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Abstract. We investigate totally linearly degenerate hyperbolic sys-
tems with relaxation. We aim to study their semilinear behavior, which
means that the local smooth solutions cannot develop shocks, and the
global existence is controlled by the supremum bound of the solution.
In this paper we study two specific examples: the Suliciu-type and the
Kerr-Debye-type models. For the Suliciu model, which arises from the
numerical approximation of isentropic flows, the semilinear behavior is
obtained using pointwise estimates of the gradient. For the Kerr-Debye
systems, which arise in nonlinear optics, we show the semilinear behavior
via energy methods. For the original Kerr-Debye model, thanks to the
special form of the interaction terms, we can show the global existence
of smooth solutions.

1. Introduction

We study the behavior of smooth solutions to the Cauchy problem for some
hyperbolic operators in one space dimension. We consider N × N systems
which are in the form

(1.1) ∂tu+A(u)∂xu = F (u), t > 0, x ∈ R,

with the initial condition

(1.2) u(x, 0) = u0(x), x ∈ R.

Here u = (u1, . . . , uN ) ∈ RN , A(u) is a N × N -matrix with smooth coeffi-
cients, F (u) is a smooth vector function of the unknown u; u0 is a sufficiently
smooth function. Furthermore, we assume that the operator ∂t +A(u)∂x is
strictly hyperbolic, i.e. the N eigenvalues of the matrix A(u) are real and
distinct,

(1.3) λ1(u) < λ2(u) < · · · < λN (u).
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In the following we are going to assume always that the C1-norm of u0 is
bounded:

(1.4) ‖u0‖C1(R) := ‖u0‖L∞(R) + ‖u′0‖L∞(R) < +∞.

Under these assumptions, it is well known that the Cauchy problem (1.1),
(1.2) has a unique local (in time) smooth solution, see for instance [25, 22].
This solution can be globally defined, as for instance in the linear case.
However, if the matrix A depends on u or F depends in a nonlinear way
from u, singularities can appear in the solution, even for smooth initial data,
in a finite time T ∗(u0), the so-called blow-up time. The following results are
now classical, see [1, 25]:

i) If T ∗(u0) < +∞, then:

(1.5)


for all t < T ∗(u0), ‖u(t, ·)‖C1(R) < +∞

and sup
0≤t<T ∗(u0)

‖u(t, ·)‖C1(R) = +∞.

ii) If the system (1.1) is semilinear, i.e.: A does not depend on u, and
T ∗(u0) < +∞, then:

(1.6)


for all t < T ∗(u0), ‖u(t, ·)‖C1(R) < +∞

and sup
0≤t<T ∗(u0)

‖u(t, ·)‖L∞(R) = +∞.

iii) If the system (1.1) is truly quasilinear, i.e.: A depends effectively on
u, and T ∗(u0) < +∞, then singularities have a different nature and
shock waves can appear. Namely, the following situation is allowed:

(1.7)



for all t < T ∗(u0), ‖u(t, ·)‖C1(R) < +∞,

sup
0≤t<T ∗(u0)

‖u(t, ·)‖L∞(R) < +∞

and sup
0≤t<T ∗(u0)

‖∂xu(t, ·)‖L∞(R) = +∞.

However, in the quasilinear case, (1.7) is not true for every system.

Definition 1.1. We say the system (1.1) has a semilinear behavior if, for
every smooth initial datum which satisfies (1.4) and such that T ∗(u0) < +∞,
we have that (1.5) implies (1.6).

Therefore, for a system with a semilinear behavior, shock waves cannot
appear. Actually, for such a system, if for a local smooth solution, defined
on an interval [0, T [, we have

sup
0≤t<T

‖u(t, ·)‖L∞(R) < +∞,

then
sup

0≤t<T
‖∂xu(t, ·)‖L∞(R) < +∞.
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Let us now introduce the right and left eigenvectors of A(u):

(1.8)
A(u)ri(u) = λi(u)ri(u),

tA(u)li(u) = λi(u)li(u), i = 1, . . . , N.

They depend smoothly on u and they are normalized such that
tli(u)rj(u) = δij , i, j = 1, , . . . , N,

where δij is the standard Kronecker’s symbol.

Following the classical definitions, first introduced by P.D. Lax [21], the
i-characteristic field is genuinely nonlinear at u ∈ RN if

(1.9) λ′i(u)ri(u) 6= 0.

A characteristic field which is not genuinely nonlinear for all u ∈ RN is
called linearly degenerate. If this is the case for the i-field, then

(1.10) λ′i(u)ri(u) ≡ 0.

Definition 1.2. The system (1.1) is called totally linearly degenerate (TLD)
if all of the characteristic fields of the matrix A(u) are linearly degenerate.

Consider the following problem, already proposed by Majda [25] and more
recently by Brenier [7]: have the TLD systems the semilinear behavior?

In the following, we are going to investigate this problem for some relaxation
approximation models to quasilinear hyperbolic systems (for an introduc-
tion to this topic see for instance [26, 5] and references therein). These
models have the form (1.1). Even if most of the examples of relaxation
approximations are written as semilinear systems, which trivially verify the
conjecture, this is not the most general case. Recently some quasilinear
relaxation approximations, which verify the TLD property, have been pro-
posed as quite effective approximations for various hyperbolic systems, see
[4, 5, 13]. These models yield numerical schemes such that the solution of
the corresponding Riemann problem is quite simple, since only contact dis-
continuities are allowed. In this class, the most interesting example is given
by the Suliciu-type relaxation model, which will be investigated in Section
3. Another interesting and more physically motivated model, is the Kerr-
Debye relaxation system, see [9, 10, 11] and references therein, which arises
in nonlinear optics and will be investigated in Section 4.

Let us now present a short review of the state of the art for the general case of
TLD systems of the form (1.1). For N = 2 the situation is mostly clear, since
in that case the systems are diagonalizable by Riemann invariants. In [28],
it is proved that a 2× 2 strictly hyperbolic TLD system has the semilinear
behavior. Otherwise, if system (1.1) is homogeneous, namely F ≡ 0, and
one of the two eigenvalues is genuinely nonlinear in one point, there exist
C∞ initial data with compact support, such that the corresponding solutions
have shocks in finite time, see [25, 1]. Let us also point out that, according
to a counterexample in [27], shocks can appear even for TLD 2× 2 systems,
if the strictly hyperbolicity assumption fails.
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The situation for N ≥ 3 is not yet completely understood. In the case of
homogeneous diagonal TLD systems, the results obtained in [28] imply the
global existence of smooth solutions for all initial data, so T ∗(u0) = +∞
and there is nothing to prove. For the general (non diagonal) homogeneous
TLD case, many results are known about the global existence of solution for
small initial data, see [8, 20, 14] and references therein. However, from an
example in [18], it is known that finite time blow-up of solutions can occur
for some (suitably large) initial data. So, at least for these initial data, it is
still possible to address the problem of the semilinear behavior.

For systems with a non vanishing source, both in the TLD and in the general
case, all kinds of behavior are possible, since the source term can be suffi-
ciently dissipative to avoid the formation of singularities and to yield global
existence of smooth solutions for small initial data, see for instance [15]. On
the other hand, for some choices of the source term, smooth solutions can
blow up for all initial data.

In this paper we aim to investigate the semilinear behavior for some specific
models with relaxation we mentioned before: the Suliciu-type and the Kerr-
Debye-type models. These models are both written as strictly hyperbolic
TLD models on a open domain in R3, with a partially dissipative source
term.

The plan of our paper is as follows.

In Section 2, first we investigate the properties due to the linear degener-
acy using the John’s decomposition [19], which yield a fast conclusion on
some quite academic examples. We also present the Suliciu and Kerr-Debye
models.

The following section is devoted to the study of the Suliciu model. The semi-
linear behavior is obtained since the system is rich according to the definition
in [29, 30]: there exists a regular change of variable which makes the system
diagonal and the differential part has a conservative form. Therefore we
can apply a general result: rich strictly hyperbolic TLD systems have the
semilinear behavior. Let us remark that recently this paticular result has
been independently obtained in [24].

The Kerr-Debye system is not rich, and so it does not fit in the previous
framework. In the last section, we extend the previous results of [10], to
deal with a more general class of TLD systems and for general source terms,
by showing the semilinear behavior via energy methods. For the original
Kerr-Debye model, thanks to the special form of the interaction terms, we
can show the global existence of smooth solutions.

2. The John’s decomposition and some examples

2.1. The John’s formula. The John’s formula, see [19] and also [17, 20],
is a key ingredient for the study of singularities of systems of type (1.1).
Using this formula it is possible to highlight the rôle of linear degeneration
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phenomena. To obtain the formula, we decompose the spatial gradient of u
on the right eigenvectors of A(u)

(2.1) ∂xu =
N∑
j=1

pjrj(u), with pj = tlj∂xu.

Therefore, (1.1) reads

(2.2) ∂tu+
N∑
j=1

pjλj(u)rj(u) = F (u).

Differentiating (2.1) with respect to t and using (2.2) to evaluate ∂tu, we
obtain

(2.3)

∂2
xtu =

N∑
j=1

∂tpjrj(u)−
N∑

j,k=1

pjpkλk(u)r′j(u)rk(u)

+
N∑
j=1

pjr
′
j(u)F (u).

On the other hand, we differentiate (2.2) with respect to x, to find

(2.4)

∂2
txu = −

N∑
j=1

λj(u)∂xpjrj(u)−
N∑
j=1

λ′j(u)(
N∑
k=1

pkrk(u))pjrj(u)

−
N∑
j=1

λj(u)pjr′j(u)(
N∑
k=1

pkrk(u)) + F ′(u)(
N∑
k=1

pkrk(u)).

Finally, taking the scalar product (2.2) and (2.3) by the left eigenvalue li(u),
we find the John’s formula:
(2.5)

∂tpi + λi(u)∂xpi = −
N∑
k=1

pipkλ
′
i(u)rk(u)

+
N∑

j,k=1

(λk(u)− λj(u))pjpktli(u)r′j(u)rk(u)

+
N∑
k=1

pk
tli(u)

(
F ′(u)rk(u)− r′k(u)F (u)

)
, i = 1, . . . , N.

For homogeneous systems the last term vanishes. The first two terms are
quadratic in p = t(p1, . . . , pN ), with variable coefficients depending on u.
The F (u)’s contribution is concentrated in the third term, which is linear
in p, with coefficients depending on u. If the system (1.1) is diagonal, the
decomposition reduces to

(2.6) ∂tpi + λi(u)∂xpi = −
N∑
k=1

pipk∂uk
λi(u) +

N∑
k=1

pk∂uk
Fi(u).
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When the system (1.1) is TLD, there is no squared term in (2.5) or (2.6),
i.e.: no term of the form p2

i . It is well-know that this property plays a funda-
mental rôle in the analysis of semilinear hyperbolic problems with quadratic
interactions, see for instance [33, 2]. We are going to see that in some simple
examples, this is enough to conclude for the semilinear behavior.

2.2. Some examples. First, let us consider two homogeneous 2 × 2 TLD
systems introduced by T.T. Li and F.G. Liu, which show a C1 blow-up of
solutions for some smooth initial data, see [23] and also [20]. Let us consider
a system of the form

(2.7) ∂tu+A(u)∂xu = 0

We take, for the first example,

(2.8) A(u) =


−1 0 0

−eu2 0 0

−2e−u2 0 1

 .

This system is strictly hyperbolic and TLD, since the eigenvalues are given
by

(2.9) λ1 = −1 < λ2 = 0 < λ3 = +1.

The right and left eigenvalues are given, respectively, by
(2.10)

r1(u) = t(1, eu2 , e−u2), r2(u) = t(0, 1, 0), r3(u) = t(0, 0, 1),

l1(u) = t(1, 0, 0), l2(u) = t(−eu2 , 1, 0), l3(u) = t(−e−u2 , 0, 1).

The corresponding John’s decomposition is

(2.11)


∂tp1 − ∂xp1 = 0,

∂tp2 = eu2p1p2,

∂tp3 + ∂xp3 = −e−u2p1p2.

The second example uses the matrix

(2.12) A(u) =


−1 0 0

−(1 + u2
2) 0 0

u2 0 1

 .

The eigenvalues are still given by

(2.13) λ1 = −1 < λ2 = 0 < λ3 = +1,

and the right and left eigenvalues are given, respectively, by
(2.14)
r1(u) = t(1, 1 + u2

2,−1
2u2), r2(u) = t(0, 1, 0), r3(u) = t(0, 0, 1),

l1(u) = t(1, 0, 0), l2(u) = t(−(1 + u2
2), 1, 0), l3(u) = t(1

2u2, 0, 1).
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The corresponding John’s decomposition is now given by

(2.15)


∂tp1 − ∂xp1 = 0,

∂tp2 = 2u2p1p2,

∂tp3 + ∂xp3 = −1
2u2p1p2.

For these two examples it is easy to establish the semilinear behavior. More
precisely, let T > 0 be such that u2 ∈ L∞([0, T [×R), so that also r1(u) ∈
L∞([0, T [×R). Therefore, by some straightforward computations in (2.11)
or in (2.15), it is easy to see that p1, p2, p3 ∈ L∞([0, T [×R) and then ∂xu ∈
L∞([0, T [×R). On the other hand, it is possible to show, see [23], that the
L∞-norm of the considered smooth solution blows up in T ∗.

Finally we consider a system introduced by A. Jeffrey [18]. The matrix A(u)
in system (2.7) is

(2.16) A(u) =


− cosh(2u2) 0 − sinh(2u2)

cosh(u2) 0 sinh(u2)

sinh(2u2) 0 cosh(2u2)

 .

The eigenvalues are still given by

(2.17) λ1 = −1 < λ2 = 0 < λ3 = +1,

and the right and left eigenvalues are given, respectively, by
(2.18)

r1(u) = t(− cosh(u2), 1, sinh(u2)), r2(u) = t(0, 1, 0),

r3(u) = t(− sinh(u2), 0, cosh(u2)),

l1(u) = t(− cosh(u2), 0, sinh(u2)), l2(u) = t(cosh(u2), 1, sinh(u2)),

l3(u) = t(sinh(u2), 0, cosh(u2)).

The corresponding John’s decomposition is

(2.19)


∂tp1 − ∂xp1 = −2p1p3 − p2p3,

∂tp2 = 2p1p3 + p2p3,

∂tp3 + ∂xp3 = p1p2.

This system is semilinear and the right-hand side is a quadratic constant
coefficients form. Therefore, we can use the Tartar’s result in [33], which
show the existence of global solutions for (2.19) for small initial data in
L1(R) (for p). For this system, however, Jeffrey has shown in [18] the blow-
up of smooth solution in finite time, at least for some special (large) initial
data.

Here we want to show, using the methods introduced in [2], the existence of
blow-up solutions to system (2.19) and then to obtain by a different method,
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the break-down of solutions to the Jeffrey’s model. We look for a solution
ϕ(t, x) to (2.19) in the form of a polarized traveling profile

ϕ(t, x) = ψ(x− ct)t(λ1, λ2, λ3).

Take a 6= 0, c 6= 0,+1,−1, and ψ(ξ) =
a

ξ∗ − ξ
for some fixed value ξ∗. The

function

(2.20) ϕ(t, x) = ψ(x− ct)t(± c
a
,∓c+ 1

a
,
c(c+ 1)
a(c− 1)

)

is a solution to (2.19) out of the set {(x, t), x− ct = ξ∗}. To yield an actual
solution to (2.19) corresponding to a given Cauchy datum p(0, x) = p0(x),
we use the finite speed of propagation. Choose for instance

(2.21)

 c > 2, ξ∗ = −2,

p0 ∈ C∞0 (]− 2,+2[), p0(x) = ψ(x)λ for |x| ≤ 1.
.

Then, the unique solution p(t, x) to (2.19) with initial condition p0 is such
that

p(t, x) = ϕ(t, x)

for t ≥ 0, t ≤ 1 + x, t ≤ 1 − x, and t ≤ x+2
c . Therefore, p blows up at

T ∗ ≤ T̃ := 1
c−1 .

Next, we construct u0 ∈ (C∞0 (]− 2,+2[))3 such that

(2.22) ∂xu0 = p01r1(u0) + p02r2(u0) + p03r3(u0).

With this object we can modify p0 on ]− 2, 2[\[−1, 1] preserving (2.21) such

that
∫

R
(p01(ξ) + p02(ξ))dξ = 0 so that

u02(x) =
∫ x

−∞
(p01(ξ) + p02(ξ))dξ ∈ C∞0 (R).

We fix now p01 and p03 such that∫
R

(coshu02(ξ)p01(ξ) + sinhu02(ξ)p03(ξ))dξ = 0,

and ∫
R

(sinhu02(ξ)p01(ξ) + coshu02(ξ)p03(ξ))dξ = 0,

so that u0 defined integrating (2.22) is compactely supported in [0, 2].

Hence, the smooth solution of the Cauchy problem for (2.7) with A(u) given
by (2.16), blows up in T ∗ ≤ T̃ . Let us notice however that, by this argument,
we do not know if also u blows up in T ∗. Then, the problem of the semilinear
behavior for the Jeffrey’s model stays unsolved.
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2.3. The Suliciu model. The original model proposed by Suliciu in [32],
was a semilinear approximation to the following one dimensional p-system
arising in elasticity ∂tu1 − ∂xu2 = 0,

∂tu2 − ∂x(p(u1)) = 0, p′(u1) > 0.

The viscoelastic Suliciu approximation is
∂tu1 − ∂xu2 = 0,

∂tu2 − ∂xv = 0,

∂tv − µ∂xu2 = 1
ε (p(u1)− v),

where µ is a positive constant and ε << 1 is the relaxation parameter.
Many authors have investigated the convergence properties of this model
when ε→ 0, see [12] and references therein. More recently a similar model
has been proposed for the approximation of the system of isentropic gas
dynamics in Eulerian coordinates

(2.23)

 ∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + p(ρ)) = 0.

Here, ρ ≥ 0 is the density of the gas, u its fluid velocity and the pressure
function p = p(ρ) satisfies p′(ρ) > 0. In [5] and [13], the following Suliciu
relaxation approximation was introduced:

(2.24)


∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + π) = 0,

∂t(ρπ) + ∂x(ρuπ + c2u) = 1
ερ(p(ρ)− π),

for a constant c > 0 to be fixed later.

Set U = (ρ, u, π) and Ω = {U ∈ R3; ρ > 0}. It is easy to see that the system
(2.24) can be written in the standard form

(2.25) ∂tU +A(U)∂xU = F (U),

with A defined in Ω and given by

(2.26) A(U) =


u ρ 0

0 u 1/ρ

0 c2/ρ u


and

(2.27) F (U) = t(0, 0,
1
ε

(p(ρ)− π)).

Notice that, when the source term for (2.24) is completely general, namely
it is given by

f(U) = t(f1(U), f2(U), f3(U)),
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the interaction in (2.25) reads

F (U) = t(f1(U),
1
ρ

(f2(U)− uf1(U)),
1
ρ

(f3(U))− πf1(U)).

This system (2.25) is strictly hyperbolic and TLD in Ω. Indeed, its eigen-
values are given by

(2.28) λ1(U) = u− c

ρ
< λ2(U) = u < λ3(U) = u+

c

ρ
,

and the right and left eigenvectors are given, respectively, by

(2.29) r1(U) = t(1,− c

ρ2
,
c2

ρ2
), r2(U) = t(1, 0, 0), r3(U) = t(1,

c

ρ2
,
c2

ρ2
)

and

(2.30) l1(U) = t(0,−ρ
2

2c
,
ρ2

2c2
), l2(U) = t(1, 0,−ρ

2

c2
), l3(U) = t(0,

ρ2

2c
,
ρ2

2c2
).

Let

G(U, p) =
3∑

k=1

pk
(
F ′(U)rk(U)− r′k(U)F (U)

)
.

The John’s decomposition of system (2.26) is

(2.31)



∂tp1 + λ1(U)∂xp1 = − 3c
ρ2
p1p2 − 6c

ρ2
p1p3 + tl1(U)G,

∂tp2 + λ2(U)∂xp2 = c
ρ2

(p1p2 + p2p3) + tl2(U)G,

∂tp3 + λ3(U)∂xp3 = 6c
ρ2
p1p3 + 3c

ρ2
p2p3 + tl3(U)G.

It is not easy to deduce the semilinear behavior directly from (2.31). To
show this property we are going to use in Section 3 the definition of richness
of a systems. According to [30], see also [29], a strictly hyperbolic system is
rich if it has a conservative form and it is diagonalizable along its Riemann
invariants.

Proposition 2.1. The Suliciu model (2.25), (2.26) is a rich system in Ω.

Proof. The Riemann invariants for the Suliciu model are

(2.32) w1 = π − cu, w2 =
1
ρ

+
π

c2
, w3 = π + cu.

We have also

w′1r1 = 2c2

ρ2
, w′1r2 = 0, w′1r3 = 0;

w′2r1 = 0, w′2r2 = − 1
ρ2
, w′2r3 = 0;

w′3r1 = 0, w′3r2 = 0, w′3r3 = 2c2

ρ2
.
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Therefore w1 is a 2,3-Riemann invariant, w2 is a 1,3-Riemann invariant, w3

is a 1,2-Riemann invariant. The map (2.32) defines a diffeomorphism from
Ω to Ω1 := {W ∈ R3; 2c2w2 − w1 − w3 > 0}, and it holds

(2.33) ρ = 2c2(2c2w2 − w1 − w3)−1, u =
1
2c

(w3 − w1), π =
1
2

(w1 + w3).

In the new unknown W = (w1, w2, w3), the system has the diagonal form

(2.34) ∂tW + Λ(W )∂xW = F1(W ),

where

(2.35)

Λ(W ) =


λ1(W ) 0 0

0 λ2(W ) 0

0 0 λ3(W )



=


1
c (w3 − c2w2) 0 0

0 1
2c(w3 − w1) 0

0 0 −1
c (w1 − c2w3)

 .

The system is strictly hyperbolic in Ω1 and, thanks to (2.34), also rich. �

2.4. The Kerr-Debye model. The Kerr-Debye model is a relaxation ap-
proximation of the Kerr model in nonlinear optics [34]. Recall that the
propagation of the electromagnetic waves is described by the Maxwell equa-
tions 

∂tD − curl H = 0,

∂tB + curl E = 0,

div D = div B = 0.

The Kerr model describes an instantaneous response of the medium, where
the constitutive relations read

B = µ0H, D = ε0(1 + εr|E|2)E.

The Kerr-Debye model describes a delayed response of the medium, by the
constitutive relations

B = µ0H, D = ε0(1 + χ)E,

where χ solves the equation

∂tχ =
1
τ

(εr|E|2 − χ),

the constant τ > 0 being a delay time. The analytical convergence of the
Kerr-Debye to the Kerr model has been investigated in [16] for the Cauchy
problem and in [9, 10, 11] for the initial-boundary value problem. Following
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[9], we deal with the following one dimensional version of the Kerr-Debye
model

(2.36)



∂td+ ∂xh = 0,

∂th+ ∂xe = 0,

∂tχ =
1
ε

(e2 − χ),

with d = (1 + χ)e. If the initial condition

(2.37) (d, h, χ)(0, x) = (d0, h0, χ0)(x)

is such that χ0 ≥ 0, then for every positive time, where the solution is
defined, we still have χ(t, x) ≥ 0, and we can replace e by (1 + χ)−1d in
system (2.36). So, setting u = (d, h, χ) and Ω = {u ∈ R3;χ ≥ −1}, we can
rewrite the system (2.36) as

(2.38) ∂tu+A(u)∂xu = F (u),

where A(u) is given in Ω by

(2.39) A(u) =


0 1 0

(1 + χ)−1 0 −(1 + χ)−2d

0 0 0


and

(2.40) F (u) = t(0, 0,
1
ε

((1 + χ)−2d− χ)).

This system is strictly hyperbolic and TLD since its eigenvalues are given
by

(2.41) λ1(u) = −(1 + χ)−
1
2 < λ2(u) = 0 < λ3(u) = (1 + χ)−

1
2 ,

and the right and left eigenvectors are given, respectively, by

(2.42)
r1(u) = t(1,−(1 + χ)−

1
2 , 0), r2(u) = t((1 + χ)−1d, 0, 1),

r3(u) = t(1, (1 + χ)−
1
2 , 0),

and

(2.43)
l1(u) = 1

2
t(1,−(1 + χ)1/2,−(1 + χ)−1d), l2(u) = t(0, 0, 1),

l3(u) = 1
2
t(1, (1 + χ)1/2,−(1 + χ)−1d).

Let G be given by

G(U, p) =
3∑

k=1

pk
(
F ′(U)rk(U)− r′k(U)F (U)

)
.
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The John’s formula for the Kerr-Debye model is given by
(2.44)

∂tp1 + λ1(U)∂xp1 = −5
4(1 + χ)−

3
2 p1p2 + 1

4(1 + χ)−
3
2 p2p3 + tl1(U)G,

∂tp2 = tl2(U)G,

∂tp3 + λ3(U)∂xp3 = −1
4(1 + χ)−

3
2 p1p2 + 5

4(1 + χ)−
3
2 p2p3 + tl3(U)G.

Remark 2.1. Unlike the Suliciu model, the Kerr-Debye model is not a rich
system. There are no functions which are at the same time the Riemann
invariants for the first two characteristic fields. In Section 4, we establish
the semilinear behavior for a generalized version of the Kerr-Debye system,
using energy estimates. Moreover, for the original Kerr-Debye system, we
are also able to prove global existence for smooth initial data.

3. The Suliciu model

3.1. Semilinear behavior of rich systems. Consider the N ×N system
(1.1) and assume it is strictly hyperbolic and rich. So, such a system can be
written in a diagonal form as

(3.1) ∂tW + Λ(W )∂xW = G(W ),

where Λ(W ) = diag(λ1(W ), . . . , λN (W )), and

λ1(W ) < λ2(W ) < · · · < λN (W ).

Moreover, according to [30, 29], the following relations are always verified
(set ∂i := ∂wi):

(3.2) ∂k
∂iλj
λi − λj

= ∂i
∂kλj
λk − λj

, i 6= j 6= k.

From these relations there exist N smooth functions αj(W ) such that:

(3.3) ∂iαj =
∂iλj
λi − λj

, i 6= j.

If moreover we assume that the system is TLD, then, in the diagonal form
(3.1) we have

(3.4) ∂iλi = 0, i = 1, . . . , N.

For this kind of systems the John’s decomposition is specially simple and
effective. Thanks to (3.3), we can prove the following result.

Theorem 3.1. A strictly hyperbolic system with source term, which is both
rich and TLD, has the semilinear behavior.

Proof. We consider the Cauchy problem for the system (3.1), with a smooth
initial condition W0, which is bounded in C1. We assume that the local
smooth solution is defined and bounded on [0, T [×R:

(3.5) there exists C > 0 such that: |W (t, x)| ≤ C, 0 ≤ t < T, x ∈ R.



14 G. CARBOU, B. HANOUZET AND R. NATALINI

To show the semilinear behavior it suffices to show that p = ∂xW is also
bounded on the same strip [0, T [×R. Since the system is TLD, using (3.4),
we can show that p = t(p1, . . . , pN ) = t(∂xw1, . . . , ∂xwN ) is a solution to the
Cauchy problem
(3.6)

∂tpi + λi(W )∂xpi +

∑
j 6=i

∂jλi(W )pj

 pi =
∑
k

∂kGi(W )pk, i = 1, . . . , N,

(3.7) p(0, x) = ∂xW0(x).

Now, for j 6= i, we have

pj =
(
λi − λj)−1(∂twj + λi(W )∂xwj −Gj(W )

)
.

So, using (3.3) we obtain∑
j 6=i

∂jλi(W )pj

 = −
∑
j 6=i

∂jαi(W )(∂twj + λi(W )∂xwj −Gj(W )))

= −(∂t + λi(W )∂x)αi(W ) +
∑
j

∂jαi(W )Gj(W ).

Inserting this equality in (3.6), we obtain
(3.8)

(∂t + λi(W )∂x)pi −[(∂t + λi(W )∂x)αi(W )]pi

= −

∑
j

∂jαi(W )Gj(W )

 pi +
∑
k

∂kGi(W )pk.

So, setting qi := e−αi(W )pi, the function q is the solution to the Cauchy
problem
(3.9)

∂tqi + λi(W )∂xqi = −

∑
j

∂jαi(W )Gj(W )

 qi

+e−αi(W )

(∑
k

∂kGi(W )eαk(W )qk

)
, i = 1, . . . , N,

(3.10) qi(0, x) = e−αi(W0)∂xw0i(x), i = 1, . . . , N.

The system (3.9) is a diagonal linear system with smooth and bounded
coefficients on the strip [0, T [×R. Therefore the function q, and then also
p = ∂xW , is bounded on the same strip as required.

�

Remark 3.1. For N = 2, we recover the results in [28], since in this case
the conditions (3.2) are empty and so trivially verified. On the other hand,
for N ≥ 3, these conditions appear to be quite restrictive.
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Remark 3.2. In Theorem 3.1, the assumptions are taken globally on RN .
However, in many cases, it should be possible to restrict the analysis to an
open bounded domain of RN .

3.2. Semilinear behavior of the Suliciu model. Let us focus now on the
system (2.24), but for a generic source term. In the unknown U = (ρ, u, π),
we have (2.25), where A is given by (2.26) and F is a smooth interaction
term. We write the system for the Riemann invariants W = t(w1, w2, w3)
given by (2.32), which is

(3.11) ∂tW + Λ(W )∂xW = G(W ),

where Λ(W ) is given by (2.35). This system is strictly hyperbolic in Ω1 =
{W ∈ R3; 2c2w2 − w1 − w3 > 0}, since we have

λ2 − λ1 = λ3 − λ2 =
c

ρ
=

1
2c

(2c2w2 − w1 − w3).

It is easy to see that the system is rich and TLD in the same domain and
the functions αj , for j = 1, 2, 3 are explicitly given by

(3.12) α1 = α2 = α3 = − log(2c2w2 − w1 − w3).

Therefore, we can write the system (3.9) and come back to the original
variables if

(3.13) 2c2w2 − w1 − w3 =
2c2

ρ
> 0.

Let us also observe that, for the original variables, the matrix A(U) is just
defined and strictly hyperbolic in the domain Ω = {U ∈ R3; ρ > 0}. Now,
following [25], the loss of regularity for the local smooth solutions can be
stated in the following more precise form: If T ∗(U0) < +∞, then

i) sup0≤t<T∗
(
‖∂tU‖L∞(R) + ‖∂xU‖L∞(R)

)
= +∞

or
ii) for every compact set K ⊂⊂ Ω, U(t) escapes from K as t↗ T ∗.

To establish the semilinear behavior, we have to avoid the singularity coming
out from the vanishing of the density ρ. Hence, we are going to assume that
our local smooth solutions of Cauchy problem for equation (2.25), is defined
and bounded on the strip [0, T [×R and moreover

(3.14) ∃ρ̄ > 0 such that ρ(t, x) ≥ ρ̄, 0 ≤ t < T, x ∈ R.

Therefore, the function W given by (2.32), satisfies (3.5); actually W (t, x)
is in a compact set of Ω1 for 0 ≤ t < T, x ∈ R. Then, thanks to (3.9), ∂xW
is bounded in [0, T [×R, and the same is true for ∂xU . So, we have proved
the following result.

Theorem 3.2. For the Suliciu model (2.25), with A(U) given by (2.27) and
F being a smooth source term, let U0 be an initial data such that T ∗(U0) <
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+∞. Assume that there exists ρ̄ > 0 such that ρ(t, x) ≥ ρ̄ in [0, T ∗[×R.
Then

sup
0≤t<T∗

‖U(t, ·)‖L∞(R) = +∞.

According to Theorem 3.2, the smooth solutions to Suliciu model cannot
develop shocks, as far as the density ρ is strictly positive. However, it is still
possible to wonder about the existence of global solutions, and in particular
when the source term is given by the relaxation term (2.27) and, for some
fixed interval I in R, the subcharacteristic condition

(3.15) ∀ξ ∈ I, ξ2p′(ξ) < c2,

holds. This condition has been introduced in [4] to guarantee the dissipativ-
ity of the system (see also the next Subsection 3.3). Nevertheless, even under
these conditions, it is possible to show the blow-up of smooth solutions in
finite time.

More precisely, if we take the pressure law

(3.16) p(ρ) = −c
2
0

ρ
,

with the interaction term given by (2.27), the subcharacteristic condition
(3.15) holds on I =]0,+∞[ for c20 < c2. Following an example given by F.
Bouchut [6], we are going to show the existence of a smooth solution for this
system, such that ρ(t, x) ≥ ρ̄ > 0, and which nevertheless blows up in finite
time.

let us rewrite system (2.24) in the Lagrangian coordinates, still denoted by
(t, x). We have

(3.17)



∂t(1
ρ)− ∂xu = 0,

∂tu+ ∂xπ = 0,

∂tπ + c2∂xu =
1
ε

(p(ρ)− π),

When p(ρ) is given by (3.16), this system is linear in the unknowns (1
ρ , u, π).

We are going to find a solution to (3.17) such that 1
ρ is bounded, but vanishes

in finite time, which then implies that ρ→ +∞.

Let us look for a solution of the form

(3.18) t(
1
ρ
, u, π) = eikxϕ(t) + t(

1
ρ0
, 0,− c

2
0

ρ0
).

This yields

(3.19) ϕ′ +


0 −ik 0

0 0 ik

c20
ε ic2k 1

ε

ϕ = 0.
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Choosing c0 = c
3 , k2c2 = 1

3ε2
, λ = 1

3ε is a triple eigenvalue of the matrix of
the system (3.19). Therefore, for every fixed constant β > 0, the vector

(3.20)



1
ρ(t, x)

=
1
ρ0

+ iβkeikxe−
t
3ε t(1 +

t

3ε
),

u(t, x) = βeikxe−
t
3ε (1 +

t

3ε
− t2

9ε2
),

π(t, x) = − c
2
0

ρ0
+ iβc2keikxe−

t
3ε t(−1 +

t

9ε
),

is a solution to (3.17) for the initial condition t(
1
ρ0
, βeikx,− c

2
0

ρ0
). Fixing

ρ0 > 0, it is possible to take β large enough to obtain that the real part of
1
ρ vanishes in finite time.

3.3. Other properties of the Suliciu model. Next we aim to show that
the Suliciu model (2.24) fits in the general framework of the partially dis-
sipative hyperbolic systems with a strictly convex entropy function, which
have been recently investigated in [15] and [3]. Therefore, following [13],
we modify the source term (assuming that the subcharacteristic condition
(3.15) is always verified) in order to construct a regular entropy function.
We have that the function h(ξ) = p(ξ) + c2

ξ is invertible for ξ ∈ I and so we

can set, for π + c2

ρ ∈ h(I),

(3.21) ρ̂ = h−1(π +
c2

ρ
).

Notice that, ρ and ρ̂ are connected by the relation

(3.22) π +
c2

ρ
= p(ρ̂) +

c2

ρ̂
.

In (2.24), we replace the source term 1
ερ(p(ρ)− π) by 1

ερ(p(ρ̂)− π), so that
the system (2.25) reads now

(3.23) ∂tU +A(U)∂xU = F (U),

with A(U) given by (2.26) and

(3.24) F (U) = t(0, 0,
1
ε

(p(ρ̂)− π)).

This new system has the same properties we have studied in Subsection 3.2,
and shares with the original Suliciu model also the equilibrium manifold.
This follows by considering that the equilibrium manifold is given by F (U) =
0, which is equivalent to p(ρ̂) = π. Therefore, using (3.22), we have c2

ρ = c2

ρ̂ ,
which implies ρ̂ = ρ.

Fixing the relaxation parameter ε, we can show the global existence of
smooth solutions at least for initial data which are small perturbations of
constant equilibrium states.
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Theorem 3.3. Let Ū = (ρ̄ > 0, ū, π̄ = p(ρ̄)) a constant state belonging to
the equilibrium manifold of the system (3.23), with A(U) given by (2.26) and
F (U) by (3.24). Let U0 be a smooth perturbation of Ū . There exists δ > 0
such that, if ‖U0 − Ū‖H2(R) ≤ δ, then there exists a global smooth solution
U to system (3.23) corresponding to the initial condition U0 and

U − Ū ∈ C0([0,+∞[;H2(R)) ∩ C1([0,+∞[;H1(R)).

Proof. The Theorem follows from Theorem 1 in [15], by proving that the
system (3.23) has i) a strictly dissipative entropy according to Definition 2
in [15] and ii) the Shizuta-Kawashima condition [31] holds.

i) Let us rewrite (3.23) for the conservative variables U : (ρ, v, w) := (ρ, ρu, ρπ).
Let ϕ be the function defined by

(3.25) ϕ′(Y ) = −p(ρ̂(Y ))
c2

.

First we show that the function E , given by

(3.26) E(U) =
v2

2ρ
+

w2

2c2ρ
+ ρϕ

(
c2 + w

ρ

)
,

is a strictly convex entropy for (3.23) and

(3.27) ∂tE(U) + ∂x (ρuE(U) + πu) = − ρ

εc2
(π − p(ρ̂))2 .

Set X = u2

2 + π
2c2

and Y = c2

2 + π. Then E(U) = ρ(X + ϕ(Y )) and we have

∂tE(U) + ∂x (ρuE(U) + πu) = − ρ

εc2
(π − p(ρ̂))(π + c2ϕ′(Y )),

Then (3.25) implies (3.27). Concerning the strict convexity, let us notice
that, if the function ϕ is convex in Y , then E is also strictly convex. Now,
thanks to the subcharacteristic condition (3.15), we find that

ϕ′′(Y ) = − p′(ρ̂(Y ))

c2
(
p′(ρ̂(Y ))− c2

(ρ̂(Y ))2

) > 0.

We also have that the entropy function E is dissipative, since

(3.28)
(E ′(ρ, v, w)− E ′(ρ̄, v̄, w̄))F (ρ, v, w)

= E ′(ρ, v, w)F (ρ, v, w) = − ρ
εc2

(π − p(ρ̂))2 ≤ 0.

Finally, we show that E is a strictly dissipative entropy. Following [15], let
us introduce the entropy variable

(3.29) W := E ′(ρ, v, w) = (U1, U2, V ).

So the condition holds, since

(3.30) F (W ) = t(0, 0,−c
2

ε
V ).

ii) To check the Shizuta-Kawashima condition, we have to verify that the
eigenvalues of A(Ū) are not belonging to the kernel of F ′(Ū), where F is
given by (3.24).
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The right eigenvectors ri are given by (2.29), so, from

F ′(Ū)r1 = F ′(Ū)r3 = t(0, 0,− c2

ερ̄2
) 6= 0,

and

F ′(Ū)r2 = t(0, 0,− c2

ερ̄2
p′(ρ̄)ρ̂′(ȳ)) 6= 0,

we deduce that the Shizuta-Kawashima condition holds. �

Remark 3.3. Thanks to Theorem 1 in [15], we can estimate the entropy
variable (3.29) as follows (for ε = 1):
(3.31)

sup
0≤t<+∞

‖U − Ū‖2H2(R) +
∫ ∞

0

‖U1(τ)‖2H1(R) +‖U2(τ)‖2H1(R) + ‖V (τ)‖2H2(R)dτ

≤ C‖U0 − Ū0‖2H2(R),

for some positive constant C. Also, it is possible to describe the asymp-
totic behavior for large times of the smooth global solutions, see [3] for more
details.

4. The Kerr-Debye Model

4.1. Semilinear behavior for a generalized Kerr-Debye model. In
[10] we proved the semilinear behavior for the Kerr-Debye system in the
one-dimensional case. The proof is based on a careful choice of variables:
we rewrite Kerr-Debye system in the variables U = (e, h, χ), and we obtain

(4.1)



(1 + χ)∂te+ ∂xh = −e∂tχ = −1
εe(e

2 − χ),

∂th+ ∂xe = 0,

∂tχ =
1
ε

(e2 − χ).

Here, we study the following generalization of the Kerr-Debye system

(4.2)

 A0(χ)∂tu+A1∂xu = ϕ(v),

∂tχ = ψ(v),

with the initial condition

(4.3) (u(0, x), χ(0, x)) = (u0(x), χ0(x)) := v0(x).

We make the following assumptions. The unknown v = (u, χ) takes its
values in Rn−r × Rr. A0 ∈ C∞(Rr;Mn−r(R)), and for all χ ∈ Rr, A0(χ) is
a symmetric positive definite (n− r)× (n− r)-matrix such that

(4.4) ∃α > 0, ∀χ ∈ Rr,∀ξ ∈ Rn−r, A0(χ)ξ · ξ ≥ α‖ξ‖2.

A1 is a symmetric invertible (n − r) × (n − r)-matrix. The function ϕ ∈
C∞(Rn; Rn−r) with ϕ(0) = 0 and ψ ∈ C∞(Rn; Rr) with ψ(0) = 0. We denote
Φ = (ϕ,ψ). The initial condition v0 ∈ H2(R).
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Remark 4.1. As the original Kerr-Debye system, the system (4.2) is totally
linearly degenerate.

We have the following result.

Theorem 4.1. The system (4.2) has the semilinear behavior.

Proof. Let v be the regular maximal solution of the Cauchy problem (4.2).
Let us assume that its lifespan T ∗ is finite. From the continuation principle
in [25], we know that

(4.5) ‖v‖L∞([0,T ∗[×R) + ‖∂tv‖L∞([0,T ∗[×R) + ‖∂xv‖L∞([0,T ∗[×R) = +∞.

We will prove that if

(4.6) ‖v‖L∞([0,T ∗[×R) ≤ K,
then

‖∂tu‖L∞([0,T ∗[×R) + ‖∂xu‖L∞([0,T ∗[×R) < +∞,
which contradicts Majda’s result and shows the semilinear behavior.

The L2 estimate. Taking the inner product of (4.2) with v we obtain
1
2
d

dt

∫
R

(A0(χ)u · u+ |χ|2)dx =
∫

R
Φ(v) · vdx+

1
2

∫
R
∂t(A0(χ))u · udx.

Since Φ(0) = 0, with (4.6), there exists a constant K such that∣∣∣∣∫
R

Φ(v) · vdx
∣∣∣∣ ≤ K‖v‖2L2(R).

In addition, since ∂tχ = ψ(v), there exists a constant K such that

(4.7) ‖∂tχ‖L∞(R) ≤ K.
As ∂t(A0(χ)) = A′0(χ)(∂tχ), using (4.6) we obtain

(4.8) ‖∂t(A0(χ))‖L∞([0,T ∗[×R) ≤ K.
Therefore, there exists K such that∣∣∣∣∫

R
∂t(A0(χ))u · udx

∣∣∣∣ ≤ K‖v‖2L2(R),

and we obtain
1
2
d

dt

∫
R

(A0(χ)u · u+ |χ|2)dx ≤ K‖v‖2L2(R).

Integrating in time and using (4.4) we conclude by Gronwall’s Lemma that
there exists a constant C such that

(4.9) ‖v‖L∞([0,T ∗[;L2(R)) ≤ C.

The H1-estimate. We differentiate the system (4.2) with respect to t and
we obtain
(4.10) A0(χ)∂ttu

∂ttχ

+

 A1∂x∂tu

0

 = −

 (∂t(A0(χ))∂tu

0

+ Φ′(v)∂tv,
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with the initial data obtained by the equation (4.2)

∂tu(0, x) = (A0(χ0))−1(ϕ(v0)−A1∂xu0), ∂tχ(0, x) = ψ(v0).

Taking the inner product of (4.10) with ∂tv we find

1
2
d

dt

∫
R

(A0(χ)∂tu · ∂tu+ |∂tχ|2)dx = −1
2

∫
R
∂t(A0(χ))∂tu · ∂tudx

+
∫

R
Φ′(v)(∂tv) · ∂tv.

Using (4.8), (4.6) and Gronwall’s Lemma, we can see there exists a constant
C such that

(4.11) ‖∂tv‖L∞([0,T ∗[;L2(R)) ≤ C.

Next, from (4.2), we have

∂xu = (A1)−1(ϕ(v)−A0(χ)∂tu).

Hence, from (4.11), there exists C such that

(4.12) ‖∂xu‖L∞([0,T ∗[;L2(R)) ≤ C.

In addition, derivating (4.2)2 with respect to x we have

∂t∂xχ = ∂2ψ(v)(∂xχ) + ∂1ψ(v)(∂xu).

Integrating in time from 0 to t, we obtain

∂xχ(t, x) = ∂xχ0(x) +
∫ t

0
∂2ψ(v)(∂xχ) + ∂1ψ(v)(∂xu).

Then we deduce

‖∂xχ(t, .)‖L2(R) ≤ ‖∂xχ0‖L2(R) +
∫ t
0 ‖∂2ψ(v)‖L∞(R)‖∂xχ‖L2(R)

+‖∂1ψ(v)‖L∞(R)‖∂xu‖L2(R),

and so, using (4.6), (4.11), (4.12) and Gronwall’s Lemma, we find

‖∂xχ‖L∞([0,T ∗[;L2(R)) ≤ C.

Therefore, we have obtained that there exists a constant C such that

(4.13) ‖v‖L∞([0,T ∗[;H1(R)) + ‖∂tv‖L∞([0,T ∗[;L2(R)) ≤ C.

The H2-estimate. We first remark that

∂ttχ = ψ′(v)(∂tv)

so, using (4.6) and (4.13), we can see that there exists C such that

(4.14) ‖∂ttχ‖L∞([0,T ∗[;L2(R)) ≤ C.
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We differentiate (4.10) with respect to t and we obtain
(4.15) A0(χ)∂tttu

∂tttχ

 +

 A1∂x∂ttu

0

 = −2

 (∂t(A0(χ))∂ttu

0



+

 (∂tt(A0(χ))∂tu

0

+ Φ′′(v)(∂tv, ∂tv) + Φ′(v)(∂ttv)

Taking the inner product of this equation with ∂ttv we have
1
2
d

dt

∫
R

(A0(χ)∂ttu · ∂ttu+ |∂ttχ|2)dx = I1 + . . .+ I5,

where

I1 = −3
2

∫
R
∂t(A0(χ))∂ttu · ∂ttu dx,

I2 = −
∫

R
A′′0(χ)(∂tχ, ∂tχ)(∂tu) · ∂ttu dx,

I3 = −
∫

R
A′0(χ)(∂ttχ)(∂tu) · ∂ttu dx,

I4 =
∫

R
Φ′′(v)(∂tv, ∂tv) · ∂ttv dx,

I5 =
∫

R
Φ′(v)(∂ttv) · ∂ttv dx.

Now, using (4.8) we find

|I1| ≤ K‖∂tu‖2L2(R).

Next, from (4.6) and (4.7), we have

|I2| ≤ K‖∂tu‖L2(R)‖∂ttu‖L2(R),

and from (4.6) and (4.14), we have

|I3| ≤ K‖∂ttu‖L2(R).

By (4.13), we know that v is bounded in L∞((0, T ∗)× R). So

|I4| ≤ K‖∂tv‖L∞(R)‖∂tv‖L2(R)‖∂ttv‖L2(R).

Since v is bounded in L∞((0, T ∗)× R), we obtain

|I5| ≤ K‖∂ttv‖2L2(R).

From (4.10) we have

(4.16) ∂x∂tu = (A1)−1(−A0(χ)∂ttu− ∂t(A0(χ))∂tu+ ϕ′(v)(∂tv)).

By (4.8) and (4.11) we find, adding up the previous estimates,

d

dt

∫
R

(A0(χ)∂ttu · ∂ttu+ |∂ttχ|2)dx ≤ C(1 + ‖∂ttv‖2L2(R)),



SEMILINEAR BEHAVIOR FOR TLD HYPERBOLIC SYSTEMS WITH RELAXATION 23

and by Gronwall’s Lemma we deduce

(4.17) ‖∂ttv‖L∞(0,T ∗;L2(R)) ≤ C.

Next, using (4.16), we find

‖∂tu‖L∞(0,T ∗;H1(R)) ≤ C

and, since ∂x∂tχ = ψ′(v)(∂xv), we have

‖∂tχ‖L∞(0,T ∗;H1(R)) ≤ C.

Now, differentiating (4.2) with respect to x, we obtain

∂xxu = (A1)−1(ϕ′(v)(∂xv)−A′0(χ)(∂xχ)∂tu)

and the following estimate follows

‖u‖L∞(0,T ∗;H2(R)) ≤ C.

In addition

∂t∂xxχ = ∂1ψ(v)∂xxχ+ 2∂2
12ψ(v)(∂xu, ∂xχ)

+∂2
1ψ(v)(∂xu, ∂xu) + ∂2

2ψ(v)(∂xχ, ∂xχ).

Integrating this equation, we obtain by Gronwall’s Lemma,

‖∂xxχ‖L∞(0,T ∗;L2(R)) ≤ C.

Therefore we have proved that, provided (4.6), there exists a constant C
such that

‖v‖L∞(0,T ∗;H2(R)) + ‖∂tv‖L∞(0,T ∗;H1(R)) + ‖∂ttv‖L∞(0,T ∗;L2(R)) ≤ C

and, by Sobolev inequalities, we have

‖∂xv‖L∞([0,T ∗[×R) + ‖∂tv‖L∞([0,T ∗[×R) ≤ C,

which contradicts (4.5). �

For the Kerr-Debye system (4.1), we have u = (e, h), v = U = (e, h, χ) and

A0(χ) =

 1 + χ 0

0 1

 .

We assume that the initial data χ0 ≥ 0. Then from the last equation in
(4.1), χ remains positive, and the condition (4.4) is satisfied on the domain
under consideration. So we can adapt the proof of Theorem 4.1 and we
obtain the following result.

Corollary 4.1. The Kerr-Debye system (4.1) has the semilinear behavior.
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4.2. Global solutions for the Kerr-Debye system. In the previous sec-
tion, in order to obtain the semilinear behavior for the Kerr-Debye system
(4.1), we only use the structure of the system (4.2); we did not make use of
the fact that the system (4.1) admits a strictly convex partially dissipative
entropy given by

(4.18) E(U) =
1
2

(1 + χ)e2 +
1
2
h2 +

1
4
χ2,

satisfying

(4.19) ∂tE(U) + ∂x(eh) = − 1
2ε

(χ− e2)2.

We rewrite the Kerr-Debye system using the variables U = (e, h, χ):

(4.20)



(1 + χ)∂te+ e∂tχ+ ∂xh = 0,

∂th+ ∂xe = 0,

∂tχ =
1
ε

(e2 − χ).

with the initial condition U(0, x) = U0 ∈ H2(R).

Theorem 4.2. The Cauchy problem (4.20) with the initial data U0, such
that χ0 ≥ 0, has a global smooth solution.

Proof. let us assume that the lifespan T ∗ of the regular solution U is finite.
Then, from Corollary 4.1, we know that ‖U‖L∞([0,T ∗[×R) = +∞. On the
other side, we will obtain by variational estimates that U = (e, h, χ) is
bounded in L∞([0, T ∗[×R), so proving the result by contradiction.

The L2 estimate. Integrating (4.19) on R we obtain
1
2
d

dt

∫
R

((1 + χ)e2 + h2 +
1
2
χ2)dx+

ε

2

∫
R
|∂tχ|2 dx = 0.

Then there exists a constant C such that

(4.21) ‖U‖L∞(0,T ∗;L2(R)) ≤ C.

The H1 estimate. We differentiate (4.20) with respect to t and we have

(4.22)



(1 + χ)∂tte+ 2∂te∂tχ+ e∂ttχ+ ∂x∂th = 0,

∂tth+ ∂x∂te = 0,

∂ttχ =
1
ε

(2e∂te− ∂tχ),

where the initial data on ∂tU(0, x) is given by (4.20).

Taking the inner product of (4.22)1 with ∂te and of (4.22)2 with ∂th we
obtain that

1
2
d

dt

∫
R

((1 + χ)(∂te)2 + (∂th)2)dx+
3
2

∫
R
∂tχ(∂te)2 dx+

∫
R
∂ttχe∂te = 0.
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From (4.20)3 we have∫
R
∂tχ(∂te)2 dx =

1
ε

∫
R
e2(∂te)2 dx−

1
ε

∫
R
χ(∂te)2 dx

as well as from (4.22)3 we have∫
R
∂ttχe∂te =

ε

2

∫
R
|∂ttχ|2dx+

1
4
d

dt

∫
R
|∂tχ|2dx.

Consequently we deduce

1
2
d

dt

∫
R

(
(1 + χ)(∂te)2 + (∂th)2 +

1
2
|∂tχ|2

)
dx+

3
2ε

∫
R
e2(∂te)2 dx

+
ε

2

∫
R
|∂ttχ|2dx =

3
2ε

∫
R
χ(∂te)2 dx

and thus, by Gronwall’s Lemma, we obtain that there exists a constant C
such that

(4.23) ‖∂tU‖L∞(0,T ∗;L2(R)) ≤ C.

Now, from (4.20)2 we have ∂xe = −∂th and so there exists a constant C
such that

(4.24) ‖e‖L∞(0,T ∗;H1(R)) ≤ C.

Then, by Sobolev inequalities, we conclude that

(4.25) ‖e‖L∞([0,T ∗[×R) ≤ C.

Next, solving (4.20)3 we have

χ(t, x) = χ0(x) exp(− t
ε

) +
∫ t

0
exp(− t− s

ε
)(e(s, x))2 ds.

Therefore, from (4.25), we obtain

(4.26) ‖χ‖L∞([0,T ∗[×R) ≤ C.

In the same way, from (4.20)1, we have

∂xh = −(1 + χ)∂te− e∂tχ,

so using (4.24), (4.26) and (4.23), we find

(4.27) ‖h‖L∞(0,T ∗;H1(R)) ≤ C,

and again by Sobolev inequalities

(4.28) ‖h‖L∞([0,T ∗[×R) ≤ C.

Therefore we have proved that there exists a constant C such that

‖U‖L∞([0,T ∗[×R) ≤ C,

and we obtain a contradiction. Hence T ∗ = +∞. �
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4.3. Stability for a constant equilibrium state. We can generalize The-
orem 4.2 for a perturbation U of a constant equilibrium state U = (ē, h̄, χ̄ =
(ē)2): if the initial data U0 satisfies that U0−U is in H2(R) with χ0 +χ̄ ≥ 0,
then the solution of the Kerr-Debye system with initial data U0 is global in
time and we have

U − U ∈ C0(R+;H2(R)) ∩ C1(R+;H1(R)).

So for this result, the smallness condition on ‖U0−U‖H2(R) in [15] is relaxed.

Actually, more general stability results can be obtained in the framework of
[15, 3]: the function E given by (4.18), is a strictly dissipative entropy as in
[15] and the Shizuta-Kawashima condition holds if and only if ē 6= 0. So in
this case, we obtain the estimates similar to (3.31). However, if ē = 0, the
stability problem remains open.
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