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joint work with P.C. Álvarez, J.A. Cuesta and C. Matrán
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Essential model validation Similarity

Model validation

One-sample problems: observe X ∼ P , check P = Q or P ∈ F

Two-sample problems: observe X ∼ P , Y ∼ Q, check P = Q

Often P = Q or P ∈ F not really important; instead P ' Q or P ' F

Usually we fix θ = θ(P ) and a metric, d. Rather than testing

H0 : θ(P ) = θ(Q) vs. Ha : θ(P ) 6= θ(Q)

we consider

H0 : d(θ(P ), θ(Q)) ≤ ∆ vs. Ha : d(θ(P ), θ(Q)) > ∆

H0 : d(θ(P ), θ(Q)) ≥ ∆ vs. Ha : d(θ(P ), θ(Q)) < ∆
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Essential model validation Similarity

Example

Generate 2 samples of size 100 from N(0,1)
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Two-sample K-S test: p-value = .2106
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Essential model validation Similarity

Example

Add six anomalous points
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Two-sample K-S test: p-value = .2106==== .0312 < .05 ⇒ Reject!
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Essential model validation Similarity

Similarity

Even checking H0 : d(P,Q) ≤ ∆ vs. Ha : d(P,Q) > ∆ can be badly
affected by a few outliers

The probabilities P and Q are similar at level α ∈ [0, 1] if

there exists a probability R such that

{
P = (1− α)R+ αP̃

Q = (1− α)R+ αQ̃

(equivalently, dTV (P,Q) ≤ α).

Other null models also of interest:

H0 : P = L(ϕ1(Z)), Q = L(ϕ2(Z)) and P(ϕ1(Z) 6= ϕ2(Z)) ≤ α

ϕi in some restricted class
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Essential model validation Data-driven Trimming Methods

Trimming the Sample

Remove a fraction, of size at most α, of the data in the sample for a better
comparison to a pattern/other sample:

replace
1
n

n∑
i=1

δxi with
1
n

n∑
i=1

biδxi

bi = 0 for observations in the bad set; bi/n = 1
n−k others,

k number of trimmed observations; k ≤ nα and 1
n−k ≤

1
n

1
1−α Instead

keeping/removing we could increase weight in good ranges (by 1
1−α at most);

downplay in bad zones, not necessarily removing

1
n

n∑
i=1

biδxi , with 0 ≤ bi ≤
1

(1− α)
, and

1
n

n∑
i=1

bi = 1.
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Trimming: Theory Trimmed distributions

Trimmed Distributions

(X , β) measurable space; P(X , β) prob. measures on (X , β), P ∈ P(X , β)

Definition

For 0 ≤ α ≤ 1

Rα(P ) =
{
Q ∈ P(X , β) : Q� P,

dQ

dP
≤ 1

1− α
P -a.s.

}

Equivalently, Q ∈ Rα(P ) iff Q� P and
dQ
dP = 1

1−αf with 0 ≤ f ≤ 1

If f ∈ {0, 1} then f = IA with
P (A) = 1−α: trimming reduces to P (·|A).

Trimming allows to play down the weight of some regions of the measurable
space without completely removing them from the feasible set
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Trimming: Theory Trimmed distributions

Trimmed Distributions II

Some basic properties:

Proposition

(a) α1 ≤ α2 ⇒ Rα1(P ) ⊂ Rα2(P )

(b) Rα(P ) is a convex set.

(c) For α < 1, Q ∈ Rα(P ) iff Q(A) ≤ 1
1−αP (A) for all A ∈ β

(d) If α < 1 and (X , β) is separable metric space then Rα(P ) is closed for the
topology of the weak convergence in P(X , β).

(e) If X is also complete, then Rα(P ) is compact.
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Trimming: Theory Trimmed distributions

Parametrizing Trimmed Distributions: X = R

Define

Cα :=
{
h ∈ AC[0, 1] : h(0) = 0, h(1) = 1, 0 ≤ h′ ≤ 1

1− α

}
Cα is the set of distribution functions of probabilities in Rα(U(0, 1))

Call h ∈ Cα a trimming function

Take P with d.f. F . Let Ph the prob. with d.f. h ◦ F : Ph ∈ Rα(P ); in fact

Proposition

Rα(P ) = {Ph : h ∈ Cα}

The parametrization need not be unique (it is not if P is discrete)

A useful fact: Cα is compact for the uniform topology
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Trimming: Theory Trimmed distributions

Parametrizing Trimmed Distributions: general X

Proposition

If T transports P0 to P , then

Rα(P ) =
{
R ◦ T−1 : R ∈ Rα(P0)

}
.

If P0 = U(0, 1), P ∼ F , T = F−1 we recover the Cα-parametrization

For separable, complete X we can take P0 = U(0, 1); T
Skorohod-Dudley-Wichura

For X = Rk, more interesting P0 � `k, T the Brenier-McCann map: the unique
cyclically monotone map transporting P0 to P .

With this choice Rα(P ) = {PR : R ∈ Rα(P0)}, PR = R ◦ T−1
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Trimming: Theory Common trimming vs Independent trimming

Common trimming

d a metric on F ⊂ P(Rk, β); P0 ∈ P(Rk, β); P0 � `k

T0(P,Q) = min
R∈Rα(P0)

d(PR, QR)

P0,α = argmin
R∈Rα(P0)

d(PR, QR)

P0,α is a best (P0, α)-trimming for P and Q

On R, taking P0 = U(0, 1)

T0(P,Q) = min
h∈Cα

d(Ph, Qh)

hα = argmin
h∈Cα

d(Ph, Qh)

hα is a best α-matching function for P and Q

h 7→ d(Ph, Qh) continuous in ‖ · ‖∞ for dBL,Wp,. . .⇒

a best α-matching function exists
Eustasio del Barrio Similarity and trimming 10 / 31



Trimming: Theory Common trimming vs Independent trimming

Independent trimming

T1(P,Q) := min
R∈Rα(P )

d(R,Q),

T2(P,Q) := min
R1∈Rα(P ),R2∈Rα(Q)

d(R1, R2),

Pα = argmin
R∈Rα(P )

d(R,Q) best α-trimming of P for Q

(Pα, Qα) = argmin
(R1,R2)∈Rα(P )×Rα(Q)

d(R1, R2) best α-matching of P and Q

T1 removes contamination: P = (1− ε)Q+ εR, ⇒ Q ∈ Rα(P ) (α ≥ ε)

(1− α)Q(A) ≤ (1− ε)Q(A) + εR(A) ∀A ∈ β

Hence,
T1(P,Q) = 0
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(Pα, Qα) = argmin
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If d makes Rα(P ) closed

T2(P,Q) = 0 ⇔ dTV (P,Q) ≤ α
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Trimming: Theory Common trimming vs Independent trimming

Wasserstein distance

We consider the Wasserstein metric, Wp, p ≥ 1,

Wp
p (P,Q) = inf

π∈Π(P,Q)
{
R
‖x− y‖pdπ(x, y)}

Wp a metric on Fp, probabilities with finite p-th moment

Proposition

P ∈ Fp ⇒ Rα(P ) ⊂ Fp and Rα(P ) compact in the Wp topology

On the real line

Wp
p (P,Q) =

∫ 1

0

|F−1(t)−G−1(t)|pdt, P ∼ F,Q ∼ G, P,Q ∈ Fp(R)

For Wp, hα easy to compute: P ∼ F , Q ∼ G

W2
2 (Ph, Qh) =

Z 1

0

`
F−1 ◦ h−1 −G−1 ◦ h−1´2 =

Z 1

0

(F−1 −G−1)2h′
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Trimming: Theory Common trimming vs Independent trimming

Define LF,G(x) = `{t ∈ (0, 1) : |F−1(t)−G−1(t)| ≤ x}, x ≥ 0

Then h′α(t) = 1
1−αI(|F−1(t)−G−1(t)| ≤ L−1

F,G(1− α))

In general, (mild assumptions)

W2
2 (PR, QR) =

∫
‖TP (x)− TQ(x)‖2dR(x),

dP0,α

dP0
=

1
1− α

I{‖T1−T2‖≤cα(P,Q)}

and

T 2(P,Q) =
∫
‖TP (x)− TQ(x)‖2dP0,α(x)
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Trimming: Theory Common trimming vs Independent trimming

Optimal incomplete transportation of mass

Setup

Supply: Mass (pile of sand, some other good) located around X

Demand: Mass needed at several locations scattered around Y

Assume total supply exceeds total demand (demand=(1−α)× supply, α ∈ (0, 1))

We don’t have to move all the initial mass; some α- fraction can be dismissed

Find a way to complete this task with a minimal cost.

Rescale to represent the target distribution by Q, p.m. on Y

Represent the initial distribution by 1
1−αP , P p.m. on X

c(x, y) cost of moving a unit of mass from x to y

(Incomplete) transportation plan: a way to move part of the mass in 1
1−αP to Q

represented by π, a joint probability measure on X × Y

Eustasio del Barrio Similarity and trimming 14 / 31



Trimming: Theory Common trimming vs Independent trimming

Optimal incomplete transportation of mass

Target distribution = Q ⇔

π(X ×B) = Q(B), B ⊂ Q

Amount of mass taken from a location in X cannot exceed available mass:

π(A× Y ) ≤ 1
1− α

P (A), A ⊂ X

π transportation plan ⇔ π ∈ Π(Rα(P ), Q)
Now

inf
π∈Π(Rα(P ),Q)

∫
X×Y

c(x, y)dπ(x, y)

is the optimal incomplete transportation problem

If X = Y Banach separable and c(x, y) = ‖x− y‖2 then

W2
2 (Rα(P ), Q) = inf

π∈Π(Rα(P ),Q)

∫
X×Y

c(x, y)dπ(x, y)
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Trimming: Theory Common trimming vs Independent trimming

Dual problem

Write I[π] =
∫
X×Y c(x, y)dπ(x, y) and

Jα(ϕ,ψ) =
1

1− α

∫
X

ϕdP +
∫
Y

ψdQ

(ϕ,ψ) ∈ Cb(X)× Cb(Y ) such that

ϕ(x) ≤ 0 and ϕ(x) + ψ(y) ≤ c(x, y), x ∈ X, y ∈ Y

Theorem

sup
(ϕ,ψ)∈Φc

Jα(ϕ,ψ) = min
π∈Π(Rα(P ),Q)

I[π]

and the min in the right-hand side is attained.

X, Y complete, separable; c lower semicontinuous

For c unif. continuous, bounded the sup is also attained in Φc; without
boundedness enlarged Φc required
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Trimming: Theory Common trimming vs Independent trimming

Incomplete transportation: c(x, y) = ‖x− y‖

X = Y = Rk

Theorem

W1(Rα(P ), Q) = sup
f≤0;‖f‖Lip≤1

(
1

1− α

∫
fdP −

∫
fdQ

)

A simple consequence:

Corollary

X1, . . . , Xn i.i.d. P , D = diam(supp(P )); Pn empirical measure.

P (|W1(Rα(Pn), P )− E(W1(Rα(Pn), P ))| > t) ≤ 2e−
2n(1−α)2t2

D2 , t > 0

Dimension free concentration
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Trimming: Theory Common trimming vs Independent trimming

Incomplete transportation: c(x, y) = ‖x− y‖2

X = Y = Rk

Φ̃c class of pairs (ϕ,ψ) ∈ L1(P )× L1(Q) such that

ϕ(x) ≤ 0 P − a.s. and ϕ(x) + ψ(y) ≤ c(x, y), P ×Q− a.s..

Theorem

max
(ϕ,ψ)∈Φ̃c

Jα(ϕ,ψ) = min
π∈Π(Rα(P ),Q)

I[π].

max attained at (ϕ,ψ) with ϕ(x) = ‖x‖2 − a0(x) and ψ(y) = ‖y‖2 − 2a∗0(y)

a0 convex, lower semicontinuous, P -integrable with a0(x) ≥ ‖x‖2/2, x ∈ Rn
such that

1
1− α

∫
a0dP +

∫
a∗0dQ = min

a

[
1

1− α

∫
adP +

∫
a∗dQ

]
,

a∗ convex-conjugate of a
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Trimming: Theory Common trimming vs Independent trimming

Characterization of optimal incomplete t.p.’s

P and Q p.m. on Rk with finite second moment

Theorem

If Q is absolutely continuous there is a unique Pα ∈ Rα(P ) such that

W2
2 (Pα, Q) = min

R∈Rα(P )
W2

2 (R,Q).

Theorem (Trim or move)

If P,Q absolutely continuous, Pα ◦ (∇a)−1 = Q and

‖x−∇a(x)‖2
(

1
1−αf(x)− fα(x)

)
= 0, a.e.

(fα(x)− 1
1−αf(x))(fα(x)− g(x)) = 0 a.e..
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Trimming: Theory Common trimming vs Independent trimming

Doubly incomplete transportation of mass

Assume now we only have to satisfy a fraction of the demand, 1− α2

Total amount of demand to be served only a fraction of the total supply, 1− α1

Try to minimize the transportation cost.

This is the doubly incomplete transportation problem:

min
π∈Π(Rα1 (P ),Rα2 (Q))

I[π] = min
π∈Π(Rα1 (P ),Rα2 (Q))

∫
X×Y

c(x, y)dπ(x, y).

The min is attained if X,Y complete, separable

If X = Y Banach separable, c(x, y) = ‖x− y‖2 then

W2
2 (Rα1(P ),Rα2(Q)) = min

π∈Π(Rα1 (P ),Rα2 (Q))

∫
X×Y

c(x, y)dπ(x, y)
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Trimming: Theory Common trimming vs Independent trimming

Dual problem: uniqueness

Jα1,α2(ϕ,ψ) =
1

1− α1

∫
ϕdP +

1
1− α2

∫
ψdQ− α1

1− α1
ϕ̄− α2

1− α2
ψ̄

(ϕ,ψ) ∈ Ψ ∈ Cb(Rk)× Cb(Rk) s.t. ϕ(x) + ψ(y) ≤ ‖x− y‖2; ϕ̄ = supx ϕ(x)

Theorem

max
(ϕ,ψ)∈Φ

Jα1,α2(ϕ,ψ) = min
π∈Π(Rα1 (P ),Rα2 (Q))

I[π]

and the max in the left-hand is attained.

Strict convexity gives uniqueness of minimizer in W2(Rα(P ), Q); from duality:

Theorem

If P or Q is absolutely continuous there exists a unique pair
(Pα1 , Qα2) ∈ Rα1(P )×Rα2(Q) such that

W2(Pα1 , Qα2) =W2(Rα1(P ),Rα2(Q))

provided W2(Rα1(P ),Rα2(Q)) > 0

Eustasio del Barrio Similarity and trimming 21 / 31



Trimming: Theory Common trimming vs Independent trimming
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1− α1
ϕ̄− α2

1− α2
ψ̄

(ϕ,ψ) ∈ Ψ ∈ Cb(Rk)× Cb(Rk) s.t. ϕ(x) + ψ(y) ≤ ‖x− y‖2; ϕ̄ = supx ϕ(x)

Theorem

max
(ϕ,ψ)∈Φ

Jα1,α2(ϕ,ψ) = min
π∈Π(Rα1 (P ),Rα2 (Q))

I[π]

and the max in the left-hand is attained.

Strict convexity gives uniqueness of minimizer in W2(Rα(P ), Q); from duality:

Theorem

If P or Q is absolutely continuous there exists a unique pair
(Pα1 , Qα2) ∈ Rα1(P )×Rα2(Q) such that

W2(Pα1 , Qα2) =W2(Rα1(P ),Rα2(Q))

provided W2(Rα1(P ),Rα2(Q)) > 0
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Trimming: Asymptotics

Trimmed comparisons

Using trimmings for tests about the core of the distribution of the data

One sample problems:
Assume X1, . . . , Xn i.i.d. P and fix Q. We are interested in testing

H1 : T (α)(P,Q) = 0 against K1 : T (α)(P,Q) > 0

H2 : T (α)(P,Q) > ∆ against K2 : T (α)(P,Q) ≤ ∆

Two sample problems:
Assume X1, . . . , Xn i.i.d. P and Y1, . . . , Ym i.i.d. Q. Still interested in testing Hi

against Ki, but here Q is unknown

In the one sample case we reject H1/H2 for large/small T
(α)
n = T (α)(Pn, Q)

In the two sample case we reject H1/H2 for large/small T
(α)
n,m = T (α)(Pn, Qm)

Pn, Qm empirical measures

In general, T
(α)
n , T

(α)
n,m not distribution free; tests use asymptotics, bootstrap,. . .
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Trimming: Asymptotics Asymptotics for common trimming

Asymptotics for T
(α)
n (d =W2, T (α)(P,Q) = 0)

hn,α = argmin
h∈Cα

d((Pn)h, Qh) is the α-trimmed empirical matching function

T
(α)
n = d((Pn)hn,α , Qhn,α)

Define Cα(P,Q) = {h ∈ Cα : d(Ph, Qh) = 0} (compact for ‖ · ‖∞)

Theorem

n(T (α)
n )2 →

w
min

h∈Cα(F,G)

∫ 1

0

B(t)2

g2(G−1(t))
h′(t) dt =

∫ 1

0

B(t)2

g2(G−1(t))
h′α,F,G(t) dt

The size of Cα(F,G) depends on `{t ∈ (0, 1) : F−1(t) 6= G−1(t)}

Testing T (α)(P,Q) = 0 equivalent to testing P(ϕ1(Z) = ϕ2(Z)) ≥ 1− α
P = L(ϕ1(Z)), Q = L(ϕ2(Z))

Eustasio del Barrio Similarity and trimming 23 / 31



Trimming: Asymptotics Asymptotics for common trimming

Asymptotics for T
(α)
n (d =W2, T (α)(P,Q) = 0)

hn,α = argmin
h∈Cα

d((Pn)h, Qh) is the α-trimmed empirical matching function

T
(α)
n = d((Pn)hn,α , Qhn,α)

Define Cα(P,Q) = {h ∈ Cα : d(Ph, Qh) = 0} (compact for ‖ · ‖∞)

Theorem

n(T (α)
n )2 →

w
min

h∈Cα(F,G)

∫ 1

0

B(t)2

g2(G−1(t))
h′(t) dt =

∫ 1

0

B(t)2

g2(G−1(t))
h′α,F,G(t) dt

The size of Cα(F,G) depends on `{t ∈ (0, 1) : F−1(t) 6= G−1(t)}

Testing T (α)(P,Q) = 0 equivalent to testing P(ϕ1(Z) = ϕ2(Z)) ≥ 1− α
P = L(ϕ1(Z)), Q = L(ϕ2(Z))

Eustasio del Barrio Similarity and trimming 23 / 31



Trimming: Asymptotics Asymptotics for common trimming

Asymptotics for T
(α)
n (d =W2, T (α)(P,Q) > 0)

Theorem
√
n((T (α)

n )2 − (T (α)(P,Q))2)→
w
N(0, σ2

α(P,Q))

σ2
α(P,Q) = 4

(∫ 1

0
l2(t)dt−

(∫ 1

0
l(t)dt

)2
)
,

where
l(t) =

∫ F−1(t)

F−1(1/2)
(x−G−1(F (x)))h′α(F (x))dx

σ2
α(P,Q) consistently estimated by

s2
n,α(G) = 4

(1−α)2
1
n

∑n−1
i,j=1(i ∧ j − ij

n )an,ian,j ,

an,i = (X(i+1)−X(i))((X(i+1)+X(i))/2−G−1(i/n))I
(|X(i)−G−1

“
i
n

”
|≤`−1

Fn,G
(1−α))

.

Test H0 : T (α)(F,G) > ∆2
0 against Ha : T (α)(F,G) ≤ ∆2

0 (AE et al. 2008)
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Trimming: Asymptotics Asymptotics for independent trimming

Consistency of best trimmed approximations/matchings

{Xn}n, {Yn}n sequences of i.i.d. r.v.’s; L(Xn) = P , L(Yn) = Q, P,Q ∈ F2(Rk)

Pn, Qn empirical distributions

Theorem

(a) If Q� `k and Pn,α := arg min
P∗∈Rα(Pn)

W2(P ∗, Q), then

W2(Pn,α, Pα)→ 0 a.s., where Pα := arg min
P∗∈Rα(P )

W2(P ∗, Q).

(b) If P � `k and Qn,α ∈ Rα(Q) minimizes W2(Pn,Rα(Q)), then

W2(Qn,α, Qα)→ 0 a.s., where Qα := arg min
Q∗∈Rα(Q)

W2(P,Q∗).

(c) If P or Q� `k then W2(Pn,α, Pα)→ 0 and W2(Qn,α, Qα)→ 0 a.s.,

where (Pα, Qα) := arg min{W2(P ∗, Q∗) : P ∗ ∈ Rα(P ), Q∗ ∈ Rα(Q)}.
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Trimming: Asymptotics Asymptotics for independent trimming

Asymptotics for W2(Rα(Pn), Q), (W2(Rα(P ), Q) > 0)

Theorem

√
n(W2(Rα(Pn), Q)−W2(Rα(P ), Q))→

w

1
1− α

GP (ϕα)

Similarly, for W2(Rα(Pn),Rα(Qm)), (W2(Rα(P ),Rα(Q)) > 0)

Theorem

√
n(W2(Rα(Pn),Rα(Qn))−W2(Rα(P ),Rα(Q))→

w

1
1− α

(GP (ϕα) + GQ(ψα))

ϕα, ψα optimizers of dual problem
GP , GQ independent P , Q-Brownian bridges

Usable for testing H0 : W2(Rα(P ),Rα(Q)) ≤ ∆0 (for fixed ∆0 > 0)

(in general dimension)
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Trimming: Asymptotics Asymptotics for independent trimming

Sketch of proof (k = 1)

A trimming process: Vn(h) =
√
n
(
W2

2 ((Pn)h, Q)−W2
2 (Ph, Q)

)
, h ∈ Cα

Define V(h) = 2
∫ 1

0
B(t)

f(F−1(t)) (F−1(t)−G−1(h(t)))h′(t) dt, h ∈ Cα,

B(t) Brownian bridge on (0, 1); V centered Gaussian process.

Theorem

Under mild assumptions V is a tight, Borel measurable map into `∞(Cα) and Vn
converges weakly to V in `∞(Cα).

√
n(W2

2 (Pn,α, Q)−W2
2 (Pα, Q)) =

√
n(W2

2 ((Pn)hn,α , Q)−W2
2 (Phα , Q))

= Vn(hα) +
√
n(W2

2 ((Pn)hn,α , Q)−W2
2 ((Pn)hα , Q)).

√
n(W2

2 ((Pn)hn,α , Q)−W2
2 ((Pn)hα , Q))−

√
n(W2

2 (Phn,α , Q)−W2
2 (Phα , Q))

= Vn(hn,α)− Vn(hα)→ 0.
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Trimming: Asymptotics Asymptotics for independent trimming

Sketch of proof (general k; general cost)

Dual trimming process:

Mn(ϕ) =
√
n(Jα(ϕ,ψ;Pn, Q)− Jα(ϕ,ψ;P,Q))

=
1

1− α
Gn(ϕ), ϕ ∈ Φc

If ϕn,α, ϕα maximizers, for some rn,i ≥ 0
√
n(Wc(Rα(Pn), Q)−Wc(Rα(P ), Q)) = Mn(ϕα) + rn,1 = Mn(ϕn,α)− rn,2,

If Φc is Donsker and ϕα is unique

√
n(Wc(Rα(Pn), Q)−Wc(Rα(P ), Q))→

w

1
1− α

GP (ϕα)

Φc usually not Donsker for large k (even if is not too large)

But, under smoothness, Φc can be replaced by a smaller class! Work in progress.
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Trimming: Asymptotics Asymptotics for independent trimming

Overfitting effects of independent trimming.

Trajectories of uniform empirical process:
√
n(Gn(t)− t) and α-trimmed uniform

empirical process:
√
n(Gn,α(t)− t) (n = 1000, α = 0.1)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.
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0.

6
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8

t

y

No trimming (n=1000)
Trimmed fraction = 10%
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Trimming: Asymptotics Asymptotics for independent trimming

Trimming & overfitting

Trimming increases the rate of convergence of Pn,α to P

X1, . . . , Xn i.i.d. P (Xi ∈ Rk)

W2(Pn, P ) ≤ W2(Pn,α, P ) ≤ W2(Pn,1, P )

Theorem If k = 1 nW2
2 (Pn, P ) = OP (1).

nW2
2 (Pn,α, P ) = oP (1), 0 < α ≤ 1

Theorem

n2/k E(W2
2 (Pn,1, P ))→ ck

∫
f(x)1−2/kdx.

For k ≥ 3, n2/k E(W2
2 (Pn, P )) = O(1).

Overfitting occurs only in low dimension!

But it is very significant: for k = 1 and ν > 1

n2

(log n)2ν
W2

2 (Pn,α, P )→
Pr

0
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Trimming: Asymptotics Asymptotics for independent trimming

A random allocation problem

PN uniform distribution on {a1, . . . , aN}; X1, . . . , Xn i.i.d. PN ; Pn empirical m.

Pn = 1
n

∑N
i=1Biδai ; (B1, . . . , BN ) ∼M(n; 1

N , . . . ,
1
N )

PN ∈ Rα(Pn) ⇔ 1
N ≤

1
1−α

Bi
n , i = 1, . . . , N ⇔ miniBi ≥ (1− α) nN

For fixed N : a.s. W2(Rα(P ), PN ) = 0 for large n

Random allocation + Discretization: For any ν > 1/k

W2(Rα(Pn), P ) = oP

(
(log n)ν

n1/k

)
.
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