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Abstract : in this paper we study a model of ferromagnetic material with hysteresis effects. The
magnetic moment behaviour is described by the non-linear Landau-Lifschitz equation with an additional
term modelling the hysteresis. This term takes the form of a maximal monotone operator acting on the
time derivative of the magnetic moment. In our model, it is approximated via a relaxing heat equation.

For this relaxed model we prove local existence of regular solutions.

1 Introduction

The hysteresis properties of the ferromagnetic materials are a very wide domain in physics (see
E. Della Torre [4]). The Preisach model describing the magnetic hysteresis is obtained by a
phenomenological approach (see [6]). It is explained from the mathematical point of view by A.
Visintin in [8]. With a physical approach, W. F. Brown developed in [2] the micromagnetism
theory. The model described by Landau and Lifschitz in [5] is the following. The magnetic
moment u is a unitary vector field linking the magnetic field and the magnetic induction by the
relation B = H + u. The variations of u are described by the Landau-Lifschitz equation:

% :—u/\Heff—u/\(u/\Heff), (1.1)
where the effective field is given by Herr = Au + hq(u) + H, + ¥(u), and the demagnetizing
field hgy(u) is solution of the magnetostatic equations

div (hgq(u) +u) = 0 and curl hg(u) = 0, (1.2)

where H, is an applied magnetic field and where W(u) is an anisotropic term.

Micromagnetic modeling and Preisach modeling are two complementary approaches but the
links between these two models are not clear. Using a two time-scales asymptotic method, J.
Starynkévitch [7] gives a first answer to bring to the fore the hysteresis in Landau-Lifschitz
model. We study here a model due to M. Effendiev. The hysteresis effect in Landau-Lifschitz
equation is reinforced by an additional term in the effective field. This term is described with
the maximal monotone operator 3 defined as follows

Ao
B(&) = (1.3)
B(0,1) si £ = 0.
In this model the effective field is given by:
ou
Hepp = Au+ hg(u) + Hy + Y (u) _5(E)' (1.4)



The existence of regular solutions for the system (1.1)-(1.4) is open. We propose here a relaxation
model for this system:

( % =uAN (Au+hg(u) + Hg + ¥ (u) —v) —u A (uA (Au+ hg(u) + Hg + ¥(u) — v))
ov 1, 0Ou
o= Av+ (35 )
ou  Ov
% = a—n =0on Z?Q,
L u(t =0) =wup and v(t = 0) = vy on .
We prove an existence result of strong solutions for this relaxed system for € > 0 fixed.
We assume that the initial data satisfies the following conditions:
up € H?(Q) and vy € HY(Q),
lug| =1 on £, (1.6)
% =0 on 0.

For regular solutions, the equation (1.5) with initial data satisfying (1.6) is equivalent to the
following system (see [3]):

%_Au:u|Vu|2—|—u/\A’LL+U/\(hd(U)+Ha+\IJ(u)_U)
—u A (uA (hg(u) + Hg + ¥ (u) —v))
ov 1 ou
0~ a3 ) (1.7)
ou Ov
o 0 on 99,

u(t = 0) = up and v(t = 0) = vy on .

Indeed if (u,v) is a regular solution of (1.5) then the punctual norm of u is preserved and so
|u| = 1. Then we have Alu|? =0 = u - Au + |Vul?.

SouA (uAAu) = (u-Au)u — |[ul2?Au = —Au — u|Vul?.

In addition if (u,v) is a regular solution of (1.7) then |u|? satisfies a parabolic equation which
unique solution is |u|> = 1. Then the previous computation remains valid and (u,v) satisfies
(1.5).

Our main result is the following theorem:

Theorem 1.1 We fize > 0. Let (ug,vo) satisfying (1.6). Then there exists T* > 0, there exists
(u,v) solution of (1.7) such that for all T < T*,

u € CY0,T; H*(Q)) N L2(0,T; H3(R)), v e 0, T; H'(Q)) N L*(0,T; H*()).

In the following section we recall technical lemmas about equivalent norms in the HP spaces,
about the demagnetizing field hy and about the maximal monotone operator (3.
In the last section we prove Theorem 1.1.



2 Technical lemmas

2.1 Estimates tolls

The results of this subsection are proved in [3].

Lemma 2.1 Let Q2 be a bounded reqular open set. There exists a constant C' such that for all

u € H?(Q) satisfying % =0 on 99, we have

1
2

lullragay < € (Iulfae) + lAulz ) (2.1)

[NIES

IVulli @) < € (IVullfeq) + 1Aullfeg) ) (2:2)

and for u € H3(Q) such that % =0 on 09,

1

2

IVull o) < € (HVUH%Q(Q) + | AulF2 ) + HVAUH%Z(Q)) (2.3)

Using Lemma 2.1 and the classical interpolation inequality, we rewrite Sobolev and Gagliardo-
Nirenberg inequalities on the following form:

Lemma 2.2 Let Q be a reqular bounded domain of R3. There exists a constant C such that for
all w € H?(Y) such that ? =0 on 09,

n
2 2 %
lull gy < € (lullfzge) + 1 Aullfa) ) (2.4)
2 2 %
IVullzo@) < € (lulfz@) + l1Aulfa ) (2.5)
1
IVulaq0y < Cllullzoeqey (1ul2 +1AulZa0)) (2.6)

and for all u € H3(Q) such that % =0 on 09,

1 1 1
1D%ul| 3y < C ((HUH%%Q) + ”AUH%%Q)) 4t (HUH%%Q) + ”AUH%Q(Q)) ! HVAUHZz(Q)> - (2.7)

2.2 Demagnetizing field

We consider the operator u +— hg(u) defined by (1.2). It satisfies
ha(u) € L*(R?),
curl hg(u) =0 in R3,
div (hg(u)+ @) =0 in R?,

where i is the extension of u by zero outside .

We observe that u +— —hg(u) is the orthogonal projection of @ on the vector fields of gradients
in L?(R3). We prove in [3] the following estimates concerning the operator hg:



Lemma 2.3 Let p €]1,+o0o[. Then, if u belongs to WHP(Q) (resp. W2P(Q)), the restriction of
H(u) to Q2 belongs to WHP(Q) (resp. W2P(2)) and there exists a constant C such that

[ha(u)ll ey < cllullpr@)y, 1<p<+oo. (2.8)
[ha(u)lwrr ) < Cllullwir@), (2.9)

and
[ha(u)lwzr @) < Cllullwzeq)- (2.10)

2.3 Maximal monotone operators tools

We remark that [ is a maximal monotone operator. We recall usefull results proved in [1]. The
first proposition is about the approximation of § by a continuous operator:

Proposition 2.1 For A\ > 0 we define By by

£ for gl > A
Br(§) = ’g‘
B\ Jor [§] < A.

Then if £\ tends to & uniformly on [0,T] x Q2 then extracting a subsequence, Bx(€y) tends to B(§)
in L weak *.

In order to take the limit in a maximal monotone operator, we have the following lemma:

Proposition 2.2 If A is a maximal monotone operator, if y, € A(xy), if v, — x and y, — vy,
if im sup < xplyn ><< zly >, then y € A(x) and < xp|y, >—< x|y >.

3 Proof of Theorem 1.1

3.1 First Step : Galerkin Approximation

We denote by V,, the finite dimension space built on the n first eigen-functions of —A + Id
ou

with domain D(A) = {u € H3(Q), i 0 on 89}, and by P,, the orthogonal projection from
L?(22) on V.

We first solve the Galerkine approximation for system (1.7). We fix n and we want to build
(tn,vy) the solution of the following approximate problem:

(w, € CL[0,T,[; Vi), wn €CH[0,T[; Vi)

% - Au, =P, (un!VunIZ + Up A Aty + g A (hg(un) + Hy + W (u,) — ’Un)>

Py (n A (A (haun) + Ho + 0 () = v)) )

ov, 1 ou, 1
ot ein <5<—>>‘A”"—




In order to solve this problem and to take into account the specificity of the maximal monotone
operator 3, we consider the approximation 3y of 3, described in the previous section, and we
solve the following equation:

up € CH[0, T3 Vo), vy € CH([0, T Vi)
aa—uj\‘ —Au) =P, <u2|Vui‘L|2 +ud A AU+ ud A (hg(ud) + Hy + T (u)) — vﬁ))
Py () A () A (ha(ud) + Ha+ W () ~v) 32)
P Lo, (502 - ay = -2
up(t =0) = Py(ug), vy(t=0)="Py(vo)
This equation can be written on the following form:

up € CH([0,T3[; Vi), vy € CH([0, T [; Vi)
O~ B )
ovy 1 ou)) 33
e JCE R
up(t =0) = Pp(ug), vp(t=0)=Py(vo)

n

where F,, : V, x V,, — V,, and G : V,, — V,, are smooth. Since we can replace the second
equation by

duy 1 A LA A

D — ZPu(B(Fal, ) + G0} (34)

for a fixed A we can apply the Cauchy-Lisfchitz theorem on the finite dimensional space V,, x V,,:
there exists a unique solution for equation (3.3) defined on the maximal interval [0, T}}[.
Since [|Bx(§) || () < 1, there exists K depending only on n such that for all w € V,, we have:

[P (B (w))]lv, < K.

Since G is linear, we can obtain from (3.4) that there exists a constant C' depending on n such
that for all t+ < T we have:
lopllv,, < Ce.

Now, there exists a constant K depending on n such that for (u,v) € V;, x V,, we have
15 (s 0)llvi, < K (lully, +1[0lI7,)-

By comparison lemma we then obtain that there exists a time 7™ > 0 such that for all A > 0,
T,? > T™, and there exists a constant K, such that for all A,

[upll oo 0.7y + 1ol zoo 0,70y < K- (3.5)



oul ovY
Using (3.5) in (3.3), we obtain a bound for P\ and &, and derivating the first equation of

ot ot
n
(3.3) with respect to ¢, we obtain a bound of 8t2)\' Thus there exists a constant K such that
for all A,
ou )\ 82 )\ )\
[ upl| poo 0,7y + || ||L°°(OT + 55 Bre 2| oo (0,7 + 1ol poo 0,7y + H HL o) < Ky (3.6)

For a fixed n we take the limit when A tends to zero. From (3.6) we obtain that there exists u,

and v,, such that
u) — uy, in L=(0,T,)

ou)) OUn . oo
ﬁﬁme (0,7,)

v — v, in L2(0,T},)

W
In addition using Proposition 2.1, we have that ﬂ’\(aat ) tends to wy, and w, € 8 (autn)

Furthermore we can take the limit when A tends to zero in Equation (3.2) and we obtain that
there exist T}, > 0, u, € C*([0,T,[; V;,) and v, € CL([0,T,[; Vy,) satisfying (3.1).

3.2 Estimates for u, and v,

Taking the inner product in L?(Q) of the first equation in (3.1) with u,, we obtain that

1d
2dt
Taking the inner product in L?(Q) of the second equation in (3.1) with v,, we obtain that

<||un\|%2(g)) + I VunlZ2i0) < lunlZoo 0y IVUnl72(0) (3.7)

1d
57 (lnllZagey) + Vel < KL+ valFzay): (3.8)
since ﬂ(%) <K.
0t “lla@)
We take the inner product in L?(Q2) of the second equation in (3.1) with Aw,. Integrating by
Ouy,
part the right hand side, and absorbing ||Av,|| 2 (@) using that ‘ﬁ(%) < K, we obtain
L*(Q)
that 1d
52 (IVenllZze)) + 1Avnl20) < KO+ [ V0allfza)). (3.9)

We take the inner product in L?(2) of the second equation in (3.1) with A%u,,. We obtain that:

1d

24 (IIAun(t)Hiz(Q)) + IV AU () 22y = T1 + I + I3 + Iy + I5



with
\Y (|Vun|2un) VAu,dz,

=
[
S

\%

I
S~

A Auy, ) VAu,dzr,

)
S~

(1
\Y <un Ahg (up) — up A (up A hd(un))> VAu,dz,
(

V (un A (Hy + ¥ (up)) — un A (up A (Hg + \I’(un)))) VAupdz,

@\

I5:/QV<un/\vn— un/\(un/\vn)> -VAu,.

We bound separately each term.

e Estimate on Iy

|11]

IN

/yvuny?’\vmn\dH/ | D2up | [Vt [t] |V At dr,
Q Q

IN

HVUnH?ifS(Q)HVAUnHH(Q) + [[tnl oo () 1Dt | L3y IV tm | o ) | V At || 22

hence using the Sobolev embeding and Lemmas 2.1 and 2.2 we obtain that there exists a constant
K independant of n such that

3

1] < K (lunl3aq) + 18un)220))* 1V At 20
5
1

(3.10)
K (JunlBaoy + 1 8unlZa0)) 19 A0 Fa
e Estimate on I
By Sobolev embeddings and interpolation, we obtain that
L] < [[Vuall L@l AuallLs@)ll VAUl 120
< K (”un”%%m + HAunHiQ(Q > HVAUHHB (3.11)

K (lualZay + 18un 20 17 Aun ey

e Estimate on I3

We have
(3| < (L4 [[unll oo (y) <HVUTLHL2(Q) 1ha(un)ll L2 (@) + lunll L2 () HVhd(un)HLz(Q)) IV Aup|| 120

and using Lemmas 2.1, 2.2 and 2.3 we obtain that there exists a constant K such that
115 < K (14 (Junlaq) + 18unl20)) ) (il + 18wz ) IV AU 2oy - (312)

e Estimate on Iy



From the linearity of ¥ we obtain that there exists a constant K such that
1] < K (14 (lunlFag) + 118l 220)) ) (lunlFao) + 18nlFaq) ) VAU 2y (3:13)

e Estimate on I5

We have

1I5] < (lunl oo 0y + It 2o ) (100l L2y + VORIl 12(0)) |V AU 20
thus there exists a constant K such that
[I5] < K (1+ Jlunl| 7o o)) (onl 20y + IV 0nll 2g) IV Atnl 2 - (3.14)
Using Gronwall lemma with the estimates (3.9) and (3.8) we obtain that for all T there exists
a constant C'(T) such that for all n
vnll Lo 0,711 () + lvnll L2001 H2(02)) < C(T) (3.15)
3.7),

Thus plugging this estimate on (3.14), adding up estimates ( (3.10), (3.11), (3.12), (3.13)

and (3.14), for all T" there exists a constant C(7") such that:
1d

o <||Un\|%2(9) + HAunH%?(Q)) +[IVAU 720y < C(T) IV AU 20

2 2 2
+O(T) (22 + 1Aunlagy ) IV AU 120
3 3
K (Jlunl By + 180 220)) IV Al g

and after absorption of ||V Au,|| r2(0) n the right hand side term we obtain that for all 7" there
exists a constant C'(7") such that

d 3
7 (HunHzm(Q) + HAunHzm(Q)) + VAU |72y < C(T) <1 + (HUnH2L2(Q) + HAunH%ﬁ(Q)) >

(3.16)
We consider the solution of the following ordinary differential equation :

d
Z¢=C(D)(1+€)

£(0) = (lluolFz(qy + l1Auol 7))

Since for all n, <||Pn(u0)||iz(m n ||APn(u0)||i2(Q)) < (Huonizm) + ||Au0||iz(m) we obtain that
for all ¢ and for all n, we have:

(lan ()12 + 1 8un(B) 32y ) < €,
and if we denote by T the lifespan of &, for all T' < T, for all n, we have:

lunllLoo 0,75 m2Q)) + llunllL2omm53@) + 1vnllLe .1 m1 () + lvnllL20,m;m2(0)) < C(T)  (3.17)
ov,,

In addition using the equation (3.1) we obtain a bound for Zn and 2n.

ot ot

Oouy,

HWHLZ(O,T;Hl(Q)) + ”WHLZ(O,T;LZ(Q)) <C(T). (3.18)



3.3 Limit when n tends to +oo
From (3.17) we obtain a uniform bound for u, in L>(0,7; H*(2)) N L?(0,T; H3(2)) and using

n

the first equation of (3.1) we obtain a uniform bound for a@% in L2(0,T; H*()). Thus we can

extract a subsequence such that
up, — uwin L®(0,T; H%(Q)) weaks
u, — uin L0, T; H3(2)) weak

% N @ in
ot ot
In addition, concerning v,, we have by (3.17) a uniform bound in L>(0, T; H'Q))NL?(0,T; H*(Q))

L*(0,T; H'(Q)) weak

and using the second equation of (3.1) we obtain a uniform bound for % in L2(0,T; L?(Q2)).

Thus we can extract a subsequence such that

vp — w in L0, T; HY(Q)) weakx

v, — win L2(0,T; H?(Q2)) weak

ov, 0
8—Ut — a—?: in L?(0,T; L*(Q)) weak
Since Pn(ﬁ(‘%’l)) is uniformly bounded in L>(0,T; L?(f2)) we can assume that
8“” : 0o 2
Pn(ﬁ(ﬁ)) — w in L*(0,T; L°(§2)) weakx

Taking the limit in (3.1) we obtain that u, v and w satisfy the following system on the time
interval [0, T*[:

%—Au:u\Vu]2+u/\Au+u/\(hd(u)+Ha+\I/(u)—v)

—u A (uA (hg(u) + Hy + ¥(u) —v))

o 1 (3.19)

1
— ——w—-Av=—-v
ot ¢ €

u(t =0) =wug, v(t=0)=n1

It remains to prove that w € (3 (%). We will prove that % tends to % strongly in L2(0, T x Q).
Ouy, , ., Ouy, 0
Then we will apply Proposition 2.2: since < %W(%) >—< 8_7;|w >, then w € ﬁ(a—?)

We know that Oun is bounded in L>(0,T; L2(Q2)) N L(0,T; H' (). In order to obtain com-

ot
tness for 20 k a bound on 2 We i
actness 1Ior ——, we SeekK a bound on . € nave
P ot o2
%u,
T 4. .. +T
o2 1+ + U7



where

ouy,
=A%
Ou,,

Ts =P, <8u"yv n!2+aa—/\A >

ouy,
T, =P, <2unVunV gt )

un
ot

ouy,

A (up A (H(up) — vp)) — up A (W

T5 =Py, <% A (H(un) - Un) -

L A (H () = o0))

where H(uy) = hq(un) + Hg + ¥ (uyp)

T, =P, <un/\H(8at) un/\(un/\H(aautn)>

8’Un a'Un

From (3.17) and (3.18) we estimate each term on the following way:
o [|T1lr20,mm1(0)) < K
e We estimate the H~! norm of T, by duality arguments: for ¢ € C1([0, T[; H}(Q2)) we have

= au"yvunAP()>+<V \unAVP()

We integrate in time and we obtain that

T
Ou,,
[ <Blo>| < IPuTu ATEDN 1 s o Wl
ouy,
+Hun/\V ”L2(0TL2 N IVPR () 220,722 02))
ouy,

< HVU"HM(OT-H%(Q))” ot — Iz (0,T;L2( ))”90”L4(0,T;H3(Q))
+|tn || Lo (0,7 x0) ”V HLZ(OTL2 onlIVellzz 0,12 0))

Hence

1Tl L4 0 2100y = K

10



e we have

Gun aun
H !V’un! lz20m52200) < 5~ 5t I z20,7;28 ) IV un |l oo 0,7:26 ()
Ouy,
<

=5 ez 0 msm @ IV nllLe o111 () -

In addition

8un aun

||L2(oT-Lz: < || L2 0 1 @) ln e 0,732 (62 -

Hence

175l 220,711 () < K-
e We have HVU"HM(O T3 @) < K by interpolation theorem. Hence, since for all p < +o0,

L40,T; H%(Q)) C L*(0,T; LP(Q)), we have that for all > 0,

Tall 4 o1y < 1Tl 4 0 12y

Oouy,
< ||un||L°°(0,T><Q)Hvun||L4(0 TH%(Q))HV a1 HL2 (0,T;L2(Q))
< K.
* % is bounded in L2(0,T;L%(Q)), H(u,) — vy is bounded in L>(0,T; L%(Q)), and uy,

is bounded in L>°(0,7 x ). Hence Ty is bounded in L?(0,7T; L3(f2)), so there exists a
constant K such that

||T5||L2(O,T;H’1(Q)) < K.

. % is bounded in L?(0,T; L?(2)) hence by property of the operator hy (see Proposition
2.3), since u,, is bounded in L (0,7 x Q),

176l 2(0,7,12(0)) < K-

vy
) % is bounded in L2(0,T; L5(12)), therefore since u,, is bounded in L>(0,T x ),

17l 2(0,7,12(0)) < K-

Therefore we obtain that there exists a constant K independant of n such that

0uy,

1558 s omm@y < &

Now Oun is bounded in L%(0,T; H'(£2)). So by Simon’s lemma,

ot
ouy, ou . o 9
5 B B L#(0,T; L*(R2)) strong.
Ouy, .9 9
We have w,, = ﬂ(ﬁ) — w in L*(0,T; L*(€2). So
< |ﬂ >—< |@ >
o o

Hence by Proposition 2.2, w € ﬂ(%), which concludes the proof of Theorem 1.1.

11
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