the k tests

Compute the p-value of each test: p1, . . . , pk

Use the FDR = The expected proportion of erroneous rejections when
testing k null hypotheses Benjamini&Hochberg, 1995

= the level of the test in our case, all hypotheses coincide

a test at level α in our problem: Theo. 1.3, Benjamini&Yekutyeli, 2001

sort the p-values to obtain p(1) ≤ . . . ≤ p(k)

reject the null hypothesis under consideration if{
i ∈ {1, . . . , k} : p(i) ≤

i

k

α∑k
j=1

1
j

}
6= ∅

if the tests are positively dependent
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Technical problem: How to handle multiple tests?

Apply the ANOVA to the hypotheses HA,v1
0 , . . . ,HA,vk

0

And base the decision on the k tests

Compute the p-value of each test: p1, . . . , pk

Use the FDR = The expected proportion of erroneous rejections when
testing k null hypotheses Benjamini&Hochberg, 1995

= the level of the test in our case, all hypotheses coincide

a test at level α in our problem: Theo. 1.3, Benjamini&Yekutyeli, 2001

sort the p-values to obtain p(1) ≤ . . . ≤ p(k)

reject the null hypothesis under consideration if{
i ∈ {1, . . . , k} : p(i) ≤

i

k

α∑k
j=1

1
j

}
6= ∅

always!!!
•
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functional ANOVA. Orthosis data.
How do individuals cope with a perturbation while stepping-in-place?

Seven volunteers wore a spring-loaded orthosis of adjustable stiffness

Experimental conditions: Control condition (without orthosis)

Orthosis condition (with the orthosis only)

Spring1, Spring2: a spring-loaded orthosis onto the knee joint
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functional ANOVA. Orthosis data.
How do individuals cope with a perturbation while stepping-in-place?

Seven volunteers wore a spring-loaded orthosis of adjustable stiffness

Experimental conditions: Control condition (without orthosis)

Orthosis condition (with the orthosis only)

Spring1, Spring2: a spring-loaded orthosis onto the knee joint

For each of the seven subjects,
10 stepping-cycles of 20 seconds were analyzed under each condition

Moment at the knee was computed at 64 time points
equally spaced and scaled so that a time interval
corresponds to an individual gait cycle
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functional ANOVA. Orthosis data.
How do individuals cope with a perturbation while stepping-in-place?

Seven volunteers wore a spring-loaded orthosis of adjustable stiffness

Experimental conditions: Control condition (without orthosis)

Orthosis condition (with the orthosis only)

Spring1, Spring2: a spring-loaded orthosis onto the knee joint

Antoniadis&Sapatinas, 2007 treated the subjects as random effects

We consider subjects and treatments as factors. 10 observations per cell
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functional ANOVA. Orthosis data.
How do individuals cope with a perturbation while stepping-in-place?

Seven volunteers wore a spring-loaded orthosis of adjustable stiffness

Experimental conditions: Control condition (without orthosis)

Orthosis condition (with the orthosis only)

Spring1, Spring2: a spring-loaded orthosis onto the knee joint

Antoniadis&Sapatinas, 2007 treated the subjects as random effects

We consider subjects and treatments as factors. 10 observations per cell

RP Subj. Treat. Inter. Spr1&2 vs Co&Or Cont vs Orth Spr1 vs Spr2
5 0 0 0 0 1.86e-05 .0908

15 0 0 0 0 2.67e-05 .0231
30 0 0 0 0 3.22e-05 .0279

A&S 0 .001 .020
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functional ANOVA. Orthosis data.
How do individuals cope with a perturbation while stepping-in-place?

Seven volunteers wore a spring-loaded orthosis of adjustable stiffness

Experimental conditions: Control condition (without orthosis)

Orthosis condition (with the orthosis only)

Spring1, Spring2: a spring-loaded orthosis onto the knee joint

Antoniadis&Sapatinas, 2007 treated the subjects as random effects

We consider subjects and treatments as factors. 10 observations per cell

using Bonferroni’s correction:

RP Subj. Treat. Inter. Spr1&2 vs Co&Or Cont vs Orth Spr1 vs Spr2
5 0 0 0 0 1.86e-05 .0714

15 0 0 0 0 2.67e-05 .2141
30 0 0 0 0 3.22e-05 .1451

A&S 0 .001 .020
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Comparison with MANOVA

Multidimensional data can be considered as functional

Data on the production of plastic film (Krzanowski, 1988):
- three characteristics: tear, gloss, opacity
- two factors: rate, additive
- with two levels each: low, high

Five measurements under each set of production conditions

⇒ 3-dimensional, 2-way MANOVA. 2 levels in each factor. ni ,j = 5

We take k = 5, 15, 30 random projections with N3(0, Id)

We use the usual ANOVA test (Krzanowski uses Normal MANOVA)
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Comparison with MANOVA

Multidimensional data can be considered as functional

Data on the production of plastic film (Krzanowski, 1988):
- three characteristics: tear, gloss, opacity
- two factors: rate, additive
- with two levels each: low, high

Five measurements under each set of production conditions

⇒ 3-dimensional, 2-way MANOVA. 2 levels in each factor. ni ,j = 5

We take k = 5, 15, 30 random projections with N3(0, Id)

We use the usual ANOVA test (Krzanowski uses Normal MANOVA)

Random projection tests
Pillai test p-value
p-value k = 5 k = 15 k = 30 k = 5 k = 15 k = 30

rate .003 .018 .007 .001
additive .025 .005 .009 .008
interact. .302 .263 .174 .192
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Comparison with MANOVA

Multidimensional data can be considered as functional

Data on the production of plastic film (Krzanowski, 1988):
- three characteristics: tear, gloss, opacity
- two factors: rate, additive
- with two levels each: low, high

Five measurements under each set of production conditions

⇒ 3-dimensional, 2-way MANOVA. 2 levels in each factor. ni ,j = 5

We take k = 5, 15, 30 random projections with N3(0, Id)

We use the usual ANOVA test (Krzanowski uses Normal MANOVA)

We have done 500 repetitions of the random ANOVA at the 0.05 level

Random projection tests
Pillai test p-value
p-value k = 5 k = 15 k = 30 k = 5 k = 15 k = 30

rate .003 .018 .007 .001
additive .025 .005 .009 .008
interact. .302 .263 .174 .192
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Comparison with MANOVA

Multidimensional data can be considered as functional

Data on the production of plastic film (Krzanowski, 1988):
- three characteristics: tear, gloss, opacity
- two factors: rate, additive
- with two levels each: low, high

Five measurements under each set of production conditions

⇒ 3-dimensional, 2-way MANOVA. 2 levels in each factor. ni ,j = 5

We take k = 5, 15, 30 random projections with N3(0, Id)

We use the usual ANOVA test (Krzanowski uses Normal MANOVA)

We have done 500 repetitions of the random ANOVA at the 0.05 level

Random projection tests
Pillai test p-value Rate of rejections
p-value k = 5 k = 15 k = 30 k = 5 k = 15 k = 30

rate .003 .018 .007 .001 .882 .998 1
additive .025 .005 .009 .008 .772 .974 1
interact. .302 .263 .174 .192 0 0 0

•
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functional ANCOVA.
We have two factors with R and S levels respectively and a covariable

Thus, for every r = 1, . . . ,R and s = 1, . . . ,S we have
Thus, Xr ,s

i , i = 1, ..., nr ,s ∈ IN random functions in L2[0, 1]

Xr ,s
i (t) = m(t) + f r (t) + g s(t) + hr ,s(t) + εr ,si (t)+γY r ,s

i (t), t ∈ [0, 1]
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functional ANCOVA.
We have two factors with R and S levels respectively and a covariable

Thus, for every r = 1, . . . ,R and s = 1, . . . ,S we have
Thus, Xr ,s

i , i = 1, ..., nr ,s ∈ IN random functions in L2[0, 1]

Xr ,s
i (t) = m(t) + f r (t) + g s(t) + hr ,s(t) + εr ,si (t)+γr ,s

i Y (t), t ∈ [0, 1]

We handle the covariable exactly in the same way as the factors:

Select a vector v ∈ L2[0, 1] (with the distribution of a Brownian motion)

Compute the (real) projections of the sample

〈v ,Xr ,s
i 〉, i = 1, . . . , nr ,s , r = 1, . . . ,R, s = 1, . . . ,S

Apply an ANCOVA procedure to test the null hypothesis

HC ,v
0 : 〈v ,Y 〉 = 0

Notice that γr ,s
i has no influence iff Y ≡ 0
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Spanish temperature data. Description of the data

Data: daily mean temp, certain locations and months. An annual cycle

* Months (4 levels): October-06, January-07, May-07 and July-07

* Locations (2 levels):

Coast: A Coruña, Avilés, Bilbao, San Sebastián,
Santander, Vigo

Inland: Burgos, León, Madrid, Salamanca, Segovia,
Soria, Valladolid, Vitoria and Zamora.

* Covariable (γ): Monthly Total Amount of Rainfall

γ is a real known r.v. which multiplies the
unknown, non random function Y measuring

the influence of γ each day in the month

downloaded from http://clima.meteored.com
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Spanish temperature data. Means by cells
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Spanish temperature data. Random projected ANCOVA
# of projections = 30

Correction method: Bonferroni and Bootstrap (B=500)

Location Month Interaction Rainfall

Bonf: p-value 4.9 · 10−6 2.4 · 10−33 6.8 · 10−9 .029
Boot: p-value 0 0 0 .037
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Spanish temperature data. Random projected ANCOVA
# of projections = 30

Correction method: Bonferroni and Bootstrap (B=500)

Location Month Interaction Rainfall

Bonf: p-value 4.9 · 10−6 2.4 · 10−33 6.8 · 10−9 .029
Boot: p-value 0 0 0 .037

We have repeated the test 500 times
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Spanish temperature data. Random projected ANCOVA
# of projections = 30

Correction method: Bonferroni and Bootstrap (B=500)

Location Month Interaction Rainfall

Bonf: p-value 4.9 · 10−6 2.4 · 10−33 6.8 · 10−9 .029
Boot: p-value 0 0 0 .037

We have repeated the test 500 times

Proportions of rejections of the null hypotheses (level α = 0.05)

Bonferroni 1 1 1 .804
Bootstrap 1 1 1 .808

•
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T H A N K Y O U !!!

e-mail: cuestaj@unican.es
http://personales.unican.es/cuestaj

•
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