Asymptotics for dissimilarity measures based on trimming

Eustasio del Barrio

Universidad de Valladolid (Spain)
joint work with P.C. Álvarez, J.A. Cuesta and C. Matrán

5èmes Rencontre Statistiques Mathématiques Bordeaux-Santander-Toulouse-Valladolid, Parc du Teich, 3-5 June, 2009

Model validation

One-sample problems: observe $X \sim P$, check $P=Q$ or $P \in \mathcal{F}$

Model validation

One-sample problems: observe $X \sim P$, check $P=Q$ or $P \in \mathcal{F}$
Two-sample problems: observe $X \sim P, Y \sim Q$, check $P=Q$

Model validation

One-sample problems: observe $X \sim P$, check $P=Q$ or $P \in \mathcal{F}$
Two-sample problems: observe $X \sim P, Y \sim Q$, check $P=Q$
Often $P=Q$ or $P \in \mathcal{F}$ not really important; instead $P \simeq Q$ or $P \simeq \mathcal{F}$

Model validation

One-sample problems: observe $X \sim P$, check $P=Q$ or $P \in \mathcal{F}$
Two-sample problems: observe $X \sim P, Y \sim Q$, check $P=Q$
Often $P=Q$ or $P \in \mathcal{F}$ not really important; instead $P \simeq Q$ or $P \simeq \mathcal{F}$
Usually we fix $\theta=\theta(P)$ and a metric, d. Rather than testing

$$
H_{0}: \theta(P)=\theta(Q) \quad \text { vs. } \quad H_{a}: \theta(P) \neq \theta(Q)
$$

we consider

$$
\begin{array}{lll}
H_{0}: d(\theta(P), \theta(Q)) \leq \Delta & \text { vs. } & H_{a}: d(\theta(P), \theta(Q))>\Delta \\
H_{0}: d(\theta(P), \theta(Q)) \geq \Delta & \text { vs. } & H_{a}: d(\theta(P), \theta(Q))<\Delta
\end{array}
$$

Example

Generate 2 samples of size 100 from $\mathrm{N}(0,1)$

Two-sample K-S test: p-value $=.2106$

Example

Add six anomalous points

Two-sample K-S test: p-value $=.2106$

Example

Add six anomalous points

Two-sample K-S test: p-value $=.2106=.0312<.05 \Rightarrow$ Reject!

Similarity

Even checking $H_{0}: d(P, Q) \leq \Delta \quad$ vs. $\quad H_{a}: d(P, Q)>\Delta$ can be badly affected by a few outliers

Similarity

Even checking $H_{0}: d(P, Q) \leq \Delta \quad$ vs. $\quad H_{a}: d(P, Q)>\Delta$ can be badly affected by a few outliers

The probabilities P and Q are similar at level $\alpha \in[0,1]$ if
there exists a probability R such that $\left\{\begin{array}{l}P=(1-\alpha) R+\alpha \tilde{P} \\ Q=(1-\alpha) R+\alpha \tilde{Q}\end{array}\right.$

Similarity

Even checking $H_{0}: d(P, Q) \leq \Delta \quad$ vs. $\quad H_{a}: d(P, Q)>\Delta$ can be badly affected by a few outliers

The probabilities P and Q are similar at level $\alpha \in[0,1]$ if

$$
\text { there exists a probability } R \text { such that }\left\{\begin{array}{l}
P=(1-\alpha) R+\alpha \tilde{P} \\
Q=(1-\alpha) R+\alpha \tilde{Q}
\end{array}\right.
$$

(equivalently, $d_{T V}(P, Q) \leq \alpha$).
Other null models also of interest:

Similarity

Even checking $H_{0}: d(P, Q) \leq \Delta \quad$ vs. $\quad H_{a}: d(P, Q)>\Delta$ can be badly affected by a few outliers

The probabilities P and Q are similar at level $\alpha \in[0,1]$ if

$$
\text { there exists a probability } R \text { such that } \begin{cases}P=(1-\alpha) R+\alpha \tilde{P} \\ Q & =(1-\alpha) R+\alpha \tilde{Q}\end{cases}
$$

(equivalently, $d_{T V}(P, Q) \leq \alpha$).
Other null models also of interest:

$$
H_{0}: P=\mathcal{L}\left(\varphi_{1}(Z)\right), Q=\mathcal{L}\left(\varphi_{2}(Z)\right) \text { and } \mathbb{P}\left(\varphi_{1}(Z) \neq \varphi_{2}(Z)\right) \leq \alpha
$$

φ_{i} in some restricted class

Trimming the Sample

Remove a fraction, of size at most α, of the data in the sample for a better comparison to a pattern/other sample:

$$
\text { replace } \quad \frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}} \quad \text { with } \frac{1}{n} \sum_{i=1}^{n} b_{i} \delta_{x_{i}}
$$

$b_{i}=0$ for observations in the bad set; $b_{i} / n=\frac{1}{n-k}$ others,
k number of trimmed observations; $k \leq n \alpha$ and $\frac{1}{n-k} \leq \frac{1}{n} \frac{1}{1-\alpha}$ Instead
keeping/removing we could increase weight in good ranges (by $\frac{1}{1-\alpha}$ at most); downplay in bad zones, not necessarily removing

$$
\frac{1}{n} \sum_{i=1}^{n} b_{i} \delta_{x_{i}}, \text { with } 0 \leq b_{i} \leq \frac{1}{(1-\alpha)}, \text { and } \frac{1}{n} \sum_{i=1}^{n} b_{i}=1
$$

Trimmed Distributions

(\mathcal{X}, β) measurable space; $\mathcal{P}(\mathcal{X}, \beta)$ prob. measures on $(\mathcal{X}, \beta), P \in \mathcal{P}(\mathcal{X}, \beta)$

Definition

For $0 \leq \alpha \leq 1$

$$
\mathcal{R}_{\alpha}(P)=\left\{Q \in \mathcal{P}(\mathcal{X}, \beta): \quad Q \ll P, \quad \frac{d Q}{d P} \leq \frac{1}{1-\alpha} \quad P \text {-a.s. }\right\}
$$

Trimmed Distributions

(\mathcal{X}, β) measurable space; $\mathcal{P}(\mathcal{X}, \beta)$ prob. measures on $(\mathcal{X}, \beta), P \in \mathcal{P}(\mathcal{X}, \beta)$

Definition

For $0 \leq \alpha \leq 1$

$$
\mathcal{R}_{\alpha}(P)=\left\{Q \in \mathcal{P}(\mathcal{X}, \beta): \quad Q \ll P, \quad \frac{d Q}{d P} \leq \frac{1}{1-\alpha} \quad P \text {-a.s. }\right\}
$$

Equivalently, $Q \in \mathcal{R}_{\alpha}(P)$ iff $Q \ll P$ and $\frac{d Q}{d P}=\frac{1}{1-\alpha} f$ with $0 \leq f \leq 1$

Trimmed Distributions

(\mathcal{X}, β) measurable space; $\mathcal{P}(\mathcal{X}, \beta)$ prob. measures on $(\mathcal{X}, \beta), P \in \mathcal{P}(\mathcal{X}, \beta)$

Definition

For $0 \leq \alpha \leq 1$

$$
\mathcal{R}_{\alpha}(P)=\left\{Q \in \mathcal{P}(\mathcal{X}, \beta): \quad Q \ll P, \quad \frac{d Q}{d P} \leq \frac{1}{1-\alpha} \quad P \text {-a.s. }\right\}
$$

Equivalently, $Q \in \mathcal{R}_{\alpha}(P)$ iff $Q \ll P$ and $\frac{d Q}{d P}=\frac{1}{1-\alpha} f$ with $0 \leq f \leq 1$

If $f \in\{0,1\}$ then $f=I_{A}$ with
$P(A)=1-\alpha$: trimming reduces to $P(\cdot \mid A)$.

Trimmed Distributions

(\mathcal{X}, β) measurable space; $\mathcal{P}(\mathcal{X}, \beta)$ prob. measures on $(\mathcal{X}, \beta), P \in \mathcal{P}(\mathcal{X}, \beta)$

Definition

For $0 \leq \alpha \leq 1$

$$
\mathcal{R}_{\alpha}(P)=\left\{Q \in \mathcal{P}(\mathcal{X}, \beta): \quad Q \ll P, \quad \frac{d Q}{d P} \leq \frac{1}{1-\alpha} \quad P \text {-a.s. }\right\}
$$

Equivalently, $Q \in \mathcal{R}_{\alpha}(P)$ iff $Q \ll P$ and $\frac{d Q}{d P}=\frac{1}{1-\alpha} f$ with $0 \leq f \leq 1$

If $f \in\{0,1\}$ then $f=I_{A}$ with
$P(A)=1-\alpha$: trimming reduces to $P(\cdot \mid A)$.

Trimming allows to play down the weight of some regions of the measurable space without completely removing them from the feasible set

Trimmed Distributions II

Some basic properties:

Proposition

(a) $\alpha_{1} \leq \alpha_{2} \Rightarrow \mathcal{R}_{\alpha_{1}}(P) \subset \mathcal{R}_{\alpha_{2}}(P)$
(b) $\mathcal{R}_{\alpha}(P)$ is a convex set.
(c) For $\alpha<1, Q \in \mathcal{R}_{\alpha}(P)$ iff $Q(A) \leq \frac{1}{1-\alpha} P(A)$ for all $A \in \beta$
(d) If $\alpha<1$ and (\mathcal{X}, β) is separable metric space then $\mathcal{R}_{\alpha}(P)$ is closed for the topology of the weak convergence in $\mathcal{P}(\mathcal{X}, \beta)$.
(e) If \mathcal{X} is also complete, then $\mathcal{R}_{\alpha}(P)$ is compact.

Parametrizing Trimmed Distributions: $\mathcal{X}=\mathbb{R}$

Define

$$
\mathcal{C}_{\alpha}:=\left\{h \in \mathcal{A C}[0,1]: h(0)=0, h(1)=1,0 \leq h^{\prime} \leq \frac{1}{1-\alpha}\right\}
$$

\mathcal{C}_{α} is the set of distribution functions of probabilities in $\mathcal{R}_{\alpha}(U(0,1))$
Call $h \in \mathcal{C}_{\alpha}$ a trimming function
Take P with d.f. F. Let P_{h} the prob. with d.f. $h \circ F: P_{h} \in \mathcal{R}_{\alpha}(P)$; in fact

Proposition

$$
\mathcal{R}_{\alpha}(P)=\left\{P_{h}: h \in \mathcal{C}_{\alpha}\right\}
$$

The parametrization need not be unique (it is not if P is discrete)
A useful fact: \mathcal{C}_{α} is compact for the uniform topology

Parametrizing Trimmed Distributions: general \mathcal{X}

Proposition

If T transports P_{0} to P, then

$$
\mathcal{R}_{\alpha}(P)=\left\{R \circ T^{-1}: R \in \mathcal{R}_{\alpha}\left(P_{0}\right)\right\}
$$

If $P_{0}=U(0,1), P \sim F, T=F^{-1}$ we recover the \mathcal{C}_{α}-parametrization
For separable, complete \mathcal{X} we can take $P_{0}=U(0,1) ; T$
Skorohod-Dudley-Wichura
For $\mathcal{X}=\mathbb{R}^{k}$, more interesting $P_{0} \ll \ell^{k}, T$ the Brenier-McCann map: the unique cyclically monotone map transporting P_{0} to P.

With this choice $\mathcal{R}_{\alpha}(P)=\left\{P_{R}: R \in \mathcal{R}_{\alpha}\left(P_{0}\right)\right\}, P_{R}=R \circ T^{-1}$

Common trimming

d a metric on $\mathcal{F} \subset \mathcal{P}\left(\mathbb{R}^{k}, \beta\right) ; \quad P_{0} \in \mathcal{P}\left(\mathbb{R}^{k}, \beta\right) ; P_{0} \ll \ell^{k}$

$$
\begin{gathered}
\mathcal{T}_{0}(P, Q)=\min _{R \in \mathcal{R}_{\alpha}\left(P_{0}\right)} d\left(P_{R}, Q_{R}\right) \\
P_{0, \alpha}=\operatorname{argmin}_{R \in \mathcal{R}_{\alpha}\left(P_{0}\right)}^{\operatorname{argm}} d\left(P_{R}, Q_{R}\right)
\end{gathered}
$$

$P_{0, \alpha}$ is a best $\left(P_{0}, \alpha\right)$-trimming for P and Q
On \mathbb{R}, taking $P_{0}=U(0,1)$

$$
\begin{gathered}
\mathcal{T}_{0}(P, Q)=\min _{h \in \mathcal{C}_{\alpha}} d\left(P_{h}, Q_{h}\right) \\
h_{\alpha}=\underset{h \in \mathcal{C}_{\alpha}}{\operatorname{argmin}} d\left(P_{h}, Q_{h}\right)
\end{gathered}
$$

h_{α} is a best α-matching function for P and Q
$h \mapsto d\left(P_{h}, Q_{h}\right)$ continuous in $\|\cdot\|_{\infty}$ for $d_{B L}, \mathcal{W}_{p}, \ldots \Rightarrow$
a best α-matching function exists

Independent trimming

$$
\begin{gathered}
\mathcal{T}_{1}(P, Q) \quad:=\min _{R \in \mathcal{R}_{\alpha}(P)} d(R, Q), \\
\mathcal{T}_{2}(P, Q) \quad:=\min _{R_{1} \in \mathcal{R}_{\alpha}(P), R_{2} \in \mathcal{R}_{\alpha}(Q)} d\left(R_{1}, R_{2}\right), \\
P_{\alpha}=\underset{R \in \mathcal{R}_{\alpha}(P)}{\operatorname{argmin}} d(R, Q) \quad \text { best } \alpha \text {-trimming of } P \text { for } Q \\
\left(P_{\alpha}, Q_{\alpha}\right)=\underset{\left(R_{1}, R_{2}\right) \in \mathcal{R}_{\alpha}(P) \times \mathcal{R}_{\alpha}(Q)}{\operatorname{argmin}} d\left(R_{1}, R_{2}\right) \quad \text { best } \alpha \text {-matching of } P \text { and } Q
\end{gathered}
$$

\mathcal{T}_{1} removes contamination: $P=(1-\varepsilon) Q+\varepsilon R, \Rightarrow Q \in \mathcal{R}_{\alpha}(P)(\alpha \geq \varepsilon)$

$$
(1-\alpha) Q(A) \leq(1-\varepsilon) Q(A)+\varepsilon R(A) \quad \forall A \in \beta
$$

Hence,

$$
\mathcal{T}_{1}(P, Q)=0
$$

Independent trimming

$$
\begin{gathered}
\mathcal{T}_{1}(P, Q):=\min _{R \in \mathcal{R}_{\alpha}(P)} d(R, Q), \\
\mathcal{T}_{2}(P, Q):=\min _{R_{1} \in \mathcal{R}_{\alpha}(P), R_{2} \in \mathcal{R}_{\alpha}(Q)} d\left(R_{1}, R_{2}\right), \\
P_{\alpha}=\underset{R \in \mathcal{R}_{\alpha}(P)}{\operatorname{argmin}} d(R, Q) \quad \text { best } \alpha \text {-trimming of } P \text { for } Q \\
\left(P_{\alpha}, Q_{\alpha}\right)=\underset{\left(R_{1}, R_{2}\right) \in \mathcal{R}_{\alpha}(P) \times \mathcal{R}_{\alpha}(Q)}{\operatorname{argmin}} d\left(R_{1}, R_{2}\right) \quad \text { best } \alpha \text {-matching of } P \text { and } Q
\end{gathered}
$$

If d makes $\mathcal{R}_{\alpha}(P)$ closed

$$
\mathcal{T}_{2}(P, Q)=0 \quad \Leftrightarrow \quad d_{T V}(P, Q) \leq \alpha
$$

Wasserstein distance

We consider the Wasserstein metric, $\mathcal{W}_{p}, p \geq 1$,

$$
\mathcal{W}_{p}^{p}(P, Q)=\inf _{\pi \in \Pi(P, Q)}\left\{\int\|x-y\|^{p} d \pi(x, y)\right\}
$$

\mathcal{W}_{p} a metric on \mathcal{F}_{p}, probabilities with finite p-th moment

Proposition

$P \in \mathcal{F}_{p} \Rightarrow \mathcal{R}_{\alpha}(P) \subset \mathcal{F}_{p}$ and $\mathcal{R}_{\alpha}(P)$ compact in the \mathcal{W}_{p} topology
On the real line

$$
\mathcal{W}_{p}^{p}(P, Q)=\int_{0}^{1}\left|F^{-1}(t)-G^{-1}(t)\right|^{p} d t, \quad P \sim F, Q \sim G, \quad P, Q \in \mathcal{F}_{p}(\mathbb{R})
$$

For $\mathcal{W}_{p}, h_{\alpha}$ easy to compute: $P \sim F, Q \sim G$

$$
\mathcal{W}_{2}^{2}\left(P_{h}, Q_{h}\right)=\int_{0}^{1}\left(F^{-1} \circ h^{-1}-G^{-1} \circ h^{-1}\right)^{2}=\int_{0}^{1}\left(F^{-1}-G^{-1}\right)^{2} h^{\prime}
$$

Define $L_{F, G}(x)=\ell\left\{t \in(0,1):\left|F^{-1}(t)-G^{-1}(t)\right| \leq x\right\}, x \geq 0$
Then

$$
h_{\alpha}^{\prime}(t)=\frac{1}{1-\alpha} I\left(\left|F^{-1}(t)-G^{-1}(t)\right| \leq L_{F, G}^{-1}(1-\alpha)\right)
$$

In general, (mild assumptions)

$$
\begin{aligned}
\mathcal{W}_{2}^{2}\left(P_{R}, Q_{R}\right) & =\int\left\|T_{P}(x)-T_{Q}(x)\right\|^{2} d R(x), \\
\frac{d P_{0, \alpha}}{d P_{0}} & =\frac{1}{1-\alpha} I_{\left\{\left\|T_{1}-T_{2}\right\| \leq c_{\alpha}(P, Q)\right\}}
\end{aligned}
$$

and

$$
\mathcal{T}^{2}(P, Q)=\int\left\|T_{P}(x)-T_{Q}(x)\right\|^{2} d P_{0, \alpha}(x)
$$

Optimal incomplete transportation of mass

Setup

Supply: Mass (pile of sand, some other good) located around X
Demand: Mass needed at several locations scattered around Y
Assume total supply exceeds total demand (demand=(1- $\alpha) \times$ supply, $\alpha \in(0,1))$
We don't have to move all the initial mass; some α - fraction can be dismissed
Find a way to complete this task with a minimal cost.
Rescale to represent the target distribution by Q, p.m. on Y
Represent the initial distribution by $\frac{1}{1-\alpha} P, P$ p.m. on X
$c(x, y)$ cost of moving a unit of mass from x to y
(Incomplete) transportation plan: a way to move part of the mass in $\frac{1}{1-\alpha} P$ to Q represented by π, a joint probability measure on $X \times Y$

Optimal incomplete transportation of mass

Target distribution $=Q \Leftrightarrow$

$$
\pi(X \times B)=Q(B), \quad B \subset Q
$$

Amount of mass taken from a location in X cannot exceed available mass:

$$
\pi(A \times Y) \leq \frac{1}{1-\alpha} P(A), \quad A \subset X
$$

$$
\pi \text { transportation plan } \Leftrightarrow \pi \in \Pi\left(\mathcal{R}_{\alpha}(P), Q\right)
$$

Now

$$
\inf _{\pi \in \Pi\left(\mathcal{R}_{\alpha}(P), Q\right)} \int_{X \times Y} c(x, y) d \pi(x, y)
$$

is the optimal incomplete transportation problem
If $X=Y$ Banach separable and $c(x, y)=\|x-y\|^{2}$ then

$$
\mathcal{W}_{2}^{2}\left(\mathcal{R}_{\alpha}(P), Q\right)=\inf _{\pi \in \Pi\left(\mathcal{R}_{\alpha}(P), Q\right)} \int_{X \times Y} c(x, y) d \pi(x, y)
$$

Dual problem

Write $I[\pi]=\int_{X \times Y} c(x, y) d \pi(x, y)$ and

$$
J_{\alpha}(\varphi, \psi)=\frac{1}{1-\alpha} \int_{X} \varphi d P+\int_{Y} \psi d Q
$$

$(\varphi, \psi) \in \mathcal{C}_{b}(X) \times \mathcal{C}_{b}(Y)$ such that

$$
\varphi(x) \leq 0 \quad \text { and } \quad \varphi(x)+\psi(y) \leq c(x, y), \quad x \in X, y \in Y
$$

Dual problem

Write $I[\pi]=\int_{X \times Y} c(x, y) d \pi(x, y)$ and

$$
J_{\alpha}(\varphi, \psi)=\frac{1}{1-\alpha} \int_{X} \varphi d P+\int_{Y} \psi d Q
$$

$(\varphi, \psi) \in \mathcal{C}_{b}(X) \times \mathcal{C}_{b}(Y)$ such that

$$
\varphi(x) \leq 0 \quad \text { and } \quad \varphi(x)+\psi(y) \leq c(x, y), \quad x \in X, y \in Y
$$

Theorem

$$
\sup _{(\varphi, \psi) \in \Phi_{c}} J_{\alpha}(\varphi, \psi)=\min _{\pi \in \Pi\left(\mathcal{R}_{\alpha}(P), Q\right)} I[\pi]
$$

and the min in the right-hand side is attained.
X, Y complete, separable; c lower semicontinuous
For c unif. continuous, bounded the sup is also attained in Φ_{c}; without boundedness enlarged Φ_{c} required

Incomplete transportation: $c(x, y)=\|x-y\|$

$X=Y=\mathbb{R}^{k}$
Theorem

$$
\mathcal{W}_{1}\left(\mathcal{R}_{\alpha}(P), Q\right)=\sup _{f \leq 0 ;\|f\|_{L i p} \leq 1}\left(\frac{1}{1-\alpha} \int f d P-\int f d Q\right)
$$

Incomplete transportation: $c(x, y)=\|x-y\|$

$X=Y=\mathbb{R}^{k}$

Theorem

$$
\mathcal{W}_{1}\left(\mathcal{R}_{\alpha}(P), Q\right)=\sup _{f \leq 0 ;\|f\|_{L i p} \leq 1}\left(\frac{1}{1-\alpha} \int f d P-\int f d Q\right)
$$

A simple consequence:

Corollary

X_{1}, \ldots, X_{n} i.i.d. $P, D=\operatorname{diam}(\operatorname{supp}(P)) ; P_{n}$ empirical measure.

$$
\mathbb{P}\left(\left|\mathcal{W}_{1}\left(\mathcal{R}_{\alpha}\left(P_{n}\right), P\right)-E\left(\mathcal{W}_{1}\left(\mathcal{R}_{\alpha}\left(P_{n}\right), P\right)\right)\right|>t\right) \leq 2 e^{-\frac{2 n(1-\alpha)^{2} t^{2}}{D^{2}}}, t>0
$$

Dimension free concentration

Incomplete transportation: $c(x, y)=\|x-y\|^{2}$
$X=Y=\mathbb{R}^{k}$
$\tilde{\Phi}_{c}$ class of pairs $(\varphi, \psi) \in L^{1}(P) \times L^{1}(Q)$ such that

$$
\varphi(x) \leq 0 \quad P \text { - a.s. } \quad \text { and } \quad \varphi(x)+\psi(y) \leq c(x, y), \quad P \times Q-\text { a.s.. }
$$

Theorem

$$
\max _{(\varphi, \psi) \in \tilde{\Phi}_{c}} J_{\alpha}(\varphi, \psi)=\min _{\pi \in \Pi\left(\mathcal{R}_{\alpha}(P), Q\right)} I[\pi] .
$$

max attained at (φ, ψ) with $\varphi(x)=\|x\|^{2}-a_{0}(x)$ and $\psi(y)=\|y\|^{2}-2 a_{0}^{*}(y)$ a_{0} convex, lower semicontinuous, P-integrable with $a_{0}(x) \geq\|x\|^{2} / 2, x \in \mathbb{R}^{n}$ such that

$$
\frac{1}{1-\alpha} \int a_{0} d P+\int a_{0}^{*} d Q=\min _{a}\left[\frac{1}{1-\alpha} \int a d P+\int a^{*} d Q\right]
$$

a^{*} convex-conjugate of a

Characterization of optimal incomplete t.p.'s

P and Q p.m. on \mathbb{R}^{k} with finite second moment

Theorem

If Q is absolutely continuous there is a unique $P_{\alpha} \in \mathcal{R}_{\alpha}(P)$ such that

$$
\mathcal{W}_{2}^{2}\left(P_{\alpha}, Q\right)=\min _{R \in \mathcal{R}_{\alpha}(P)} \mathcal{W}_{2}^{2}(R, Q)
$$

Theorem (Trim or move)

If P, Q absolutely continuous, $P_{\alpha} \circ(\nabla a)^{-1}=Q$ and

$$
\begin{aligned}
\|x-\nabla a(x)\|^{2}\left(\frac{1}{1-\alpha} f(x)-f_{\alpha}(x)\right) & =0, \quad \text { a.e. } \\
\left(f_{\alpha}(x)-\frac{1}{1-\alpha} f(x)\right)\left(f_{\alpha}(x)-g(x)\right) & =0 \quad \text { a.e.. }
\end{aligned}
$$

Doubly incomplete transportation of mass

Assume now we only have to satisfy a fraction of the demand, $1-\alpha_{2}$
Total amount of demand to be served only a fraction of the total supply, $1-\alpha_{1}$
Try to minimize the transportation cost.
This is the doubly incomplete transportation problem:

$$
\min _{\pi \in \Pi\left(\mathcal{R}_{\alpha_{1}}(P), \mathcal{R}_{\alpha_{2}}(Q)\right)} I[\pi]=\min _{\pi \in \Pi\left(\mathcal{R}_{\alpha_{1}}(P), \mathcal{R}_{\alpha_{2}}(Q)\right)} \int_{X \times Y} c(x, y) d \pi(x, y) .
$$

The min is attained if X, Y complete, separable
If $X=Y$ Banach separable, $c(x, y)=\|x-y\|^{2}$ then

$$
\mathcal{W}_{2}^{2}\left(\mathcal{R}_{\alpha_{1}}(P), \mathcal{R}_{\alpha_{2}}(Q)\right)=\min _{\pi \in \Pi\left(\mathcal{R}_{\alpha_{1}}(P), \mathcal{R}_{\alpha_{2}}(Q)\right)} \int_{X \times Y} c(x, y) d \pi(x, y)
$$

Dual problem: uniqueness

$$
\begin{array}{r}
J_{\alpha_{1}, \alpha_{2}}(\varphi, \psi)=\frac{1}{1-\alpha_{1}} \int \varphi d P+\frac{1}{1-\alpha_{2}} \int \psi d Q-\frac{\alpha_{1}}{1-\alpha_{1}} \bar{\varphi}-\frac{\alpha_{2}}{1-\alpha_{2}} \bar{\psi} \\
(\varphi, \psi) \in \Psi \in \mathcal{C}_{b}\left(\mathbb{R}^{k}\right) \times \mathcal{C}_{b}\left(\mathbb{R}^{k}\right) \text { s.t. } \varphi(x)+\psi(y) \leq\|x-y\|^{2} ; \bar{\varphi}=\sup _{x} \varphi(x)
\end{array}
$$

Theorem

$$
\max _{(\varphi, \psi) \in \Phi} J_{\alpha_{1}, \alpha_{2}}(\varphi, \psi)=\min _{\pi \in \Pi\left(\mathcal{R}_{\alpha_{1}}(P), \mathcal{R}_{\alpha_{2}}(Q)\right)} I[\pi]
$$

and the max in the left-hand is attained.

Dual problem: uniqueness

$$
\begin{gathered}
J_{\alpha_{1}, \alpha_{2}}(\varphi, \psi)=\frac{1}{1-\alpha_{1}} \int \varphi d P+\frac{1}{1-\alpha_{2}} \int \psi d Q-\frac{\alpha_{1}}{1-\alpha_{1}} \bar{\varphi}-\frac{\alpha_{2}}{1-\alpha_{2}} \bar{\psi} \\
(\varphi, \psi) \in \Psi \in \mathcal{C}_{b}\left(\mathbb{R}^{k}\right) \times \mathcal{C}_{b}\left(\mathbb{R}^{k}\right) \text { s.t. } \varphi(x)+\psi(y) \leq\|x-y\|^{2} ; \bar{\varphi}=\sup _{x} \varphi(x)
\end{gathered}
$$

Theorem

$$
\max _{(\varphi, \psi) \in \Phi} J_{\alpha_{1}, \alpha_{2}}(\varphi, \psi)=\min _{\pi \in \Pi\left(\mathcal{R}_{\alpha_{1}}(P), \mathcal{R}_{\alpha_{2}}(Q)\right)} I[\pi]
$$

and the max in the left-hand is attained.
Strict convexity gives uniqueness of minimizer in $\mathcal{W}_{2}\left(\mathcal{R}_{\alpha}(P), Q\right)$; from duality:

Theorem

If P or Q is absolutely continuous there exists a unique pair $\left(P_{\alpha_{1}}, Q_{\alpha_{2}}\right) \in \mathcal{R}_{\alpha_{1}}(P) \times \mathcal{R}_{\alpha_{2}}(Q)$ such that

$$
\mathcal{W}_{2}\left(P_{\alpha_{1}}, Q_{\alpha_{2}}\right)=\mathcal{W}_{2}\left(\mathcal{R}_{\alpha_{1}}(P), \mathcal{R}_{\alpha_{2}}(Q)\right)
$$

provided $\mathcal{W}_{2}\left(\mathcal{R}_{\alpha_{1}}(P), \mathcal{R}_{\alpha_{2}}(Q)\right)>0$

Trimmed comparisons

Using trimmings for tests about the core of the distribution of the data
One sample problems:
Assume X_{1}, \ldots, X_{n} i.i.d. P and fix Q. We are interested in testing

$$
\begin{aligned}
& H_{1}: \mathcal{T}^{(\alpha)}(P, Q)=0 \text { against } K_{1}: \mathcal{T}^{(\alpha)}(P, Q)>0 \\
& H_{2}: \mathcal{T}^{(\alpha)}(P, Q)>\Delta \text { against } K_{2}: \mathcal{T}^{(\alpha)}(P, Q) \leq \Delta
\end{aligned}
$$

Two sample problems:
Assume X_{1}, \ldots, X_{n} i.i.d. P and Y_{1}, \ldots, Y_{m} i.i.d. Q. Still interested in testing H_{i} against K_{i}, but here Q is unknown

In the one sample case we reject H_{1} / H_{2} for large/small $T_{n}^{(\alpha)}=\mathcal{T}^{(\alpha)}\left(P_{n}, Q\right)$
In the two sample case we reject H_{1} / H_{2} for large/small $T_{n, m}^{(\alpha)}=\mathcal{T}^{(\alpha)}\left(P_{n}, Q_{m}\right)$
P_{n}, Q_{m} empirical measures
In general, $T_{n}^{(\alpha)}, T_{n, m}^{(\alpha)}$ not distribution free; tests use asymptotics, bootstrap,

Asymptotics for $T_{n}^{(\alpha)} \quad\left(d=\mathcal{W}_{2}, \mathcal{T}^{(\alpha)}(P, Q)=0\right)$
$h_{n, \alpha}=\operatorname{argmin} d\left(\left(P_{n}\right)_{h}, Q_{h}\right)$ is the α-trimmed empirical matching function $h \in \mathcal{C}_{\alpha}$
$T_{n}^{(\alpha)}=d\left(\left(P_{n}\right)_{h_{n, \alpha}}, Q_{h_{n, \alpha}}\right)$
Define $\mathcal{C}_{\alpha}(P, Q)=\left\{h \in \mathcal{C}_{\alpha}: d\left(P_{h}, Q_{h}\right)=0\right\}$ (compact for $\|\cdot\|_{\infty}$)

Theorem

$$
n\left(T_{n}^{(\alpha)}\right)^{2} \underset{w}{\rightarrow} \min _{h \in \mathcal{C}_{\alpha}(F, G)} \int_{0}^{1} \frac{B(t)^{2}}{g^{2}\left(G^{-1}(t)\right)} h^{\prime}(t) d t=\int_{0}^{1} \frac{B(t)^{2}}{g^{2}\left(G^{-1}(t)\right)} h_{\alpha, F, G}^{\prime}(t) d t
$$

The size of $\mathcal{C}_{\alpha}(F, G)$ depends on $\ell\left\{t \in(0,1): F^{-1}(t) \neq G^{-1}(t)\right\}$

Asymptotics for $T_{n}^{(\alpha)} \quad\left(d=\mathcal{W}_{2}, \mathcal{T}^{(\alpha)}(P, Q)=0\right)$
$h_{n, \alpha}=\operatorname{argmin} d\left(\left(P_{n}\right)_{h}, Q_{h}\right)$ is the α-trimmed empirical matching function $h \in \mathcal{C}_{\alpha}$
$T_{n}^{(\alpha)}=d\left(\left(P_{n}\right)_{h_{n, \alpha}}, Q_{h_{n, \alpha}}\right)$
Define $\mathcal{C}_{\alpha}(P, Q)=\left\{h \in \mathcal{C}_{\alpha}: d\left(P_{h}, Q_{h}\right)=0\right\}$ (compact for $\|\cdot\|_{\infty}$)

Theorem

$$
n\left(T_{n}^{(\alpha)}\right)^{2} \underset{w}{\rightarrow} \min _{h \in \mathcal{C}_{\alpha}(F, G)} \int_{0}^{1} \frac{B(t)^{2}}{g^{2}\left(G^{-1}(t)\right)} h^{\prime}(t) d t=\int_{0}^{1} \frac{B(t)^{2}}{g^{2}\left(G^{-1}(t)\right)} h_{\alpha, F, G}^{\prime}(t) d t
$$

The size of $\mathcal{C}_{\alpha}(F, G)$ depends on $\ell\left\{t \in(0,1): F^{-1}(t) \neq G^{-1}(t)\right\}$
Testing $\mathcal{T}^{(\alpha)}(P, Q)=0$ equivalent to testing $\mathbb{P}\left(\varphi_{1}(Z)=\varphi_{2}(Z)\right) \geq 1-\alpha$

$$
P=\mathcal{L}\left(\varphi_{1}(Z)\right), Q=\mathcal{L}\left(\varphi_{2}(Z)\right)
$$

Asymptotics for $T_{n}^{(\alpha)} \quad\left(d=\mathcal{W}_{2}, \mathcal{T}^{(\alpha)}(P, Q)>0\right)$

Theorem

$$
\begin{aligned}
\sqrt{n}\left(\left(T_{n}^{(\alpha)}\right)^{2}-\left(\mathcal{T}^{(\alpha)}(P, Q)\right)^{2}\right) & \underset{w}{\rightarrow} N\left(0, \sigma_{\alpha}^{2}(P, Q)\right) \\
\sigma_{\alpha}^{2}(P, Q) & =4\left(\int_{0}^{1} l^{2}(t) d t-\left(\int_{0}^{1} l(t) d t\right)^{2}\right),
\end{aligned}
$$

where

$$
l(t)=\int_{F^{-1}(1 / 2)}^{F^{-1}(t)}\left(x-G^{-1}(F(x))\right) h_{\alpha}^{\prime}(F(x)) d x
$$

Asymptotics for $T_{n}^{(\alpha)} \quad\left(d=\mathcal{W}_{2}, \mathcal{T}^{(\alpha)}(P, Q)>0\right)$

Theorem

where

$$
l(t)=\int_{F^{-1}(1 / 2)}^{F^{-1}(t)}\left(x-G^{-1}(F(x))\right) h_{\alpha}^{\prime}(F(x)) d x
$$

$\sigma_{\alpha}^{2}(P, Q)$ consistently estimated by

$$
s_{n, \alpha}^{2}(G)=\frac{4}{(1-\alpha)^{2}} \frac{1}{n} \sum_{i, j=1}^{n-1}\left(i \wedge j-\frac{i j}{n}\right) a_{n, i} a_{n, j},
$$

$$
a_{n, i}=\left(X_{(i+1)}-X_{(i)}\right)\left(\left(X_{(i+1)}+X_{(i)}\right) / 2-G^{-1}(i / n)\right) I_{\left(\left|X_{(i)}-G^{-1}\left(\frac{i}{n}\right)\right| \leq \ell_{F_{n}, G}^{-1}(1-\alpha)\right)} .
$$

Test $H_{0}: \mathcal{T}^{(\alpha)}(F, G)>\Delta_{0}^{2}$ against $H_{a}: \mathcal{T}^{(\alpha)}(F, G) \leq \Delta_{0}^{2}$ (AE et al. 2008)

$$
\begin{aligned}
& \sqrt{n}\left(\left(T_{n}^{(\alpha)}\right)^{2}-\left(\mathcal{T}^{(\alpha)}(P, Q)\right)^{2}\right) \underset{w}{\rightarrow} N\left(0, \sigma_{\alpha}^{2}(P, Q)\right) \\
& \sigma_{\alpha}^{2}(P, Q)=4\left(\int_{0}^{1} l^{2}(t) d t-\left(\int_{0}^{1} l(t) d t\right)^{2}\right),
\end{aligned}
$$

Consistency of best trimmed approximations/matchings

$\left\{X_{n}\right\}_{n},\left\{Y_{n}\right\}_{n}$ sequences of i.i.d. r.v.'s; $\mathcal{L}\left(X_{n}\right)=P, \mathcal{L}\left(Y_{n}\right)=Q, P, Q \in \mathcal{F}_{2}\left(R^{k}\right)$ P_{n}, Q_{n} empirical distributions

Theorem

(a) If $Q \ll \ell^{k}$ and $P_{n, \alpha}:=\underset{P^{*} \in \mathcal{R}_{\alpha}\left(P_{n}\right)}{\arg \min } \mathcal{W}_{2}\left(P^{*}, Q\right)$, then

$$
\mathcal{W}_{2}\left(P_{n, \alpha}, P_{\alpha}\right) \rightarrow 0 \text { a.s., where } P_{\alpha}:=\underset{P^{*} \in \mathcal{R}_{\alpha}(P)}{\arg \min } \mathcal{W}_{2}\left(P^{*}, Q\right)
$$

(b) If $P \ll \ell^{k}$ and $Q_{n, \alpha} \in \mathcal{R}_{\alpha}(Q)$ minimizes $\mathcal{W}_{2}\left(P_{n}, \mathcal{R}_{\alpha}(Q)\right)$, then

$$
\mathcal{W}_{2}\left(Q_{n, \alpha}, Q_{\alpha}\right) \rightarrow 0 \text { a.s., where } Q_{\alpha}:=\underset{Q^{*} \in \mathcal{R}_{\alpha}(Q)}{\arg \min } \mathcal{W}_{2}\left(P, Q^{*}\right) .
$$

(c) If P or $Q \ll \ell^{k}$ then $\mathcal{W}_{2}\left(P_{n, \alpha}, P_{\alpha}\right) \rightarrow 0$ and $\mathcal{W}_{2}\left(Q_{n, \alpha}, Q_{\alpha}\right) \rightarrow 0$ a.s., where

$$
\left(P_{\alpha}, Q_{\alpha}\right):=\arg \min \left\{\mathcal{W}_{2}\left(P^{*}, Q^{*}\right): P^{*} \in \mathcal{R}_{\alpha}(P), Q^{*} \in \mathcal{R}_{\alpha}(Q)\right\} .
$$

Asymptotics for $\mathcal{W}_{2}\left(\mathcal{R}_{\alpha}\left(P_{n}\right), Q\right), \quad\left(\mathcal{W}_{2}\left(\mathcal{R}_{\alpha}(P), Q\right)>0\right)$

Theorem

$$
\sqrt{n}\left(\mathcal{W}_{2}\left(\mathcal{R}_{\alpha}\left(P_{n}\right), Q\right)-\mathcal{W}_{2}\left(\mathcal{R}_{\alpha}(P), Q\right)\right) \underset{w}{\rightarrow} \frac{1}{1-\alpha} \mathbb{G}_{P}\left(\varphi_{\alpha}\right)
$$

Asymptotics for $\mathcal{W}_{2}\left(\mathcal{R}_{\alpha}\left(P_{n}\right), Q\right), \quad\left(\mathcal{W}_{2}\left(\mathcal{R}_{\alpha}(P), Q\right)>0\right)$

Theorem

$$
\sqrt{n}\left(\mathcal{W}_{2}\left(\mathcal{R}_{\alpha}\left(P_{n}\right), Q\right)-\mathcal{W}_{2}\left(\mathcal{R}_{\alpha}(P), Q\right)\right) \underset{w}{\overrightarrow{1-\alpha}} \mathbb{G}_{P}\left(\varphi_{\alpha}\right)
$$

Similarly, for $\mathcal{W}_{2}\left(\mathcal{R}_{\alpha}\left(P_{n}\right), \mathcal{R}_{\alpha}\left(Q_{m}\right)\right), \quad\left(\mathcal{W}_{2}\left(\mathcal{R}_{\alpha}(P), \mathcal{R}_{\alpha}(Q)\right)>0\right)$

Theorem

$\sqrt{n}\left(\mathcal{W}_{2}\left(\mathcal{R}_{\alpha}\left(P_{n}\right), \mathcal{R}_{\alpha}\left(Q_{n}\right)\right)-\mathcal{W}_{2}\left(\mathcal{R}_{\alpha}(P), \mathcal{R}_{\alpha}(Q)\right) \underset{w}{\rightarrow} \frac{1}{1-\alpha}\left(\mathbb{G}_{P}\left(\varphi_{\alpha}\right)+\mathbb{G}_{Q}\left(\psi_{\alpha}\right)\right)\right.$
$\varphi_{\alpha}, \psi_{\alpha}$ optimizers of dual problem
$\mathbb{G}_{P}, \mathbb{G}_{Q}$ independent P, Q-Brownian bridges

Asymptotics for $\mathcal{W}_{2}\left(\mathcal{R}_{\alpha}\left(P_{n}\right), Q\right), \quad\left(\mathcal{W}_{2}\left(\mathcal{R}_{\alpha}(P), Q\right)>0\right)$

Theorem

$$
\sqrt{n}\left(\mathcal{W}_{2}\left(\mathcal{R}_{\alpha}\left(P_{n}\right), Q\right)-\mathcal{W}_{2}\left(\mathcal{R}_{\alpha}(P), Q\right)\right) \underset{w}{\overrightarrow{1-\alpha}} \mathbb{G}_{P}\left(\varphi_{\alpha}\right)
$$

Similarly, for $\mathcal{W}_{2}\left(\mathcal{R}_{\alpha}\left(P_{n}\right), \mathcal{R}_{\alpha}\left(Q_{m}\right)\right), \quad\left(\mathcal{W}_{2}\left(\mathcal{R}_{\alpha}(P), \mathcal{R}_{\alpha}(Q)\right)>0\right)$

Theorem

$\sqrt{n}\left(\mathcal{W}_{2}\left(\mathcal{R}_{\alpha}\left(P_{n}\right), \mathcal{R}_{\alpha}\left(Q_{n}\right)\right)-\mathcal{W}_{2}\left(\mathcal{R}_{\alpha}(P), \mathcal{R}_{\alpha}(Q)\right) \underset{w}{\rightarrow} \frac{1}{1-\alpha}\left(\mathbb{G}_{P}\left(\varphi_{\alpha}\right)+\mathbb{G}_{Q}\left(\psi_{\alpha}\right)\right)\right.$
$\varphi_{\alpha}, \psi_{\alpha}$ optimizers of dual problem
$\mathbb{G}_{P}, \mathbb{G}_{Q}$ independent P, Q-Brownian bridges
Usable for testing $H_{0}: \mathcal{W}_{2}\left(\mathcal{R}_{\alpha}(P), \mathcal{R}_{\alpha}(Q)\right) \leq \Delta_{0} \quad\left(\right.$ for fixed $\left.\Delta_{0}>0\right)$ (in general dimension)

Sketch of proof $(k=1)$

A trimming process: $\mathbb{V}_{n}(h)=\sqrt{n}\left(\mathcal{W}_{2}^{2}\left(\left(P_{n}\right)_{h}, Q\right)-\mathcal{W}_{2}^{2}\left(P_{h}, Q\right)\right), \quad h \in \mathcal{C}_{\alpha}$ Define $\mathbb{V}(h)=2 \int_{0}^{1} \frac{B(t)}{f\left(F^{-1}(t)\right)}\left(F^{-1}(t)-G^{-1}(h(t))\right) h^{\prime}(t) d t, \quad h \in \mathcal{C}_{\alpha}$, $B(t)$ Brownian bridge on $(0,1) ; \mathbb{V}$ centered Gaussian process.

Sketch of proof $(k=1)$

A trimming process: $\mathbb{V}_{n}(h)=\sqrt{n}\left(\mathcal{W}_{2}^{2}\left(\left(P_{n}\right)_{h}, Q\right)-\mathcal{W}_{2}^{2}\left(P_{h}, Q\right)\right), \quad h \in \mathcal{C}_{\alpha}$ Define $\mathbb{V}(h)=2 \int_{0}^{1} \frac{B(t)}{f\left(F^{-1}(t)\right)}\left(F^{-1}(t)-G^{-1}(h(t))\right) h^{\prime}(t) d t, \quad h \in \mathcal{C}_{\alpha}$, $B(t)$ Brownian bridge on $(0,1) ; \mathbb{V}$ centered Gaussian process.

Theorem

Under mild assumptions \mathbb{V} is a tight, Borel measurable map into $\ell^{\infty}\left(\mathcal{C}_{\alpha}\right)$ and \mathbb{V}_{n} converges weakly to \mathbb{V} in $\ell^{\infty}\left(\mathcal{C}_{\alpha}\right)$.

Sketch of proof $(k=1)$

A trimming process: $\mathbb{V}_{n}(h)=\sqrt{n}\left(\mathcal{W}_{2}^{2}\left(\left(P_{n}\right)_{h}, Q\right)-\mathcal{W}_{2}^{2}\left(P_{h}, Q\right)\right), \quad h \in \mathcal{C}_{\alpha}$ Define $\mathbb{V}(h)=2 \int_{0}^{1} \frac{B(t)}{f\left(F^{-1}(t)\right)}\left(F^{-1}(t)-G^{-1}(h(t))\right) h^{\prime}(t) d t, \quad h \in \mathcal{C}_{\alpha}$, $B(t)$ Brownian bridge on $(0,1) ; \mathbb{V}$ centered Gaussian process.

Theorem

Under mild assumptions \mathbb{V} is a tight, Borel measurable map into $\ell^{\infty}\left(\mathcal{C}_{\alpha}\right)$ and \mathbb{V}_{n} converges weakly to \mathbb{V} in $\ell^{\infty}\left(\mathcal{C}_{\alpha}\right)$.

$$
\begin{gathered}
\sqrt{n}\left(\mathcal{W}_{2}^{2}\left(P_{n, \alpha}, Q\right)-\mathcal{W}_{2}^{2}\left(P_{\alpha}, Q\right)\right)=\sqrt{n}\left(\mathcal{W}_{2}^{2}\left(\left(P_{n}\right)_{h_{n, \alpha}}, Q\right)-\mathcal{W}_{2}^{2}\left(P_{h_{\alpha}}, Q\right)\right) \\
=\mathbb{V}_{n}\left(h_{\alpha}\right)+\sqrt{n}\left(\mathcal{W}_{2}^{2}\left(\left(P_{n}\right)_{h_{n, \alpha}}, Q\right)-\mathcal{W}_{2}^{2}\left(\left(P_{n}\right)_{h_{\alpha}}, Q\right)\right)
\end{gathered}
$$

Sketch of proof $(k=1)$

A trimming process: $\mathbb{V}_{n}(h)=\sqrt{n}\left(\mathcal{W}_{2}^{2}\left(\left(P_{n}\right)_{h}, Q\right)-\mathcal{W}_{2}^{2}\left(P_{h}, Q\right)\right), \quad h \in \mathcal{C}_{\alpha}$ Define $\mathbb{V}(h)=2 \int_{0}^{1} \frac{B(t)}{f\left(F^{-1}(t)\right)}\left(F^{-1}(t)-G^{-1}(h(t))\right) h^{\prime}(t) d t, \quad h \in \mathcal{C}_{\alpha}$, $B(t)$ Brownian bridge on $(0,1) ; \mathbb{V}$ centered Gaussian process.

Theorem

Under mild assumptions \mathbb{V} is a tight, Borel measurable map into $\ell^{\infty}\left(\mathcal{C}_{\alpha}\right)$ and \mathbb{V}_{n} converges weakly to \mathbb{V} in $\ell^{\infty}\left(\mathcal{C}_{\alpha}\right)$.

$$
\begin{gathered}
\sqrt{n}\left(\mathcal{W}_{2}^{2}\left(P_{n, \alpha}, Q\right)-\mathcal{W}_{2}^{2}\left(P_{\alpha}, Q\right)\right)=\sqrt{n}\left(\mathcal{W}_{2}^{2}\left(\left(P_{n}\right)_{h_{n, \alpha}}, Q\right)-\mathcal{W}_{2}^{2}\left(P_{h_{\alpha}}, Q\right)\right) \\
=\mathbb{V}_{n}\left(h_{\alpha}\right)+\sqrt{n}\left(\mathcal{W}_{2}^{2}\left(\left(P_{n}\right)_{h_{n, \alpha}}, Q\right)-\mathcal{W}_{2}^{2}\left(\left(P_{n}\right)_{h_{\alpha}}, Q\right)\right)
\end{gathered}
$$

$\sqrt{n}\left(\mathcal{W}_{2}^{2}\left(\left(P_{n}\right)_{h_{n, \alpha}}, Q\right)-\mathcal{W}_{2}^{2}\left(\left(P_{n}\right)_{h_{\alpha}}, Q\right)\right)-\sqrt{n}\left(\mathcal{W}_{2}^{2}\left(P_{h_{n, \alpha}}, Q\right)-\mathcal{W}_{2}^{2}\left(P_{h_{\alpha}}, Q\right)\right)$

$$
=\mathbb{V}_{n}\left(h_{n, \alpha}\right)-\mathbb{V}_{n}\left(h_{\alpha}\right) \rightarrow 0
$$

Sketch of proof (general k; general cost)

Dual trimming process:

$$
\mathbb{M}_{n}(\varphi)=\sqrt{n}\left(J_{\alpha}\left(\varphi, \psi ; P_{n}, Q\right)-J_{\alpha}(\varphi, \psi ; P, Q)\right)
$$

Sketch of proof (general k; general cost)

Dual trimming process:

$$
\mathbb{M}_{n}(\varphi)=\sqrt{n}\left(J_{\alpha}\left(\varphi, \psi ; P_{n}, Q\right)-J_{\alpha}(\varphi, \psi ; P, Q)\right)=\frac{1}{1-\alpha} \mathbb{G}_{n}(\varphi), \quad \varphi \in \Phi_{c}
$$

Sketch of proof (general k; general cost)

Dual trimming process:

$$
\mathbb{M}_{n}(\varphi)=\sqrt{n}\left(J_{\alpha}\left(\varphi, \psi ; P_{n}, Q\right)-J_{\alpha}(\varphi, \psi ; P, Q)\right)=\frac{1}{1-\alpha} \mathbb{G}_{n}(\varphi), \quad \varphi \in \Phi_{c}
$$

If $\varphi_{n, \alpha}, \varphi_{\alpha}$ maximizers, for some $r_{n, i} \geq 0$

$$
\sqrt{n}\left(\mathcal{W}_{c}\left(\mathcal{R}_{\alpha}\left(P_{n}\right), Q\right)-\mathcal{W}_{c}\left(\mathcal{R}_{\alpha}(P), Q\right)\right)=M_{n}\left(\varphi_{\alpha}\right)+r_{n, 1}=M_{n}\left(\varphi_{n, \alpha}\right)-r_{n, 2}
$$

Sketch of proof (general k; general cost)

Dual trimming process:

$$
\mathbb{M}_{n}(\varphi)=\sqrt{n}\left(J_{\alpha}\left(\varphi, \psi ; P_{n}, Q\right)-J_{\alpha}(\varphi, \psi ; P, Q)\right)=\frac{1}{1-\alpha} \mathbb{G}_{n}(\varphi), \quad \varphi \in \Phi_{c}
$$

If $\varphi_{n, \alpha}, \varphi_{\alpha}$ maximizers, for some $r_{n, i} \geq 0$

$$
\sqrt{n}\left(\mathcal{W}_{c}\left(\mathcal{R}_{\alpha}\left(P_{n}\right), Q\right)-\mathcal{W}_{c}\left(\mathcal{R}_{\alpha}(P), Q\right)\right)=M_{n}\left(\varphi_{\alpha}\right)+r_{n, 1}=M_{n}\left(\varphi_{n, \alpha}\right)-r_{n, 2},
$$

If Φ_{c} is Donsker and φ_{α} is unique

$$
\sqrt{n}\left(\mathcal{W}_{c}\left(\mathcal{R}_{\alpha}\left(P_{n}\right), Q\right)-\mathcal{W}_{c}\left(\mathcal{R}_{\alpha}(P), Q\right)\right) \underset{w}{\overrightarrow{1-\alpha}} \frac{1}{G_{P}\left(\varphi_{\alpha}\right)}
$$

Sketch of proof (general k; general cost)

Dual trimming process:

$$
\mathbb{M}_{n}(\varphi)=\sqrt{n}\left(J_{\alpha}\left(\varphi, \psi ; P_{n}, Q\right)-J_{\alpha}(\varphi, \psi ; P, Q)\right)=\frac{1}{1-\alpha} \mathbb{G}_{n}(\varphi), \quad \varphi \in \Phi_{c}
$$

If $\varphi_{n, \alpha}, \varphi_{\alpha}$ maximizers, for some $r_{n, i} \geq 0$

$$
\sqrt{n}\left(\mathcal{W}_{c}\left(\mathcal{R}_{\alpha}\left(P_{n}\right), Q\right)-\mathcal{W}_{c}\left(\mathcal{R}_{\alpha}(P), Q\right)\right)=M_{n}\left(\varphi_{\alpha}\right)+r_{n, 1}=M_{n}\left(\varphi_{n, \alpha}\right)-r_{n, 2},
$$

If Φ_{c} is Donsker and φ_{α} is unique

$$
\sqrt{n}\left(\mathcal{W}_{c}\left(\mathcal{R}_{\alpha}\left(P_{n}\right), Q\right)-\mathcal{W}_{c}\left(\mathcal{R}_{\alpha}(P), Q\right)\right) \underset{w}{\overrightarrow{1-\alpha}} \frac{1}{G_{P}\left(\varphi_{\alpha}\right)}
$$

Φ_{c} usually not Donsker for large k (even if is not too large)

Sketch of proof (general k; general cost)

Dual trimming process:

$$
\mathbb{M}_{n}(\varphi)=\sqrt{n}\left(J_{\alpha}\left(\varphi, \psi ; P_{n}, Q\right)-J_{\alpha}(\varphi, \psi ; P, Q)\right)=\frac{1}{1-\alpha} \mathbb{G}_{n}(\varphi), \quad \varphi \in \Phi_{c}
$$

If $\varphi_{n, \alpha}, \varphi_{\alpha}$ maximizers, for some $r_{n, i} \geq 0$

$$
\sqrt{n}\left(\mathcal{W}_{c}\left(\mathcal{R}_{\alpha}\left(P_{n}\right), Q\right)-\mathcal{W}_{c}\left(\mathcal{R}_{\alpha}(P), Q\right)\right)=M_{n}\left(\varphi_{\alpha}\right)+r_{n, 1}=M_{n}\left(\varphi_{n, \alpha}\right)-r_{n, 2},
$$

If Φ_{c} is Donsker and φ_{α} is unique

$$
\sqrt{n}\left(\mathcal{W}_{c}\left(\mathcal{R}_{\alpha}\left(P_{n}\right), Q\right)-\mathcal{W}_{c}\left(\mathcal{R}_{\alpha}(P), Q\right)\right) \underset{w}{\rightarrow} \frac{1}{1-\alpha} \mathbb{G}_{P}\left(\varphi_{\alpha}\right)
$$

Φ_{c} usually not Donsker for large k (even if is not too large)
But, under smoothness, Φ_{c} can be replaced by a smaller class! Work in progress.

Overfitting effects of independent trimming.

Trajectories of uniform empirical process: $\sqrt{n}\left(G_{n}(t)-t\right)$ and α-trimmed uniform empirical process: $\sqrt{n}\left(G_{n, \alpha}(t)-t\right)(n=1000, \alpha=0.1)$

Trimming \& overfitting

Trimming increases the rate of convergence of $P_{n, \alpha}$ to P X_{1}, \ldots, X_{n} i.i.d. $P \quad\left(X_{i} \in \mathbb{R}^{k}\right)$

$$
\mathcal{W}_{2}\left(P_{n}, P\right) \leq \mathcal{W}_{2}\left(P_{n, \alpha}, P\right) \leq \mathcal{W}_{2}\left(P_{n, 1}, P\right)
$$

Theorem If $k=1 n \mathcal{W}_{2}^{2}\left(P_{n}, P\right)=O_{P}(1)$.

$$
n \mathcal{W}_{2}^{2}\left(P_{n, \alpha}, P\right)=o_{P}(1), 0<\alpha \leq 1
$$

Trimming \& overfitting

Trimming increases the rate of convergence of $P_{n, \alpha}$ to P X_{1}, \ldots, X_{n} i.i.d. $P \quad\left(X_{i} \in \mathbb{R}^{k}\right)$

$$
\mathcal{W}_{2}\left(P_{n}, P\right) \leq \mathcal{W}_{2}\left(P_{n, \alpha}, P\right) \leq \mathcal{W}_{2}\left(P_{n, 1}, P\right)
$$

Theorem If $k=1 n \mathcal{W}_{2}^{2}\left(P_{n}, P\right)=O_{P}(1)$.

$$
n \mathcal{W}_{2}^{2}\left(P_{n, \alpha}, P\right)=o_{P}(1), 0<\alpha \leq 1
$$

Theorem

$$
n^{2 / k} \mathrm{E}\left(\mathcal{W}_{2}^{2}\left(P_{n, 1}, P\right)\right) \rightarrow c_{k} \int f(x)^{1-2 / k} d x
$$

For $k \geq 3, n^{2 / k} \mathrm{E}\left(\mathcal{W}_{2}^{2}\left(P_{n}, P\right)\right)=O(1)$.
Overfitting occurs only in low dimension!

Trimming \& overfitting

Trimming increases the rate of convergence of $P_{n, \alpha}$ to P X_{1}, \ldots, X_{n} i.i.d. $P \quad\left(X_{i} \in \mathbb{R}^{k}\right)$

$$
\mathcal{W}_{2}\left(P_{n}, P\right) \leq \mathcal{W}_{2}\left(P_{n, \alpha}, P\right) \leq \mathcal{W}_{2}\left(P_{n, 1}, P\right)
$$

Theorem If $k=1 n \mathcal{W}_{2}^{2}\left(P_{n}, P\right)=O_{P}(1)$.

$$
n \mathcal{W}_{2}^{2}\left(P_{n, \alpha}, P\right)=o_{P}(1), 0<\alpha \leq 1
$$

Theorem

$$
n^{2 / k} \mathrm{E}\left(\mathcal{W}_{2}^{2}\left(P_{n, 1}, P\right)\right) \rightarrow c_{k} \int f(x)^{1-2 / k} d x
$$

For $k \geq 3, n^{2 / k} \mathrm{E}\left(\mathcal{W}_{2}^{2}\left(P_{n}, P\right)\right)=O(1)$.
Overfitting occurs only in low dimension!
But it is very significant: for $k=1$ and $\nu>1$

$$
\frac{n^{2}}{(\log n)^{2 \nu}} \mathcal{W}_{2}^{2}\left(P_{n, \alpha}, P\right) \overrightarrow{\operatorname{Pr}}^{0}
$$

A random allocation problem

P_{N} uniform distribution on $\left\{a_{1}, \ldots, a_{N}\right\} ; X_{1}, \ldots, X_{n}$ i.i.d. $P_{N} ; P_{n}$ empirical m.

A random allocation problem

P_{N} uniform distribution on $\left\{a_{1}, \ldots, a_{N}\right\} ; X_{1}, \ldots, X_{n}$ i.i.d. $P_{N} ; P_{n}$ empirical m. $P_{n}=\frac{1}{n} \sum_{i=1}^{N} B_{i} \delta_{a_{i}} ; \quad\left(B_{1}, \ldots, B_{N}\right) \sim \mathcal{M}\left(n ; \frac{1}{N}, \ldots, \frac{1}{N}\right)$

A random allocation problem

P_{N} uniform distribution on $\left\{a_{1}, \ldots, a_{N}\right\} ; X_{1}, \ldots, X_{n}$ i.i.d. $P_{N} ; P_{n}$ empirical m. $P_{n}=\frac{1}{n} \sum_{i=1}^{N} B_{i} \delta_{a_{i}} ; \quad\left(B_{1}, \ldots, B_{N}\right) \sim \mathcal{M}\left(n ; \frac{1}{N}, \ldots, \frac{1}{N}\right)$
$P_{N} \in \mathcal{R}_{\alpha}\left(P_{n}\right) \Leftrightarrow \frac{1}{N} \leq \frac{1}{1-\alpha} \frac{B_{i}}{n}, i=1, \ldots, N \Leftrightarrow \min _{i} B_{i} \geq(1-\alpha) \frac{n}{N}$

A random allocation problem

P_{N} uniform distribution on $\left\{a_{1}, \ldots, a_{N}\right\} ; X_{1}, \ldots, X_{n}$ i.i.d. $P_{N} ; P_{n}$ empirical m. $P_{n}=\frac{1}{n} \sum_{i=1}^{N} B_{i} \delta_{a_{i}} ; \quad\left(B_{1}, \ldots, B_{N}\right) \sim \mathcal{M}\left(n ; \frac{1}{N}, \ldots, \frac{1}{N}\right)$
$P_{N} \in \mathcal{R}_{\alpha}\left(P_{n}\right) \Leftrightarrow \frac{1}{N} \leq \frac{1}{1-\alpha} \frac{B_{i}}{n}, i=1, \ldots, N \Leftrightarrow \min _{i} B_{i} \geq(1-\alpha) \frac{n}{N}$
For fixed N : a.s. $\mathcal{W}_{2}\left(\mathcal{R}_{\alpha}(P), P_{N}\right)=0$ for large n

A random allocation problem

P_{N} uniform distribution on $\left\{a_{1}, \ldots, a_{N}\right\} ; X_{1}, \ldots, X_{n}$ i.i.d. $P_{N} ; P_{n}$ empirical m. $P_{n}=\frac{1}{n} \sum_{i=1}^{N} B_{i} \delta_{a_{i}} ; \quad\left(B_{1}, \ldots, B_{N}\right) \sim \mathcal{M}\left(n ; \frac{1}{N}, \ldots, \frac{1}{N}\right)$
$P_{N} \in \mathcal{R}_{\alpha}\left(P_{n}\right) \Leftrightarrow \frac{1}{N} \leq \frac{1}{1-\alpha} \frac{B_{i}}{n}, i=1, \ldots, N \Leftrightarrow \min _{i} B_{i} \geq(1-\alpha) \frac{n}{N}$
For fixed N : a.s. $\mathcal{W}_{2}\left(\mathcal{R}_{\alpha}(P), P_{N}\right)=0$ for large n
Random allocation + Discretization: For any $\nu>1 / k$

$$
\mathcal{W}_{2}\left(\mathcal{R}_{\alpha}\left(P_{n}\right), P\right)=o_{P}\left(\frac{(\log n)^{\nu}}{n^{1 / k}}\right) .
$$

Works for other metrics!

