Statistical Applications of Over-fitting due to Trimmings

Pedro C. Alvarez (joint work with E. del Barrio, J.A. Cuesta-Albertos and C. Matrán)

5èmes Rencontre de Statistiques Mathématiques BoSanTouVal09, Parc du Teich (Bordeaux, France), du 3 au 5 juin 2009

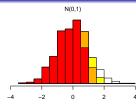
1 How impartial trimmings work?

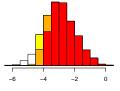
Overfitting

Trimmings •0000 Overfitting

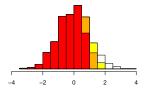
Statistical Applications

How impartial trimmings work?: N(0,1) vs N(-3,1)

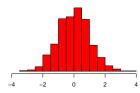


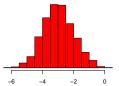


N(-3,1)

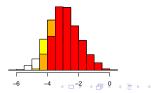


N(0,1)





N(-3,1)

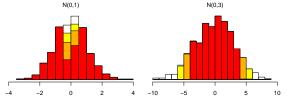


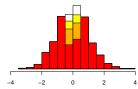
996

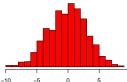
문 🛌 문

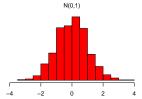
Trimmings 00000

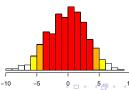
How impartial trimmings work?: N(0,1) vs N(0,3)











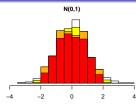
Trimmings 00●00 Overfitting

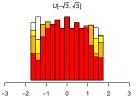
Statistical Applications

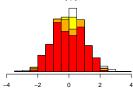
э

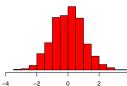
-

How impartial trimmings work?: N(0,1) vs $U(-\sqrt{3},\sqrt{3})$

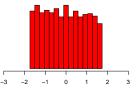




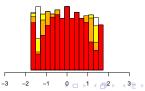




U[-√3, √3]



U[–√3, √3]

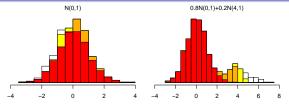


Trimmings 00000

Overfitting

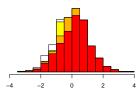
Statistical Applications

How impartial .. work?: N(0,1) vs 0.8*N(0,1)+0.2*N(4,1)

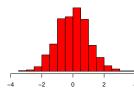


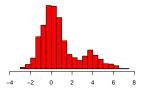
N(0,1)

0.8N(0,1)+0.2N(4,1)

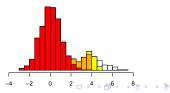


N(0,1)





0.8N(0,1)+0.2N(4,1)



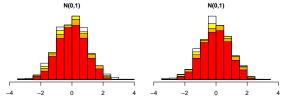
E 990

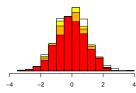
Trimmings 00000

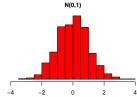
Overfitting

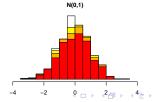
Statistical Applications

How impartial trimmings work?: N(0,1) vs N(0,1)







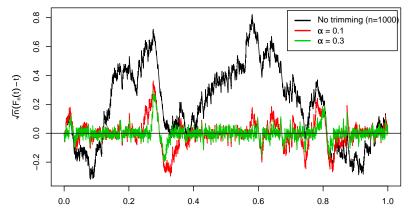


SAC

rimmings Overfitting Statistical Application

Overfitting.

Example(one sample problem): 1000 observations from U[0,1] vs U[0,1]



(日) (同) (日) (日)

э

rimmings	Overfitting	Statistical Applications
	000000	

Let $P \in \mathcal{P}_2(\mathbb{R})$, $P \ll \ell$, X_1, X_2, \ldots, X_n and Y_1, Y_2, \ldots, Y_n i.i.d $\sim P$. P_n and Q_n the respective empirical distributions,

	1 sample	
No trimming	$n\mathcal{W}_2^2(\mathcal{P}_n,\mathcal{P})=O_\mathcal{P}(1)$	
Trimming	$n\mathcal{W}_2^2(P_{n,\alpha},P)=o_P(1)$	

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Trimmings	Overfitting
	000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Overfitting.

Let $P \in \mathcal{P}_2(\mathbb{R})$, $P \ll \ell$, X_1, X_2, \ldots, X_n and Y_1, Y_2, \ldots, Y_n i.i.d $\sim P$. P_n and Q_n the respective empirical distributions,

	1 sample	2 samples		
No trimming	$n\mathcal{W}_2^2(P_n,P)=O_P(1)$	$n\mathcal{W}_2^2(P_n,Q_n)=O_P(1)$		
Trimming	$n\mathcal{W}_2^2(P_{n,\alpha},P)=o_P(1)$	$n\mathcal{W}_2^2(\mathcal{P}_{n,lpha},\mathcal{Q}_{n,lpha})=o_P(1)$		

What does it mean? how we can take advantage of it?

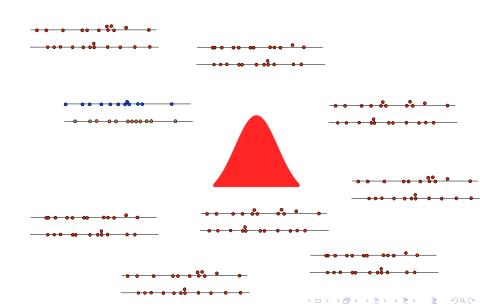
 $\mathcal{W}_2(P_n, Q_n) > \mathcal{W}_2(P_{n,\alpha}, Q_{n,\alpha})$

Statistical Applications

Overfitting.

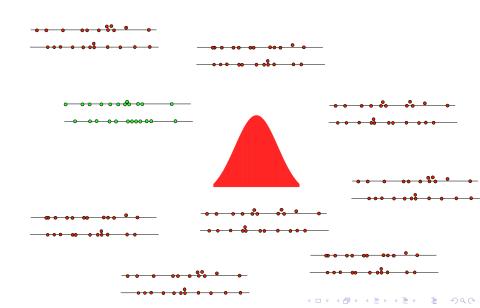
Statistical Applications

Overfitting.



Statistical Applications

Overfitting.



Tri	mn	nin	gs	

- Generate two random samples from a N(0,1) of size n, then trim them (α) and compute the W₂ distance between the trimmed samples (of size [n(1 α)]): W₂(P_{n,α}, Q_{n,α}).
- **②** Generate R = 1000 pairs of random samples from a N(0, 1) of size $m = [n(1 \alpha)]$ and compute $W_2(P_m^i, Q_m^i), i = 1, ..., 1000$.
- Solution Calculate the frequency of " $\mathcal{W}_2(P_m^i, Q_m^i) > \mathcal{W}_2(P_{n,\alpha}, Q_{n,\alpha})$ " (p-value).

(1):	Pair	of	samples	n.1	(n=100),
------	------	----	---------	-----	----------

	trimming size								
	0%	0% 1% 2% 3% 4% 5% 10% 15%							
(1)	0.199	0.447	0.738	0.914	0.985	1	1	1	

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

Tri	nmir	ngs

Overfitting: numerical example.

- Generate two random samples from a N(0,1) of size n, then trim them (α) and compute the W₂ distance between the trimmed samples (of size [n(1 α)]): W₂(P_{n,α}, Q_{n,α}).
- **②** Generate R = 1000 pairs of random samples from a N(0, 1) of size $m = [n(1 \alpha)]$ and compute $W_2(P_m^i, Q_m^i), i = 1, ..., 1000$.
- Solution Calculate the frequency of " $\mathcal{W}_2(P_m^i, Q_m^i) > \mathcal{W}_2(P_{n,\alpha}, Q_{n,\alpha})$ " (p-value).
 - (1): Pair of samples n.1 (n=100),
 (2): Pair of samples n.2 (n=100),

	trimming size							
	0%	0% 1% 2% 3% 4% 5% 10% 15%						
(1)	0.199	0.447	0.738	0.914	0.985	1	1	1
(2)	0.020	0.030	0.062	0.109	0.235	0.383	0.978	1

Т	ri	m	in	gs	
	C				

- Generate two random samples from a N(0,1) of size n, then trim them (α) and compute the W₂ distance between the trimmed samples (of size [n(1 α)]): W₂(P_{n,α}, Q_{n,α}).
- **②** Generate R = 1000 pairs of random samples from a N(0, 1) of size $m = [n(1 \alpha)]$ and compute $W_2(P_m^i, Q_m^i), i = 1, ..., 1000$.
- Solution Calculate the frequency of " $\mathcal{W}_2(P_m^i, Q_m^i) > \mathcal{W}_2(P_{n,\alpha}, Q_{n,\alpha})$ " (p-value).
 - (1): Pair of samples n.1 (n=100), (2): Pair of samples n.2 (n=100),
 - (3): Pair of samples n.3 (n=1000).

	trimming size								
	0%	0% 1% 2% 3% 4% 5% 10% 15%							
(1)	0.199	0.447	0.738	0.914	0.985	1	1	1	
(2)	0.020	0.030	0.062	0.109	0.235	0.383	0.978	1	
(3)	0.364	0.918	1	1	1	1	1	1	

Т	ri	m	in	gs	

- Generate two random samples from a N(0,1) of size n, then trim them (α) and compute the W₂ distance between the trimmed samples (of size [n(1 α)]): W₂(P_{n,α}, Q_{n,α}).
- **2** Generate R = 1000 pairs of random samples from a N(0, 1) of size $m = [n(1 \alpha)]$ and compute $W_2(P_m^i, Q_m^i), i = 1, ..., 1000$.
- Solution Calculate the frequency of " $\mathcal{W}_2(P_m^i, Q_m^i) > \mathcal{W}_2(P_{n,\alpha}, Q_{n,\alpha})$ " (p-value).

Repeat 0-0 100 times and compute the median p-value:

		trimming size								
n	0%	1%	2%	3%	4%	5%	10%	15%		
100	0.433	0.703	0.850	0.932	0.976	0.993	1	1		
300	0.513	0.880	0.977	0.997	1	1	1	1		
1000	0.499	0.986	1	1	1	1	1	1		

Tri	mm	gs

- Generate two random samples from a N(0,1) of size n, then trim them (α) and compute the W₂ distance between the trimmed samples (of size [n(1 α)]): W₂(P_{n,α}, Q_{n,α}).
- **2** Generate R = 1000 pairs of random samples from a N(0, 1) of size $m = [n(1 \alpha)]$ and compute $W_2(P_m^i, Q_m^i), i = 1, ..., 1000$.
- Solution Calculate the frequency of " $\mathcal{W}_2(P_m^i, Q_m^i) > \mathcal{W}_2(P_{n,\alpha}, Q_{n,\alpha})$ " (p-value).

Repeat 0-0 100 times and compute the median p-value:

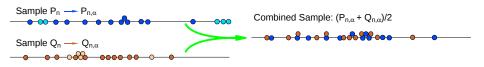
	trimming size								
n	0%	1%	2%	3%	4%	5%	10%	15%	
100	0.433	0.703	0.850	0.932	0.976	0.993	1	1	
300	0.513	0.880	0.977	0.997	1	1	1	1	
1000	0.499	0.986	1	1	1	1	1	1	

But, in practice we don't know the true model...

Statistical Applications

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

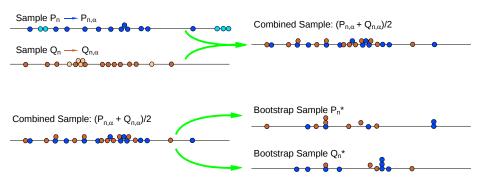
Overfitting and Bootstrap.



Statistical Applications

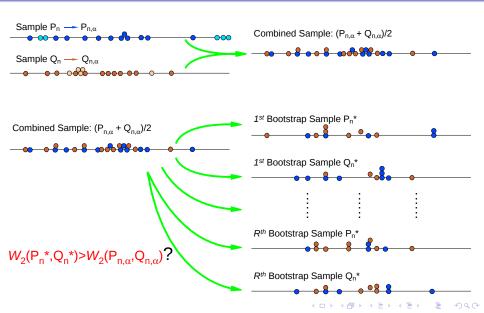
▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Overfitting and Bootstrap.



Statistical Applications

Overfitting and Bootstrap.



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Bootstrap: revisiting the numerical example.

() Compute the **bootstrap p-value** as the frequency of times:

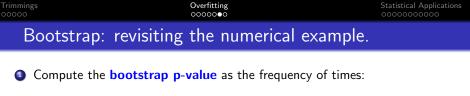
"
$$\mathcal{W}_2(P_m^*, Q_m^*) > \mathcal{W}_2(P_{n,\alpha}, Q_{n,\alpha})$$
".

$$"\mathcal{W}_2(P_m^*,Q_m^*) > \mathcal{W}_2(P_{n,\alpha},Q_{n,\alpha})".$$

Repeat the previous process for 100 pairs of N(0,1) samples of size n and compute the median p-value, then

		trimming size								
n	0%	1%	2%	3%	4%	5%	10%	15%		
100	0.580	0.755	0.846	0.914	0.964	0.982	1	1		
300	0.490	0.820	0.955	0.994	1	1	1	1		
1000	0.577	0.973	1	1	1	1	1	1		

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ



$$"\mathcal{W}_2(P_m^*,Q_m^*) > \mathcal{W}_2(P_{n,\alpha},Q_{n,\alpha})".$$

Repeat the previous process for 100 pairs of N(0,1) samples of size n and compute the median p-value, then

		trimming size								
n	0%	1%	2%	3%	4%	5%	10%	15%		
100	0.580	0.755	0.846	0.914	0.964	0.982	1	1		
300	0.490	0.820	0.955	0.994	1	1	1	1		
1000	0.577	0.973	1	1	1	1	1	1		

Are these results similar to those previous to the bootstrap procedure?

Compute the **bootstrap p-value** as the frequency of times:

"
$$\mathcal{W}_2(P_m^*, Q_m^*) > \mathcal{W}_2(P_{n,\alpha}, Q_{n,\alpha})$$
".

Repeat the previous process for 100 pairs of N(0,1) samples of size n and compute the median p-value, then

		trimming size								
n	0%	1%	2%	3%	4%	5%	10%	15%		
100	0.580	0.755	0.846	0.914	0.964	0.982	1	1		
300	0.490	0.820	0.955	0.994	1	1	1	1		
1000	0.577	0.973	1	1	1	1	1	1		

		trimming size								
n	0%	1%	2%	3%	4%	5%	10%	15%		
100	0.433	0.703	0.850	0.932	0.976	0.993	1	1		
300	0.513	0.880	0.977	0.997	1	1	1	1		
1000	0.499	0.986	1	1	1	1	1	1		

Bootstrap.

Theorem

Let $\alpha > 0$ and $P, Q \in \mathcal{P}_{2+\delta}(\mathbb{R})$, for some $\delta > 0$. Let us suppose that P and Q have density functions f and g, with support in an interval (possibly non-bounded), with continuous derivatives,

(a) If
$$\mathcal{W}_2(\mathcal{R}_{\alpha'}(P), \mathcal{R}_{\alpha'}(Q)) = 0$$
 for some $\alpha' \in (0, \alpha)$, then

$$\mathbb{P}\left(\mathcal{W}_2(P_n^*,Q_n^*) > \mathcal{W}_2(P_{n,\alpha},Q_{n,\alpha})\right) \to 1.$$

(b) If $\mathcal{W}_2(\mathcal{R}_{\alpha}(P), \mathcal{R}_{\alpha}(Q)) > 0$, then

 $\mathbb{P}\left(\mathcal{W}_2(P_n^*,Q_n^*) > \mathcal{W}_2(P_{n,\alpha},Q_{n,\alpha})\right) \to 0.$

Bootstrap.

Theorem

Let $\alpha > 0$ and $P, Q \in \mathcal{P}_{2+\delta}(\mathbb{R})$, for some $\delta > 0$. Let us suppose that P and Q have density functions f and g, with support in an interval (possibly non-bounded), with continuous derivatives,

(a) If
$$\mathcal{W}_2(\mathcal{R}_{\alpha'}(P), \mathcal{R}_{\alpha'}(Q)) = 0$$
 for some $\alpha' \in (0, \alpha)$, then

$$\mathbb{P}\left(\mathcal{W}_2(P_n^*,Q_n^*) > \mathcal{W}_2(P_{n,\alpha},Q_{n,\alpha})\right) \to 1.$$

(b) If $\mathcal{W}_2(\mathcal{R}_{\alpha}(P), \mathcal{R}_{\alpha}(Q)) > 0$, then

 $\mathbb{P}\left(\mathcal{W}_2(P_n^*,Q_n^*) > \mathcal{W}_2(P_{n,\alpha},Q_{n,\alpha})\right) \to 0.$

• If $\mathcal{W}_2(\mathcal{R}_\alpha(P), \mathcal{R}_\alpha(Q)) > 0$:

 $n\mathcal{W}_{2}^{2}(P_{n}^{*},Q_{n}^{*})=O_{P}(1),$ and

 $\mathcal{W}_2(P_{n,\alpha}, Q_{n,\alpha}) \to_{a.s} \mathcal{W}_2(\mathcal{R}_{\alpha}(P), \mathcal{R}_{\alpha}(Q)), \text{ then } n\mathcal{W}_2^2(P_{n,\alpha}, Q_{n,\alpha}) \to \infty.$

Т	ri			gs	
			C		

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Assessing the similarity of two distributions

• Given two distributions, P and Q, we say that they are similar at level α if $\mathcal{W}_2(\mathcal{R}_\alpha(P), \mathcal{R}_\alpha(Q)) = 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Assessing the similarity of two distributions

• Given two distributions, P and Q, we say that they are similar at level α if $\mathcal{W}_2(\mathcal{R}_\alpha(P), \mathcal{R}_\alpha(Q)) = 0$.

or equivalently, if there exists μ (a "common part") such that

$$\begin{cases} P = (1-\alpha)\mu + \alpha P' \\ Q = (1-\alpha)\mu + \alpha Q' \end{cases}$$

Assessing the similarity of two distributions

• Given two distributions, P and Q, we say that they are similar at level α if $\mathcal{W}_2(\mathcal{R}_\alpha(P), \mathcal{R}_\alpha(Q)) = 0$.

or equivalently, if there exists μ (a "common part") such that

$$\begin{cases} P = (1-\alpha)\mu + \alpha P' \\ Q = (1-\alpha)\mu + \alpha Q' \end{cases}$$

• We define the level of similarity between P and Q as

$$\mathcal{S}(P,Q) = \min_{\alpha} \left\{ \alpha : \mathcal{W}_2(\mathcal{R}_{\alpha}(P), \mathcal{R}_{\alpha}(Q)) = 0 \right\} \qquad (= d_{TV}(P,Q)).$$

Assessing the similarity of two distributions

• Given two distributions, P and Q, we say that they are similar at level α if $\mathcal{W}_2(\mathcal{R}_\alpha(P), \mathcal{R}_\alpha(Q)) = 0$.

or equivalently, if there exists μ (a "common part") such that

$$\begin{cases} P = (1-\alpha)\mu + \alpha P' \\ Q = (1-\alpha)\mu + \alpha Q' \end{cases}$$

• We define the level of similarity between P and Q as

$$\mathcal{S}(P,Q) = \min_{\alpha} \left\{ \alpha : \mathcal{W}_2(\mathcal{R}_{\alpha}(P), \mathcal{R}_{\alpha}(Q)) = 0 \right\} \qquad (= d_{TV}(P,Q)).$$

• Using the previous theorem, and given $lpha \in (0,1)$, we can assess whether

 $\mathcal{S}(P,Q) < \alpha \Leftrightarrow \exists \alpha' \in (0,\alpha) \text{ such that } \mathcal{W}_2(\mathcal{R}_{\alpha'}(P),\mathcal{R}_{\alpha'}(Q)) = 0,$

or $\mathcal{S}(P, Q) > \alpha \Leftrightarrow \mathcal{W}_2(\mathcal{R}_{\alpha}(P), \mathcal{R}_{\alpha}(Q)) > 0.$

Comparison of two distributions

We have generated 5 random samples: A \sim N(0,1), B \sim N(0,1), C \sim N(1,1), D \sim N(1,2) and E \sim N(2,1) for two sample sizes (n = 30, 100).

	0%	1%	5%	10%	20%	30%
A vs B	0.669	0.706	0.855	0.968	0.996	1.000
A vs C	0.002	0.000	0.004	0.011	0.146	0.897
A vs D	0.002	0.005	0.013	0.032	0.164	0.683
A vs E	0.000	0.000	0.000	0.000	0.000	0.000
C vs D	0.006	0.016	0.018	0.033	0.163	0.433

bootstrap *p*-values when n = 30.

Comparison of two distributions

We have generated 5 random samples: A \sim N(0,1), B \sim N(0,1), C \sim N(1,1), D \sim N(1,2) and E \sim N(2,1) for two sample sizes (n = 30, 100).

	0%	1%	5%	10%	20%	30%
A vs B	0.669	0.706	0.855	0.968	0.996	1.000
A vs C	0.002	0.000	0.004	0.011	0.146	0.897
A vs D	0.002	0.005	0.013	0.032	0.164	0.683
A vs E	0.000	0.000	0.000	0.000	0.000	0.000
C vs D	0.006	0.016	0.018	0.033	0.163	0.433

bootstrap *p*-values when n = 30.

	0%	1%	5%	10%	20%	30%
A vs B	0.964	0.974	0.998	1.000	1.000	1.000
A vs C	0.000	0.000	0.000	0.000	0.004	0.371
A vs D	0.000	0.000	0.000	0.000	0.091	1.000
A vs E	0.000	0.000	0.000	0.000	0.000	0.000
C vs D	0.000	0.000	0.000	0.001	0.134	0.905

bootstrap *p*-values when n = 100.

Comparison of two distributions

We have generated 5 random samples: A \sim N(0,1), B \sim N(0,1), C \sim N(1,1), D \sim N(1,2) and E \sim N(2,1) for two sample sizes (n = 30, 100).

	0%	1%	5%	10%	20%	30%
A vs B	0.669	0.706	0.855	0.968	0.996	1.000
A vs C	0.002	0.000	0.004	0.011	0.146	0.897
A vs D	0.002	0.005	0.013	0.032	0.164	0.683
A vs E	0.000	0.000	0.000	0.000	0.000	0.000
C vs D	0.006	0.016	0.018	0.033	0.163	0.433

bootstrap *p*-values when n = 30.

	0%	1%	5%	10%	20%	30%	$\mathcal{S}(P,Q)$
A vs B	0.964	0.974	0.998	1.000	1.000	1.000	0%
A vs C	0.000	0.000	0.000	0.000	0.004	0.371	38%
A vs D	0.000	0.000	0.000	0.000	0.091	1.000	39%
A vs E	0.000	0.000	0.000	0.000	0.000	0.000	68%
C vs D	0.000	0.000	0.000	0.001	0.134	0.905	32%

bootstrap *p*-values when n = 100.

Other examples

Generate 100 replicates of the bootstrap p-values:

Case 1. n = 100. X's sample taken from .90N(0,1) + .10N(5,1)Y's sample taken from .90N(0,1) + .10N(-5,1)S(P,Q) = .1000

Case 2. n = 100. X's sample taken from N(0, 1)Y's sample taken from .80N(0, 1) + .20N(0, 3)S(P, Q) = .0969

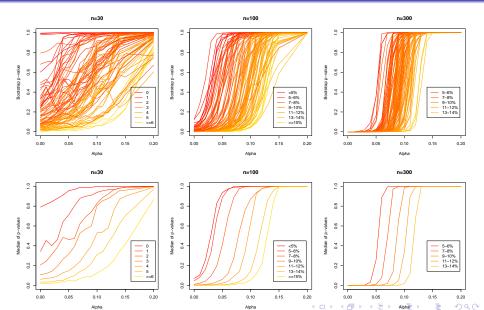
Medians of bootstrap p-values:

	lpha	0	5	6	7	8	9	10	11	12	13	14	15
C	Case 1	0	.01	.03	.06	.12	.26	.47	.70	.87	.92	.97	.99
C	Case 2	.04	.46	.63	.80	.91	.98	.99	1	1	1	1	1

Trimmings 00000

Overfitting 0000000 Statistical Applications

N(0,1) vs .9N(0,1)+.1N(5,1): 100 replicates



Conclusion

Test H_0 : $\mathcal{W}_2(\mathcal{R}_\alpha(P), \mathcal{R}_\alpha(Q)) = 0$ $(\mathcal{S}(P, Q) \le \alpha)$

Rejecting H_0 for small values of the bootstrap p-value.

This procedure is asymptotically error free.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Example: markers of selectividad exam

Marks of the access-to-university exam in the university district of Valladolid: 1550 exams of the same subject distributed between 10 markers.

Marker	1	2	3	4	5	6	7	8	9	10
N^o of exams	155	152	155	156	156	156	156	154	156	154

Do they mark in a homogeneous way? Do they use a common pattern to mark?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Example: markers of selectividad exam

Marks of the access-to-university exam in the university district of Valladolid: 1550 exams of the same subject distributed between 10 markers.

Marker	1	2	3	4	5	6	7	8	9	10
N^o of exams	155	152	155	156	156	156	156	154	156	154

Do they mark in a homogeneous way? Do they use a common pattern to mark? What subset of them marks more similarly?

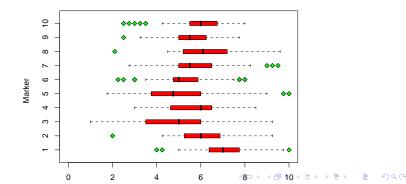
Example: markers of *selectividad* exam

Marks of the access-to-university exam in the university district of Valladolid: 1550 exams of the same subject distributed between 10 markers.

Marker	1	2	3	4	5	6	7	8	9	10
N^o of exams	155	152	155	156	156	156	156	154	156	154

Do they mark in a homogeneous way? Do they use a common pattern to mark?

What subset of them marks more similarly?



Trimmings	Overfitting	Statistical Applications
		00000000000

Looking for the "common pattern" of several distributions

• We know how to assess the similarity of two distributions, but now, we have k distributions ...then?

Trimmings	Overfitting	Statistical Applications
		0000000000

- We know how to assess the similarity of two distributions, but now, we have k distributions ...then?
- Design a sequential procedure:

Trimmings	Overfitti

- We know how to assess the similarity of two distributions, but now, we have k distributions ...then?
- Design a sequential procedure:
 - Start considering all distributions in the group of the similar ones, (and perhaps, fix the level of similarity, α).

Trim	mings	
000		

- We know how to assess the similarity of two distributions, but now, we have k distributions ...then?
- Design a sequential procedure:
 - Start considering all distributions in the group of the similar ones, (and perhaps, fix the level of similarity, α).
 - Compare each distribution in the group with the pool of all distributions in the group, except, the one you are considering.

Tri	m	m	in	g	

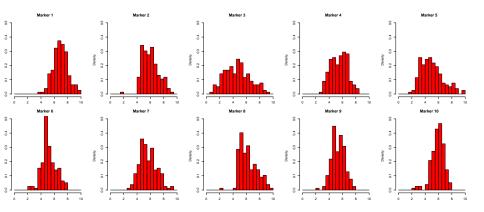
- We know how to assess the similarity of two distributions, but now, we have k distributions ...**then?**
- Design a sequential procedure:
 - Start considering all distributions in the group of the similar ones, (and perhaps, fix the level of similarity, α).
 - Ompare each distribution in the group with the pool of all distributions in the group, except, the one you are considering.
 - Take the less similar distribution, if you have enough evidence of dissimilarity, this distribution leaves the group.

- We know how to assess the similarity of two distributions, but now, we have k distributions ...then?
- Design a sequential procedure:
 - Start considering all distributions in the group of the similar ones, (and perhaps, fix the level of similarity, α).
 - Compare each distribution in the group with the pool of all distributions in the group, except, the one you are considering.
 - Take the less similar distribution, if you have enough evidence of dissimilarity, this distribution leaves the group.
 - Iterate steps 2-3 until none distribution leaves the group.

- We know how to assess the similarity of two distributions, but now, we have k distributions ...then?
- Design a sequential procedure:
 - Start considering all distributions in the group of the similar ones, (and perhaps, fix the level of similarity, α).
 - Compare each distribution in the group with the pool of all distributions in the group, except, the one you are considering.
 - Take the less similar distribution, if you have enough evidence of dissimilarity, this distribution leaves the group.
 - Iterate steps 2-3 until none distribution leaves the group.
 - Solutions out of the group.

Overfitting 0000000 Statistical Applications

Example: markers of selectividad exam



▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへ⊙

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example: sequential process

Step 0: All markers are in the group. Compute bootstrap p-values.

		Marker										
	1	_	3	-	•	•	•	•	0			
1%	0.000	0.000	0.000	0.079	0.000	0.000	0.406	0.000	0.000	0.000		
5%	0.000	0.134	0.000	0.497	0.000	0.000	0.997	0.000	0.001	0.000		
10%	0.000	0.996	0.000	0.951	0.001	0.003	1.000	0.450	0.058	0.003		
20%	0.000	1.000	0.036	1.000	0.572	0.642	1.000	1.000	1.000	0.591		

Example: sequential process

Step 1: Marker 1 is the most *different* and goes out.

		Marker											
	1	2	3	4	5	6	7	8	9	10			
	0.000												
5%	0.000	0.134	0.000	0.497	0.000	0.000	0.997	0.000	0.001	0.000			
10%	0.000	0.996	0.000	0.951	0.001	0.003	1.000	0.450	0.058	0.003			
20%	0.000	1.000	0.036	1.000	0.572	0.642	1.000	1.000	1.000	0.591			

Example: sequential process

Step 2: Recompute bootstrap p-values.

		Marker										
	1	2	3	4	5	6	7	8	9	10		
1%		0.000	0.000	0.083	0.000	0.000	0.254	0.000	0.000	0.000		
5%		0.001	0.000	0.466	0.000	0.000	0.996	0.000	0.007	0.000		
10%		0.740	0.000	0.949	0.006	0.031	1.000	0.036	0.399	0.000		
20%		1.000	0.124	1.000	0.766	0.996	1.000	1.000	1.000	0.367		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example: sequential process

Step 2: Next marker that goes out is num. 3.

		Marker										
	1	2	3	4	5	6	7	8	9	10		
1%		0.000	0.000	0.083	0.000	0.000	0.254	0.000	0.000	0.000		
5%		0.001	0.000	0.466	0.000	0.000	0.996	0.000	0.007	0.000		
10%		0.740	0.000	0.949	0.006	0.031	1.000	0.036	0.399	0.000		
20%		1.000	0.124	1.000	0.766	0.996	1.000	1.000	1.000	0.367		

Example: sequential process

Step 3: Recompute bootstrap p-values.

					Ma	rker				
	1	2	3	4	5	6	7	8	9	10
1%		0.000		0.173	0.000	0.000	0.920	0.000	0.000	0.000
5%		0.089		0.518	0.000	0.000	0.999	0.000	0.055	0.000
10%		0.992		0.966	0.000	0.037	1.000	0.299	0.931	0.010
20%		1.000		1.000	0.146	0.993	1.000	1.000	1.000	0.652

Example: sequential process

Step 3: Marker 5 goes out.

		Marker											
	1	2	3	4	5	6	7	8	9	10			
1%		0.000		0.173	0.000	0.000	0.920	0.000	0.000	0.000			
5%		0.089		0.518	0.000	0.000	0.999	0.000	0.055	0.000			
10%		0.992		0.966	0.000	0.037	1.000	0.299	0.931	0.010			
20%		1.000		1.000	0.146	0.993	1.000	1.000	1.000	0.652			

Example: sequential process

Step 4: Recompute bootstrap p-values (1, 3 and 5 are out).

		Marker										
	1	2	3	4	5	6	7	8	9	10		
1%		0.006		0.058		0.000	0.712	0.000	0.000	0.000		
5%		0.619		0.349		0.000	0.998	0.005	0.056	0.001		
10%		1.000		0.888		0.001	1.000	0.709	0.975	0.038		
20%		1.000		1.000		0.769	1.000	1.000	1.000	0.879		

Example: sequential process

Step 4: Marker 6 goes out (1, 3 and 5 are out).

		Marker										
	1	2	3	4	5	6	7	8	9	10		
1%		0.006		0.058		0.000	0.712	0.000	0.000	0.000		
5%		0.619		0.349		0.000	0.998	0.005	0.056	0.001		
10%		1.000		0.888		0.001	1.000	0.709	0.975	0.038		
20%		1.000		1.000		0.769	1.000	1.000	1.000	0.879		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example: sequential process

Step 5: Recompute bootstrap p-values of the markers in.

		Marker											
	1	2	3	4	5	6	7	8	9	10			
1%		0.067		0.013			0.322	0.001	0.000	0.000			
5%		0.992		0.196			0.914	0.020	0.004	0.005			
10%		1.000		0.825			1.000	0.865	0.338	0.120			
20%		1.000		1.000			1.000	1.000	1.000	0.979			

Example: sequential process

Step 5: Marker 10 goes out $(W_2(5\%))$ is 0.33 points and $W_2(10\%)=0.25)$.

					Ma	rker				
	1	2	3	4	5	6	7	8	9	10
1%		0.067		0.013			0.322	0.001	0.000	0.000
5%		0.992		0.196			0.914	0.020	0.004	0.005
10%		1.000		0.825			1.000	0.865	0.338	0.120
20%		1.000		1.000			1.000	1.000	1.000	0.979

Example: sequential process

Step 6:Recompute bootstrap p-values of the markers in.

					Ma	rker				
	1	2	3	4	5	6	7	8	9	10
1%		0.027		0.017			0.771	0.000	0.000	
5%		0.857		0.165			0.999	0.017	0.004	
10%		1.000		0.684			1.000	0.819	0.352	
20%		1.000		1.000			1.000	1.000	1.000	

Example: sequential process

Step 6: None of the markers out enters into the group.

		Marker										
	1	2	3	4	5	6	7	8	9	10		
1%	0.000	0.027	0.000	0.017	0.000	0.000	0.771	0.000	0.000			
5%	0.000	0.857	0.000	0.165	0.000	0.000	0.999	0.017	0.004			
10%	0.000	1.000	0.000	0.684	0.000	0.000	1.000	0.819	0.352			
20%	0.000	1.000	0.008	1.000	0.001	0.000	1.000	1.000	1.000			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

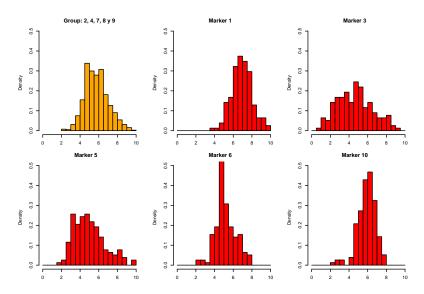
Example: sequential process

Step 6 (End): The group of markers that mark most similarly is 2, 4, 7, 8 and 9.

		Marker										
	1	2	3	4	5	6	7	8	9	10		
1%		0.027		0.017			0.771	0.000	0.000			
5%		0.857		0.165			0.999	0.017	0.004			
10%		1.000		0.684			1.000	0.819	0.352			
20%		1.000		1.000			1.000	1.000	1.000			

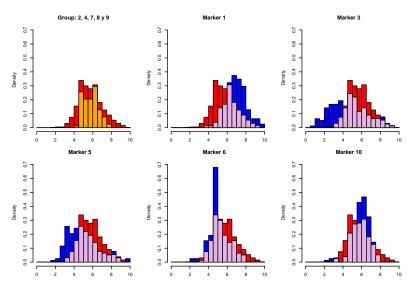
Statistical Applications 00000000000

Example: markers of selectividad exam

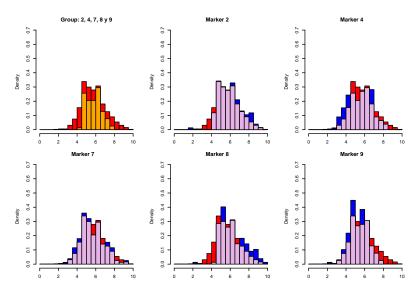


≣⇒ ・ロト ・回ト ・ヨト æ

Example: markers of selectividad exam



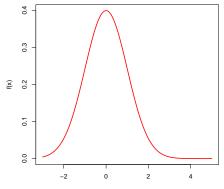
Example: markers of selectividad exam



▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト ● ④ ● ●

Overfitting 0000000 Statistical Applications

The 'Core' of several distributions

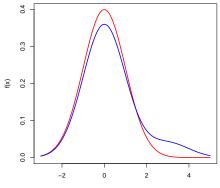


х

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

Overfitting 0000000 Statistical Applications

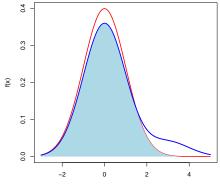
The 'Core' of several distributions



х

Overfitting 0000000 Statistical Applications

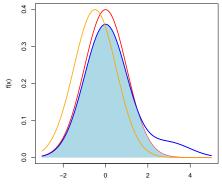
The 'Core' of several distributions



х

Overfitting 0000000 Statistical Applications

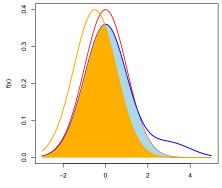
The 'Core' of several distributions



х

Overfitting 0000000 Statistical Applications

The 'Core' of several distributions



х