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Competing risks model

Survival analysis example: event=death but several causes are
possible
Flehinger et al. (Biometrika, 1998): Lung cancer data with 2
causes of death

Cause 1: death from cancer

Cause 2: death from other causes

Observations: lifetime + cause + covariates
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Competing risks model

Reliability example: event=failure but several causes are possible
Craiu and Duchesne (Biometrika, 2004): hard drive data with 3
failure causes

Cause 1: electronic hard

Cause 2: head flyability

Cause 3: head / disc magnetic

1 2 p

Figure: Serie system
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Notations

Latent variable model:

Lifetimes T1, . . . ,Tm rv in R+

Set of causes J = {1, . . . ,m}
Censoring time C in R+

Covariates Z in Rd

Observations without censoring:

Duration X = min(T1, . . . ,Tm)
Cause η = j if X = Tj

Covariates Z

Observations with right censoring:

Duration Y = min(X ,C )
Censoring indicator δ = I (X ≤ C )
Cause η = j if X = Tj and δ = 1 ⇒ set ξ = ηδ
Covariates Z
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Aim and quantity of interest

Difficulty: generally T1, . . . ,Tm are not independent.
Tiatsis (1975): there exist independent rv T ∗

1 , . . . ,T
∗
m, such that if

X ∗ = min(T ∗
1 , . . . ,T

∗
m) and η∗ = j if X ∗ = T ∗

j we have

(X , η)
d
= (X ∗, η∗).

Consequence: generally we can not identify the joint or marginal
df of (T1, . . . ,Tm) from (X , η)!
Question: is it still true when in addition to (X , η) we observe Z?
Heckman and Honoré (Biometrika, 1989): some general
nonparametric models can be identified
Fermanian (JMVA, 2003): extends the Heckman and Honoré
results but many functional parameters to estimate!
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Standard functions

Cumulative incidence functions:

Fj(t|z) = P(X ≤ t, η = j |Z = z).

Cause specific hazard rate:

λj(t|z) = lim
s↘0

1

s
P(X ∈ [t, t + s)|X ≥ t, η = j) =

fj(t|z)

F̄X (t)
,

where F̄X (t|z) is the survival function of X given Z = z , and is fj
the subdensity function corresponding to Fj .
Basic relations:

Fj(t|z) =

∫ t

0
fj(s|z)ds =

∫ t

0
λj(s|z)F̄X (s|z)ds =

∫ t

0
F̄X (s|z)dΛj(s|z),

where Λj(t|z) =
∫ t
0 λj(s|z)ds is the jth cumulative cause specific

hazard function.
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Regression

We want to estimate:

rj(z) = E [ψ(X )I (η = j)|Z = z ]

because the quantity of interest

E [ψ(Tj)|Z = z ]

is generally not reachable from the distribution of (X , η).

Examples: set T̃j = Tj I (η = j)

If ψ = id rj(z) = E[T̃j |Z = z ]

If ψ(x) = xp rj(z) = E[T̃ p
j |Z = z ]

If ψt(x) = I (x ≤ t) rj(z , t) = Fj(t|z)
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Assumption: C is independent of everything

H̄(t|z) = P(Y > t|Z = z) = Ḡ (t)F̄X (t|z)

where Ḡ and F̄X (·|z) are the survival functions of C and X . We
write

Hj(t|z) = P(Y ≤ t, ξ = j |Z = z)

then for 1 ≤ j ≤ m

Λj(t|z) =

∫ t

0
λj(s|z)ds =

∫ t

0

dFj(s|z)

F̄X (s−|z)
=

∫ t

0

dHj(s|z)

H̄(s−|z)

and

rj(z) =

∫ τz

0
ψ(t)fj(t|z)dt =

∫ τz

0
ψ(t)F̄X (t|z)dΛj(t|z)

=

∫ τz

0

ψ(t)F̄X (t|z)

H̄(t|z)
dHj(t|z)=

∫ τz

0

ψ(t)

Ḡ (t)
dHj(t|z)
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Estimating Ḡ

Kaplan-Meier estimator:

Ḡn(t) =
∏

i∈V (t)

(
1− I (ξi = 0)

R(Yi )

)

where
V (t) = {i ; 1 ≤ i ≤ n,Yi ≤ t}

and
R(t) = #{i ; 1 ≤ i ≤ n,Yi ≥ t}.

L. Bordes - LMA - UPPA Regression under competing risks
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Estimating Hj(·|z)

Nadaraya-Watson estimator:

Hjn(t|z) =
1

nfn(z)

n∑
i=1

I (Yi ≤ t, ξi = j)Khn(z − Zi )

where

K is a kernel function on Rd

hn ↘ 0 a bandwidth
fn a kernel type estimate of f :

fn(z) =
1

n

n∑
i=1

Khn(z − Zi )

where

Khn(z) =
1

hn
K (z/hn) .

L. Bordes - LMA - UPPA Regression under competing risks
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Final estimator of rj(z)

Plugging-in Ḡn and Hjn(·|z) in rj(z) we obtain with the convention
0 = 0/0:

r̂jn(z) =

∫ τz

0

ψ(t)

Ḡn
dHjn(t|z)

=
1

nfn(z)

n∑
i=1

ψ(Yi )I (Yi ≤ τz)I (ξi = j)Khn(z − Zi )

Ḡn(Yi )

=
1

fn(z)

∫ τz

0

ψ(t)

Ḡn(Yi )
dKjn(t|z),

with

Kjn(t|z) =
1

n

n∑
i=1

I (t ≤ τz)I (ξi = j)Khn(z − Zi )
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Assumptions

A. H̄(τz |z) > 0, Ḡ (τz) > 0 and FX (τz |z) < 1.

B. f continuous at z .

C. s 7→ Hj(t|s) continuous at z , uniformly in t ∈ [0, τz ].

D. K = φ ◦ p, p=polynomial and φ positive bounded real function
with BV. suppK ⊂ [−1, 1]d and

(i)

∫
Rd

K(s)ds, (ii)

∫
Rd

sK(s)ds = 0.

E. hn = cn−α with α ∈ ((5d)−1, d−1).

F. Functions f and s 7→ Hj(t|s) (for all t ∈ [0, τz ]) are twice
continuously differentiable at z , and the second derivative of
s 7→ Hj(t|s)f (s) is continuous at z , uniformly in t ∈ [0, τz ].
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Consistency and CLT

Theorem

Under Conditions A–E, r̂jn(z)
a.s.−→ rj(z).

Under Conditions A–F,
(nhd

n )1/2(r̂jn(z)− rj(z)) N (0, σ2
j (z)), where

σ2
j (z) =

‖K‖2
L2(Rd )

f (z)

(
rj(z) + 2rj(z)

∫ τz

0

ψ(t)

Ḡ 2(t)
Hj(t|z)dKj(t|z)

+

∫ τz

0

∫ τz

0

ψ(t)ψ(s)

Ḡ 2(t)Ḡ 2(s)
Hj(s ∧ t|z)dKj(s|z)dKj(t|z)

)
.
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Sketch of the proof: consistency

1 (fn(z), Ḡn,Kjn(·|z)) converges uniformly a.s. to
(f (z), Ḡ ,Kj(·|z)): the empirical process part is treated by
controlling the bracketing numbers (van der Vaart and
Welner, 1996) and the convergence of Ḡn follows from Stute
and Wang (1993).

2 Let φ : R× `[0, τz ]× `[0, τz ] → R

φ(x , u, v) =
1

x

∫
[0,τz ]

ψ(s)

u(s)
dv(s)

is continuous at (f (z), Ḡ ,Kj(·|z)).

3 Continuous mapping theorem.
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(f (z), Ḡ ,Kj(·|z)): the empirical process part is treated by
controlling the bracketing numbers (van der Vaart and
Welner, 1996) and the convergence of Ḡn follows from Stute
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Sketch of the proof: CLT

1 Prove that:

(nhd
n )1/2

(
(fn(z), Ḡn,Kjn(·|z))− (f (z), Ḡ ,Kj(·|z)

)
) (Nz , 0,Gz),

by controlling the entropy with brackets.

2 φ : R× `[0, τz ]× `[0, τz ] → R is Hadamard differentiable at
(f (z), Ḡ ,Kj(·|z)), by following an example in van der Vaart
(1998).

3 Apply the δ-méthode.

Remark

Asymptotic bias disappear because of Assumptions on K and
regularity conditions on f and Kj .
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Model

Joint conditional distribution of (T1,T2):

F̄ (t1, t2|z) = exp(−ez(λ1t1 + λ2t2 + θt1t2))

for t1, t2 ≥ 0 and 0 < θ < λ1λ2. Z ∼ N (0, 1).
Parameters of simulated data:

λ1 = 0.1, λ2 = 0.15, λC = 0.35, and θ = 0.01.

Causes percentages: ≈ 42% of cause 1, ≈ 38% of cause 2,
≈ 20% of censoring.
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Estimation results

z 0 1 2

E[T1I (η = 1)|z ] 1.399 0.556 0.212

n = 200 1.420 (0.526) 0.575 (0.224) 0.219 (0.194)
n = 500 1.439 (0.363) 0.573 (0.161) 0.223 (0.131)
n = 1000 1.380 (0.270) 0.568 (0.121) 0.221 (0.101)

Table: Estimation of E(T1I (η = 1)|z) for z ∈ {0, 1, 2}: mean and
standard deviation (within parenthesis) of N = 1000 estimates for various
sample sizes n.
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Estimation de E [T1I (η = 1)|z ]
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Figure: ψ(t) = t, j = 1, n = 200 and n = 5000
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Estimation de F1(t|0)
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Figure: ψs(t) = I (t ≤ s), j = 1, n = 200 and n = 5000
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Estimation de F1(t|1)
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Figure: ψs(t) = I (t ≤ s), j = 1, n = 200 and n = 5000
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Other results: convergence rates

Assumptions: (X , η) and C are independent conditionally on Z .
The distribution of C depends on Z but it still holds

rj(z) =
1

f (z)

∫
[0,τz ]

ψ(t)

Ḡ (t|z)
dKj(t|z).

Ḡ (t|z) is estimated by the Dabrowska (SJS, 1987) estimator.
For some ∆ ⊂ supp(f ) the expected result is

sup
z∈∆

|r̂jn(z)− rj(z)| = O
(
(nhd

n )−1/2(log log n + log h−1
n )1/2

)
+ O

(
(nh2d

n )−1
)

+ O
(
h2d
n

)
a.s.

by extending some results by Giné and Guillou (AIHP, 2002).
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Some interesting problems: more missing data

Uncertainty on the causes:
there is a collection {S`; ` = 1, . . . , k} of subsets of J, and
informations are of the type

ξ ∈ S` ⊂ J with eventually #S` > 1.

Competing risk including the cure assumption:
we assume that in X = min(T1, . . . ,Tm), for some Tj we may
have P(Tj = +∞) > 0. In this case

P(Tj ≤ t) = pjFj(t) + (1− pj),

where Fj is a df and 1− pj = P(Tj = +∞).
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THANK YOU!
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