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How impartial trimmings work?: N(0,1) vs N(-3,1)
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How impartial trimmings work?: N(0,1) vs N(0,3)
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How impartial trimmings work?: N(0,1) vs U(−
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How impartial .. work?: N(0,1) vs 0.8*N(0,1)+0.2*N(4,1)
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How impartial trimmings work?: N(0,1) vs N(0,1)
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Overfitting.

Example(one sample problem): 1000 observations from U[0,1] vs U[0,1]
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Overfitting.

Let P ∈ P2(R), P � `, X1,X2, . . . ,Xn and Y1,Y2, . . . ,Yn i.i.d ∼ P. Pn and Qn

the respective empirical distributions,

1 sample

No trimming nW2
2 (Pn,P) = OP(1)

Trimming nW2
2 (Pn,α,P) = oP(1)
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Overfitting.

Let P ∈ P2(R), P � `, X1,X2, . . . ,Xn and Y1,Y2, . . . ,Yn i.i.d ∼ P. Pn and Qn

the respective empirical distributions,

1 sample 2 samples

No trimming nW2
2 (Pn,P) = OP(1) nW2

2 (Pn,Qn) = OP(1)

Trimming nW2
2 (Pn,α,P) = oP(1) nW2

2 (Pn,α,Qn,α) = oP(1)

What does it mean? how we can take advantage of it?

W2(Pn,Qn) >W2(Pn,α,Qn,α)
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Overfitting: numerical example.

1 Generate two random samples from a N(0, 1) of size n, then trim them (α)
and compute the W2 distance between the trimmed samples (of size
[n(1− α)]): W2(Pn,α,Qn,α).

2 Generate R = 1000 pairs of random samples from a N(0, 1) of size
m = [n(1− α)] and compute W2(P i

m,Q
i
m), i = 1, . . . , 1000.

3 Calculate the frequency of “W2(P i
m,Q

i
m) >W2(Pn,α,Qn,α)” (p-value).

(1): Pair of samples n.1 (n=100),

(2): Pair of samples n.2 (n=100),
(3): Pair of samples n.3 (n=1000).

trimming size

0% 1% 2% 3% 4% 5% 10% 15%

(1) 0.199 0.447 0.738 0.914 0.985 1 1 1

(2) 0.020 0.030 0.062 0.109 0.235 0.383 0.978 1
(3) 0.364 0.918 1 1 1 1 1 1



Trimmings Overfitting Statistical Applications

Overfitting: numerical example.

1 Generate two random samples from a N(0, 1) of size n, then trim them (α)
and compute the W2 distance between the trimmed samples (of size
[n(1− α)]): W2(Pn,α,Qn,α).

2 Generate R = 1000 pairs of random samples from a N(0, 1) of size
m = [n(1− α)] and compute W2(P i

m,Q
i
m), i = 1, . . . , 1000.

3 Calculate the frequency of “W2(P i
m,Q

i
m) >W2(Pn,α,Qn,α)” (p-value).

(1): Pair of samples n.1 (n=100),
(2): Pair of samples n.2 (n=100),

(3): Pair of samples n.3 (n=1000).

trimming size

0% 1% 2% 3% 4% 5% 10% 15%

(1) 0.199 0.447 0.738 0.914 0.985 1 1 1
(2) 0.020 0.030 0.062 0.109 0.235 0.383 0.978 1

(3) 0.364 0.918 1 1 1 1 1 1



Trimmings Overfitting Statistical Applications

Overfitting: numerical example.

1 Generate two random samples from a N(0, 1) of size n, then trim them (α)
and compute the W2 distance between the trimmed samples (of size
[n(1− α)]): W2(Pn,α,Qn,α).

2 Generate R = 1000 pairs of random samples from a N(0, 1) of size
m = [n(1− α)] and compute W2(P i

m,Q
i
m), i = 1, . . . , 1000.

3 Calculate the frequency of “W2(P i
m,Q

i
m) >W2(Pn,α,Qn,α)” (p-value).

(1): Pair of samples n.1 (n=100),
(2): Pair of samples n.2 (n=100),
(3): Pair of samples n.3 (n=1000).

trimming size

0% 1% 2% 3% 4% 5% 10% 15%

(1) 0.199 0.447 0.738 0.914 0.985 1 1 1
(2) 0.020 0.030 0.062 0.109 0.235 0.383 0.978 1
(3) 0.364 0.918 1 1 1 1 1 1



Trimmings Overfitting Statistical Applications

Overfitting: numerical example.

1 Generate two random samples from a N(0, 1) of size n, then trim them (α)
and compute the W2 distance between the trimmed samples (of size
[n(1− α)]): W2(Pn,α,Qn,α).

2 Generate R = 1000 pairs of random samples from a N(0, 1) of size
m = [n(1− α)] and compute W2(P i

m,Q
i
m), i = 1, . . . , 1000.

3 Calculate the frequency of “W2(P i
m,Q

i
m) >W2(Pn,α,Qn,α)” (p-value).

4 Repeat - 100 times and compute the median p-value:

trimming size

n 0% 1% 2% 3% 4% 5% 10% 15%

100 0.433 0.703 0.850 0.932 0.976 0.993 1 1
300 0.513 0.880 0.977 0.997 1 1 1 1
1000 0.499 0.986 1 1 1 1 1 1

But, in practice we don’t know the true model...
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Overfitting and Bootstrap.

Sample Pn        Pn,  

Sample Qn        Qn, 

Combined Sample: (Pn, + Qn,)/2



Trimmings Overfitting Statistical Applications

Overfitting and Bootstrap.

Sample Pn        Pn,  

Sample Qn        Qn, 

Combined Sample: (Pn, + Qn,)/2

Bootstrap Sample Pn*

Bootstrap Sample Qn*

Combined Sample: (Pn, + Qn,)/2
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Overfitting and Bootstrap.

Sample Pn        Pn,  

Sample Qn        Qn, 

Combined Sample: (Pn, + Qn,)/2

..

.

...

Combined Sample: (Pn, + Qn,)/2
1st Bootstrap Sample Pn*

1st Bootstrap Sample Qn*

Rth Bootstrap Sample Pn*

Rth Bootstrap Sample Qn*

..

.

...
..
.

...

W2(Pn*,Qn*)>W2(Pn,,Qn,)?
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Bootstrap: revisiting the numerical example.

1 Compute the bootstrap p-value as the frequency of times:

“W2(P∗m,Q
∗
m) >W2(Pn,α,Qn,α)”.

2 Repeat the previous process for 100 pairs of N(0,1) samples of size n and
compute the median p-value, then
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Bootstrap: revisiting the numerical example.

1 Compute the bootstrap p-value as the frequency of times:

“W2(P∗m,Q
∗
m) >W2(Pn,α,Qn,α)”.

2 Repeat the previous process for 100 pairs of N(0,1) samples of size n and
compute the median p-value, then

trimming size

n 0% 1% 2% 3% 4% 5% 10% 15%

100 0.580 0.755 0.846 0.914 0.964 0.982 1 1
300 0.490 0.820 0.955 0.994 1 1 1 1
1000 0.577 0.973 1 1 1 1 1 1
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Bootstrap: revisiting the numerical example.

1 Compute the bootstrap p-value as the frequency of times:

“W2(P∗m,Q
∗
m) >W2(Pn,α,Qn,α)”.

2 Repeat the previous process for 100 pairs of N(0,1) samples of size n and
compute the median p-value, then

trimming size

n 0% 1% 2% 3% 4% 5% 10% 15%

100 0.580 0.755 0.846 0.914 0.964 0.982 1 1
300 0.490 0.820 0.955 0.994 1 1 1 1
1000 0.577 0.973 1 1 1 1 1 1

Are these results similar to those previous to the bootstrap procedure?
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Bootstrap.

Theorem

Let α > 0 and P,Q ∈ P2+δ(R), for some δ > 0. Let us suppose that P and Q
have density functions f and g, with support in an interval (possibly
non-bounded), with continuous derivatives,

(a) If W2(Rα′(P),Rα′(Q)) = 0 for some α′ ∈ (0, α), then

P (W2(P∗n ,Q
∗
n ) >W2(Pn,α,Qn,α))→ 1.

(b) If W2(Rα(P),Rα(Q)) > 0, then

P (W2(P∗n ,Q
∗
n ) >W2(Pn,α,Qn,α))→ 0.

If W2(Rα(P),Rα(Q)) > 0:

nW2
2 (P∗n ,Q

∗
n ) = OP(1), and

W2(Pn,α,Qn,α)→a.s W2(Rα(P),Rα(Q)), then nW2
2 (Pn,α,Qn,α)→∞.
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Assessing the similarity of two distributions

Given two distributions, P and Q, we say that they are similar at level α if
W2(Rα(P),Rα(Q)) = 0.

or equivalently, if there exists µ (a “common part”) such that{
P = (1− α)µ+ αP ′

Q = (1− α)µ+ αQ ′

We define the level of similarity between P and Q as

S(P,Q) = min
α
{α :W2(Rα(P),Rα(Q)) = 0} (= dTV (P,Q)).

Using the previous theorem, and given α ∈ (0, 1), we can assess whether

S(P,Q) < α⇔ ∃α′ ∈ (0, α) such that W2(Rα′(P),Rα′(Q)) = 0,

or S(P,Q) > α⇔W2(Rα(P),Rα(Q)) > 0.
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Comparison of two distributions

We have generated 5 random samples: A ∼ N(0,1), B ∼ N(0,1), C ∼ N(1,1), D
∼ N(1,2) and E ∼ N(2,1) for two sample sizes (n = 30, 100).

0% 1% 5% 10% 20% 30%

A vs B 0.669 0.706 0.855 0.968 0.996 1.000
A vs C 0.002 0.000 0.004 0.011 0.146 0.897
A vs D 0.002 0.005 0.013 0.032 0.164 0.683
A vs E 0.000 0.000 0.000 0.000 0.000 0.000
C vs D 0.006 0.016 0.018 0.033 0.163 0.433

bootstrap p-values when n = 30.
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We have generated 5 random samples: A ∼ N(0,1), B ∼ N(0,1), C ∼ N(1,1), D
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A vs C 0.000 0.000 0.000 0.000 0.004 0.371
A vs D 0.000 0.000 0.000 0.000 0.091 1.000
A vs E 0.000 0.000 0.000 0.000 0.000 0.000
C vs D 0.000 0.000 0.000 0.001 0.134 0.905

bootstrap p-values when n = 100.
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Comparison of two distributions

We have generated 5 random samples: A ∼ N(0,1), B ∼ N(0,1), C ∼ N(1,1), D
∼ N(1,2) and E ∼ N(2,1) for two sample sizes (n = 30, 100).

0% 1% 5% 10% 20% 30%

A vs B 0.669 0.706 0.855 0.968 0.996 1.000
A vs C 0.002 0.000 0.004 0.011 0.146 0.897
A vs D 0.002 0.005 0.013 0.032 0.164 0.683
A vs E 0.000 0.000 0.000 0.000 0.000 0.000
C vs D 0.006 0.016 0.018 0.033 0.163 0.433

bootstrap p-values when n = 30.

0% 1% 5% 10% 20% 30% S(P,Q)

A vs B 0.964 0.974 0.998 1.000 1.000 1.000 0%
A vs C 0.000 0.000 0.000 0.000 0.004 0.371 38%
A vs D 0.000 0.000 0.000 0.000 0.091 1.000 39%
A vs E 0.000 0.000 0.000 0.000 0.000 0.000 68%
C vs D 0.000 0.000 0.000 0.001 0.134 0.905 32%

bootstrap p-values when n = 100.
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Other examples

Generate 100 replicates of the bootstrap p-values:

Case 1. n = 100. X’s sample taken from .90N(0, 1) + .10N(5, 1)
Case 1. Size 100. Y’s sample taken from .90N(0, 1) + .10N(−5, 1) Case 1. Size
100. S(P,Q) = .1000

Case 2. n = 100. X’s sample taken from N(0, 1)
Case 2. Size 100. Y’s sample taken from .80N(0, 1) + .20N(0, 3) Case 2. Size
100. S(P,Q) = .0969

Medians of bootstrap p-values:

α 0 5 6 7 8 9 10 11 12 13 14 15

Case 1 0 .01 .03 .06 .12 .26 .47 .70 .87 .92 .97 .99
Case 2 .04 .46 .63 .80 .91 .98 .99 1 1 1 1 1
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N(0,1) vs .9N(0,1)+.1N(5,1): 100 replicates
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Conclusion

Test H0 : W2(Rα(P),Rα(Q)) = 0 (S(P,Q) ≤ α)

Rejecting H0 for small values of the bootstrap p-value.

This procedure is asymptotically error free.
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Example: markers of selectividad exam

Marks of the access-to-university exam in the university district of Valladolid:
1550 exams of the same subject distributed between 10 markers.

Marker 1 2 3 4 5 6 7 8 9 10
No of exams 155 152 155 156 156 156 156 154 156 154

Do they mark in a homogeneous way? Do they use a common pattern to mark?

What subset of them marks more similarly?

1
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5
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7
8

9
10
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Looking for the “common pattern” of several distributions

We know how to assess the similarity of two distributions, but now, we have
k distributions ...then?

Design a sequential procedure:

1 Start considering all distributions in the group of the similar ones, (and
perhaps, fix the level of similarity, α).

2 Compare each distribution in the group with the pool of all
distributions in the group, except, the one you are considering.

3 Take the less similar distribution, if you have enough evidence of
dissimilarity, this distribution leaves the group.

4 Iterate steps 2-3 until none distribution leaves the group.

5 Consider to recover the distributions out of the group.
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Trimmings Overfitting Statistical Applications

Example: markers of selectividad exam
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Trimmings Overfitting Statistical Applications

Example: sequential process

Step 0: All markers are in the group. Compute bootstrap p-values.

Marker
1 2 3 4 5 6 7 8 9 10

1% 0.000 0.000 0.000 0.079 0.000 0.000 0.406 0.000 0.000 0.000
5% 0.000 0.134 0.000 0.497 0.000 0.000 0.997 0.000 0.001 0.000

10% 0.000 0.996 0.000 0.951 0.001 0.003 1.000 0.450 0.058 0.003
20% 0.000 1.000 0.036 1.000 0.572 0.642 1.000 1.000 1.000 0.591
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Example: sequential process

Step 1: Marker 1 is the most different and goes out.

Marker
1 2 3 4 5 6 7 8 9 10

1% 0.000 0.000 0.000 0.079 0.000 0.000 0.406 0.000 0.000 0.000
5% 0.000 0.134 0.000 0.497 0.000 0.000 0.997 0.000 0.001 0.000

10% 0.000 0.996 0.000 0.951 0.001 0.003 1.000 0.450 0.058 0.003
20% 0.000 1.000 0.036 1.000 0.572 0.642 1.000 1.000 1.000 0.591



Trimmings Overfitting Statistical Applications

Example: sequential process

Step 2: Recompute bootstrap p-values.

Marker
1 2 3 4 5 6 7 8 9 10

1% 0.000 0.000 0.083 0.000 0.000 0.254 0.000 0.000 0.000
5% 0.001 0.000 0.466 0.000 0.000 0.996 0.000 0.007 0.000

10% 0.740 0.000 0.949 0.006 0.031 1.000 0.036 0.399 0.000
20% 1.000 0.124 1.000 0.766 0.996 1.000 1.000 1.000 0.367
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Example: sequential process

Step 2: Next marker that goes out is num. 3.

Marker
1 2 3 4 5 6 7 8 9 10

1% 0.000 0.000 0.083 0.000 0.000 0.254 0.000 0.000 0.000
5% 0.001 0.000 0.466 0.000 0.000 0.996 0.000 0.007 0.000

10% 0.740 0.000 0.949 0.006 0.031 1.000 0.036 0.399 0.000
20% 1.000 0.124 1.000 0.766 0.996 1.000 1.000 1.000 0.367



Trimmings Overfitting Statistical Applications

Example: sequential process

Step 3: Recompute bootstrap p-values.

Marker
1 2 3 4 5 6 7 8 9 10

1% 0.000 0.173 0.000 0.000 0.920 0.000 0.000 0.000
5% 0.089 0.518 0.000 0.000 0.999 0.000 0.055 0.000

10% 0.992 0.966 0.000 0.037 1.000 0.299 0.931 0.010
20% 1.000 1.000 0.146 0.993 1.000 1.000 1.000 0.652
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Example: sequential process

Step 3: Marker 5 goes out. kkkkk kkkkkkkk

Marker
1 2 3 4 5 6 7 8 9 10

1% 0.000 0.173 0.000 0.000 0.920 0.000 0.000 0.000
5% 0.089 0.518 0.000 0.000 0.999 0.000 0.055 0.000

10% 0.992 0.966 0.000 0.037 1.000 0.299 0.931 0.010
20% 1.000 1.000 0.146 0.993 1.000 1.000 1.000 0.652



Trimmings Overfitting Statistical Applications

Example: sequential process

Step 4: Recompute bootstrap p-values (1, 3 and 5 are out).

Marker
1 2 3 4 5 6 7 8 9 10

1% 0.006 0.058 0.000 0.712 0.000 0.000 0.000
5% 0.619 0.349 0.000 0.998 0.005 0.056 0.001

10% 1.000 0.888 0.001 1.000 0.709 0.975 0.038
20% 1.000 1.000 0.769 1.000 1.000 1.000 0.879
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Example: sequential process

Step 4: Marker 6 goes out (1, 3 and 5 are out).

Marker
1 2 3 4 5 6 7 8 9 10

1% 0.006 0.058 0.000 0.712 0.000 0.000 0.000
5% 0.619 0.349 0.000 0.998 0.005 0.056 0.001

10% 1.000 0.888 0.001 1.000 0.709 0.975 0.038
20% 1.000 1.000 0.769 1.000 1.000 1.000 0.879
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Example: sequential process

Step 5: Recompute bootstrap p-values of the markers in.

Marker
1 2 3 4 5 6 7 8 9 10

1% 0.067 0.013 0.322 0.001 0.000 0.000
5% 0.992 0.196 0.914 0.020 0.004 0.005

10% 1.000 0.825 1.000 0.865 0.338 0.120
20% 1.000 1.000 1.000 1.000 1.000 0.979
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Example: sequential process

Step 5: Marker 10 goes out (W2(5%) is 0.33 points and W2(10%)=0.25).

Marker
1 2 3 4 5 6 7 8 9 10

1% 0.067 0.013 0.322 0.001 0.000 0.000
5% 0.992 0.196 0.914 0.020 0.004 0.005

10% 1.000 0.825 1.000 0.865 0.338 0.120
20% 1.000 1.000 1.000 1.000 1.000 0.979
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Example: sequential process

Step 6:Recompute bootstrap p-values of the markers in.

Marker
1 2 3 4 5 6 7 8 9 10

1% 0.027 0.017 0.771 0.000 0.000
5% 0.857 0.165 0.999 0.017 0.004

10% 1.000 0.684 1.000 0.819 0.352
20% 1.000 1.000 1.000 1.000 1.000
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Example: sequential process

Step 6: None of the markers out enters into the group.

Marker
1 2 3 4 5 6 7 8 9 10

1% 0.000 0.027 0.000 0.017 0.000 0.000 0.771 0.000 0.000
5% 0.000 0.857 0.000 0.165 0.000 0.000 0.999 0.017 0.004

10% 0.000 1.000 0.000 0.684 0.000 0.000 1.000 0.819 0.352
20% 0.000 1.000 0.008 1.000 0.001 0.000 1.000 1.000 1.000
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Example: sequential process

Step 6 (End): The group of markers that mark most similarly is 2, 4, 7, 8 and 9.

Marker
1 2 3 4 5 6 7 8 9 10

1% 0.027 0.017 0.771 0.000 0.000
5% 0.857 0.165 0.999 0.017 0.004

10% 1.000 0.684 1.000 0.819 0.352
20% 1.000 1.000 1.000 1.000 1.000



Trimmings Overfitting Statistical Applications

Example: markers of selectividad exam

Group: 2, 4, 7, 8 y 9
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Trimmings Overfitting Statistical Applications

Example: markers of selectividad exam

Group: 2, 4, 7, 8 y 9
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Trimmings Overfitting Statistical Applications

Example: markers of selectividad exam

Group: 2, 4, 7, 8 y 9
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Trimmings Overfitting Statistical Applications

The ’Core’ of several distributions
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The ’Core’ of several distributions
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