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1 Introduction

The micromagnetism theory is the study of electromagnetic phenomena occuring in soft magnetic
material (see [4]). A soft magnetic material is characterized by a spontaneous magnetisation
represented by a magnetic moment denoted by u(t,z). This vector field is defined in [0, T] x €2,
where €2 is the domain where the material is confined. It links the magnetic field H and the
magnetic induction by the relation B = H + 4, where @ is the extension of u by zero outside €.
Furthermore the norm of u is constant and equal to 1 in [0, 7] x €.

The behavior of u is governed by the following Landau-Lifschitz type equation

%—u/\(Au—I—H(u))—{-u/\(u/\(Au—i-H(u)))ZO in [0,T] x €,

Ou _ 0 on [0,T] x 082, (1.1)
ov

u(0, ) = uo n Q,

where v is the outward unitary normal on 0f).

In this equation, H (u) represents the magnetic field generated by u. The operator v — H(v) is
defined for v in L?(Q2) by :

curl H(v) = 0 in IR? (from stationary Maxwell equation),
div(H (v) 4+ 9) = 0 in IR? (since div B = 0 according to Faraday’s law), (1.2)

H(v) € L*(IR%),
where v is the extension of v by zero outside €.

We assume that the initial data ug satisfies the hypothesis (H) below

ug € H2(Q),
(H) % =0 on 012,

ov

lug| =1

—_



Our first result is one of local existence and uniqueness of a regular solution for (1.1).

Theorem 1.1 Assuming that ug satisfies (H), there exists a time T* > 0 depending only on
the size of the data and there exists a unique u such that for all T < T,

u € CO([0,T); H*(Q)) N L*(0, T; H*(2)),
|u(z,t)| =1 in [0,T] x Q,
u satisfies (1.1).

We next prove the following stability result of the solution.

Theorem 1.2 Under assumption (H), the reqular solution given by theorem 1.1 depends con-
tinuously on ug for the topology of C°([0,T); H?(52)).

Finally, we consider the following problem

%:u/\Au—u/\(u/\Au) in [0,T] x €,
Ou =0 on [0,T] x 09,
ov (1.3)

u(0,2) = up(z) in Q,

lu(t,z)| = 1in [0,T] x Q.
Adapting the proof of Theorem 1.1 we obtain that

Theorem 1.3 Under assumption (H), there exists a time T > 0 and there exists a unique
u € CO[0,T]; H2(Q)) N L2(0,T; H3(Q)) for all T < T* such that u satisfies (1.3).

In the 2 dimensional case, we can improve this result and we obtain a theorem of global existence
for small data.

Theorem 1.4 Assuming that Q C IR?, there exists 6 > 0 such that if ug satisfies (H) and if
Vol 1) < 6 then the regular solution of (1.3) with initial data ug exists on IR*.

The paper is organized as follows. In section 2, we prove technical Lemmas. Section 3 is devoted
to the proof of Theorem 1.1. We prove the stability theorem in section 4. In the last part, we
establish Theorem 1.4. The proof of Theorem 1.3 is a simple adaptation of Theorem 1.1 and is
left to the reader.

2 Preliminary results

2.1 Regularity results

Lemma 2.1 Let Q be a bounded reqular open set. There exists a constant C such that for all

u € H%(Q) such that % =0 on 09,
v

(NI

lull 2y < € (lullFaqay + 1Aulfey)® (21)
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N[

IVullm@y < € (IVulfaq) + 1Aul} ) (22)

0
and for u € H3(Q) such that G_Z =0 on 09,

1
1Vl 20y < € (IVulZag0) + 18ulF20) + I VAU[Z2i0) ) * - (2.3)

Proof. The first inequality results from the regularity of the operator A = I — A with domain

D(A) = {u € H*(Q), % =0on 89}

see for example [7].
Furthermore, in [8], we find the following result

Proposition 2.1 Let Q be a bounded regular open set of R, d < 3. Then, there exists a
constant C such that for all V€ H™(Q) such that V -v =0 on 09,

Vil < € (IV L2y + 114V Vi gy + enrl Vi gmosgey)

0
We set V' = Vu and since a—u = 0 on 052, we can apply Proposition 2.1 to conclude the proof of
v

Lemma 2.1.
Using Lemma 2.1 and the classical interpolation inequality, we rewrite Sobolev and Gagliardo-

Nirenberg inequalities on the following form:

Lemma 2.2 Let Q be a regular bounded domain of IR®. There exists a constant C such that for

all w € H*(Q) such that % =0 on 012,

1
lull g (@ < € (72 + [Aullagy) (2.4)
(@) (@)

(NI
—~
N
ot
N

IVullso) < € (lull 2 + 1Aulfz)*

[N
~~
o
=2
~—

IVl < Cllullzo@ (lulZs + 1AullZ2))

0
and for all u € H3(Q) such that G_Z =0 on 09,

1 1 1
| D2ullao) < C ((nun%m) + | AulFag)® + (lullzz) + 1AullZz) * 1V A zm)) @7

Proof. In the estimates (2.4)-(2.5) we use (2.1) and classical embedding theorem.
Estimate (2.6) is the well known Gagliardo-Nirenberg inequality, and (2.7) is the usual embeding
of H/2(Q) in L3(Q).



2.2 Study of the operator H
We consider the operator u +— H(u) defined by (1.2). It satisfies

H(u) € L*(IR?),
curl H(u) =0 in IR?,
div (H(u) + @) =0 in IR,

where % is the extension of u by zero outside €.
We observe that u — —H (u) is the orthogonal projection of @ on the vector fields of gradients
in L2(IR?). Classicaly, we have

[H (w)llLe @) < cllullir@), 1 <p<+oo. (2.8)
Following Ladyshenskaya [10] page 196 we can derive the following regularity result

Lemma 2.3 Let p €]1,+oo[. Then, if u belongs to WHP(Q) (resp. W2P(Q)), the restriction of
H(u) to Q belongs to WHP(Q) (resp. W2P(Q)) and there exists a constant C such that

1H (uw)[[wrr@) < Cllullwir), (2.9)

and
[ H (u)llw2r @) < Cllullw2rq)- (2.10)

Proof : as curl H = 0 in IR? we can assume that H is gradient vector field

H = -V
So we have to solve
—Ayp = —divu in £,
_ — L Of
AP =0 in Q] (2.11)
o
W’han - 07 |:$:| |an - )

where Q' =0 and [¢/] |sq is the jump of 1 across 9.
First step : WP regularity.

The main idea is to reduce the problem to an homogeneous problem in IR?.
By classical properties of the trace operator, for u belonging to W (2), there exists a function
Yy in WFHP(Qy \ Q) such that

oY
¢1|aQ =0, ¢1|aQ/2 =0, 8—1/1

_o 9%
pred © v

o0

Obviously, one has, for some constante c

||7/J1||Wk+1,p(92\§) <c ||U||Wk,p(g) .
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So, it is equivalent to find a ¢ solution of (2.11) or to find a ¢ solution of the following homo-
geneous problem

—Ap=—divu in Q,
—A(QD‘F’QZH) =0 in QQ\Q,
—Ap=0 in Qf (212)
¢
—0 |Z£ -0
ellon, =0 |52]|

In the sequel we use the following notations : f1 = —divullg, fo = Ay ]IQQ\Q and f = f1+ fo.
With these notations, ¢ is solution of

—~Ap=f in IR (2.13)
and classical regularity results for the Dirichlet problem imply that there exists ¢ € W 2P (RS)
as soon as f € LP(IR?). So Vi) = V¢ belongs to WHP(Q).

Second step : W?2? regularity.

If we assume that f; € WHP(Q) and that fo € WHP(Qs \ Q), we can show that ¢ belongs to
WER(Q) N W3P(Q2 \ Q) N WPP(Q)).

Let us differentiate (2.13) in Q, in Q2 \ Q and in QY , we find

dp _Of1 .
B T

dp _0fs . =
—A% = a—x m QQ\Q

Oy _ .
—A% =0in Ql2

We observe that as [¢] |[o = 0 and [8_90} =0, then {8—90} =0.

ov O oz Q

It remains to study the regularity of [2 <8_g0)]

ov \ Oz
We claim that {2 (8—80” has the same regularity as (f2 — f1)|sq, = [A¢llsq,- This is
ov \ Oz Qo 2 2

obvious in the half space, and for regular open set, we have by local chart the following properties.

Q

e For any tangential vector field 7, {3 (8_@)] =0
or \ Oz IO
. [({% <g—i>} . is equal to some linear expression between L% (g—iﬂ . = 0 and [Ay]| 80

|5 (3]
Ov \ Oz
We have proved that 8_5 satisfies

|laq, has the same regularity as (f2 — f1)[q,-



—A%—% in €,

or  Ox
dp _0Ofs . =
—A% =5, o 29\ Q,
0 .
—Aa—i =0in Q)
7= (&)
a_ =0 ) a9 |\ 9. =g,
oz BRI v \ Oz BION

where g belongs to W1=1/7:P(9€,). Thus we conclude as in the previous step.

2.3 Comparison Lemma

We recall without proof a classical comparison Lemma.

Lemma 2.4 Let f: IR x IR — IR, C! be non decreasing in its second variable.
Assume moreover that y : I C IR — IR is a continuous function satisfying :

V10, y(0) <o+ | " f(ry(r))dr.

Let z : J — IR be the solution of

Then ¥t >0, y(t) < z(t).

3 Proof of Theorem 1.1

Taking formaly the inner product in L?(£2) of (1.1) with Au makes appear a dissipative term of
the form |[u A Aul|z2(qy. This dissipation is not sufficient to obtain energy estimate in H 2(Q).

We observe then, that for u regular enough and |u| =1 in , the system (1.1) is equivalent to:

%—Au:|Vu\2u+u/\Au+u/\H(u)—u/\(u/\H(u)) in R, x Q,

ou_y on RY x 99, (3.1)
ov

u(0,-) = ug in Q.

This equation appears to be more convenient to build regular approximate solutions of (1.1),
provide we can show a posteriori that |u| = 1. This property results from the uniqueness of the



following parabolic equation

da

— —Aa—2|Vul?(a—1) =
T a—2|Vu|*(a—1) =0,
%zOon@Q,

a(0,-) = ap =1,

where a = |u|? for u € L> (0,T; H%(12)).

3.1 Resolution of (3.1)

First step : approximate problem.

We denote by V,, the finite dimension space built on the n first eigen-functions of —A + Id with
domain D(A) = {u e H*(Q), ? =0on 8(2}, and by P, the orthogonal projection from L?(Q)

v
on V.
So we seek a solution u,, in V,, of

% — Au, — P, { |Vun|2un + U A (Aup + H (un)) — up A (up A H (uy))| = 0.
(3.2)

un(0) = P (uo)
Thanks to the Cauchy-Lipschitz Theorem, there exists an unique solution of (3.2) defined on
[0, T,
Second step : L? estimate for the approximate solution.

Taking the inner product in L?(Q) of (3.2) by u,, we obtain

1d

3q (||Un||%2(g)) + [ Vunl720) < lunllZoo ) IVunllZ20 (3.3)

Third step : H? estimate for the approximate solution.
We take the inner product of (3.2) by A?u,, and we integrate by parts to get

1d

3 (I18un®220)) + IV Aun |20y = 11 + I+ Is + L

with
L= /Q V (9t (0) Poun(6)) ¥ A (1)

L= /Q VA <un(t) A A () ) Y Aup(t)da,

Is /Q v (un(t) NH (un(t))> Y Ay, (1) de,

L= — /Q v (un(t) A (un(t) AH (un(t)))> Y Ay (1) d.

We bound separately each term.



e Estimate on Iy

|| < CiI11 + Calho

with
I :/ IV un B[V Aup|do,
Q

and
112:/ | D2t ||Vt |t ]|V At |,
Q

where DPu denotes the collection of all derivatives of order exactly p.
Using Lemma 2.2, we obtain

I < ||Vun||?i6(sz)||VAUn||L2(Q),
3
< O (lunlfag) + 1AunllFa ) * 11V Aunl (g »

from (2.5).

Furthermore

[ Tha| < [lunll oo ) 1D%un | 3@ | Vinl Lo () IV At | L2 (02),

1 1
< [ltnll oo ey ((||un||%2(m + 1 Aunla))” + (lunllFago) + 18|32 )’ ||mun||m)

1
X (llunl 72y + |1 DunlF2(ay ) * 11V Auunll 2

3 5 3
<C (||Un||%2(9) + ||Aun||2Lz(Q)) VAU 2 ) + C (||Un||%2(9) + ||Aun||2Lz(Q)) VAU 2

with(2.4), (2.5) and (2.7).

e Estimate on I
By Sobolev embeddings and interpolation, I3 is bounded as follow

(o] < [[Vunl ooyl Aunll s @) HIV Atnll 12(q)

2 2 2 2 : 5
< O (llunllzay + 18unlZ2a) ) 1VAull 20y + € (lunlFegy + [1DunlFay) * 1V Aunl 2
from (2.5) and (2.7).

e Estimate on I3

IgZ/ (Vup, A H(uy,)) VAunda:—i—/ (un A VH(uy)) VAupdz.
Q Q
1] < (V| oqey 1 ()| 30 + l1n | o) | VH () o() ) 11V At 20

|| < ClIVAu| 20 (lunllF 20y + 1AUAl 72y ) -



from (2.8), (2.9) and (2.5).

e Estimate on Iy

Iy = Iy + Iy + y3,
with
Iy = / Vup A (un A H(uy)) VAu,dz,
Q
Iy = / Un A (Vup A H(uy))VAu,dz,
Q

I3 = / Un A (up A VH(uy,)) VAu,dz,
Q

We bound separately each term.

L] + iz < 2 [l e ) 1000y 1 () 50 [V At 2

1
< Cllunlle gy (lunllfzgo) + 180720y ) * 1V AU 20
from (2.5), (2.8).

[Lia] < C llunll? w0y IV H () | 260 [V At 2y

1
< Cllunle(gy (lunllizga) + 18unlT0))* IV AU 20y

Summing the estimates on I, Iy, I3 and Iy, and using (2.4), we obtain that there exists a
constant C' independent of ug and n such that

d

2 2
7 (18unl 20)) " + 201V Aun|[F20) <

(3.4)
2 2 % %
¢ (14 (lunlBaq@y + 1 8ualiay) ) 19 Ay

Fourth step : limit when n goes to +oc.

Summing (3.3) and (3.4) and absorbing |[VAup|[ 2, one finds a constant k; such that

d
7 UlunllZzg) + 1 AunllZag) ) + 1V Aun |22 ) <

(3.5)
5
ky (1 + (||Un||2L2(Q) + ||Aun||%2(9)) ) :

Using the comparison Lemma, we obtain that there exist a time T and a constant C' depending
on the size of the initial data in H?(£2), but independent of n, such that for any T' < T*

2
sup [[un (t) |72y < C,
t<T



T
| (19wl + 1980, =) dr < €,
and also, by the equation (3.2),

Oun, , 119
Sup =57 Ollz2(0) = €,

T 0 9
Anawmﬂm@mga

Hence, we obtain the existence of a subsequence u,, and a function u such that

Un, — win L*(0,T; H3(Q)) weak,

Un, — win L®(0,T; H*(Q))

weakx,

Oup,  Ou ., e
e 5 B L“(0,T; H (Q2)) weak,

and according to Aubin’s lemma we can assume that

Up, — u in L*(0,T; H*(Q)) strong.
And so,

Up, — u in LP(0,T; H*(Q)) strong, 1 <p < oo

Moreover, as H is a continuous map on H™(Q2), for m = 0, 1, 2, one has
H(u,,) — H(u)in LP(0,T; H*(Q)) strong, 1 <p < oo

So, we can take the limit in (3.2), and we obtain that u satisfies

ou

i Au = |Vulu+uA (Au+ H (u) —u A (uAH (u)) on [0, T*[xN

% =0 on [0, T*[x 012,

u(0) = ug
3.2 Conservation of the ponctual norm
Taking the scalar product in IR3 of (3.1) by u , we get

1d

2 - 2012 _ 0
5 7 lul” — (u- Au) — |[Vu|” |u|* =0 in (0,T) x Q.
As u belongs to L ((0,T); H%(Q2)) the following identity is valid for d < 3:

Alul> =2 (u - Au) + 2|Vu|?,
0 (3.6) becomes

d
uf? = Aful? — 2/Vu(ju? ~ 1) = 0.

10



Let us note by b = |u|? — 1. We have proved that b solves

LN 2|Vul|?b =0

ot

@ =0 on 0f2 (3.7)
ov

b(0) = [upl? —1=0

Now, we remark that |Vu|? belongs to L(0, T'; L°°()) since H?(2) C L>(£2). Hence the energy
estimate associated to (3.7) gives

d
ZIBlZz + 1V0]72 < [ Vullz=<[b]7:

and we conclude that [|b]|2, = 0 through Gronwall inequality.
So we have proved that |u| =1 in [0,7] x Q, as soon as |ug| = 1 on €.

Now, if |u| = 1, then (3.1) is equivalent to (1.1). Hence, the proof of Theorem 1.1 is fulfilled.

4 Stability Results

Let us denote by u; and wug two solutions of (3.1), T* = min(7},73), and v = u; — ug. Then,
we have the following proposition

Proposition 4.1 For all T < T*, there exists a constant C such that

sup [[v(t)[|72 < Clv(0)]Z2-
t<T

Furthermore, we can prove the following H? stability result

Proposition 4.2 For all T < T* there exists a constant C such that
sup (|lo(®)|)? + [|Av(t)|? < (|lo(0)? + | Av(0)) .
sup ()] 72(@) + 180 F2@) < € (IO Z20) + 140020

and such that
ol 20 < C (I10(O) 1720 + 140(0)72(0)

4.1 Uniqueness and L? stability

Proof : the difference v satisfies the following equation

% —Av=v A (Aur + H(u1)) +uz A (Av + H(v))
HVur 2o+ (| = [Vual) uz =0 A (s A H(w)) b

—ZQ/\(’U/\H(Ul)-I-UQ/\H(U)).

11



Taking the inner product in L? of (4.1) by v, we obtain

1d

S (Iol3y) + 1901320y S/Q(uQ/\Av)vd:z:—l—/g(w/\H(v))vdw

+/Q\vu1\2|vy2dx+/ﬂ(\vul|+yqu\)yvuy|U2\|vydx

—/ ug A (v A H(up)) vde — / uz A (uz A H(v)) vdx.
Q Q
After an integration by parts of the first term of the right-hand side of the equation above, we
obtain, as |u1| = 1 and |ug| = 1,
1d

2dt (||U||2LZ(Q)) +2 HVUH%Q(Q) < ||U||L2(Q) ||VU||L2(Q) ||VU2||Loo(Q)

+C (14 [VurlF ) 100z 20y + 1H (00| ooy 0117200

+C (IIVull ooy + 1Vl e ) ) 190 220y 10l 2y -

As uy and ug are bounded in L*°(0,T; H2(2)) N L?(0,T; H3(£))), we obtain that there exists a
function f belonging to L(0,7T) such that

1d
2dt
The end of the proof of Proposition 4.1 follows from Gronwall lemma.

lolZ2 + IVollz: < fOlvlZ2. (4.2)

4.2 H? stability

We go back to Galerkin approximation of (4.1). Taking the inner product of this approximation
with A2v,, integrating by parts on (2, integrating in time between 0 and ¢, and taking the limit
when n tends to 400, we obtain the following inequality, using the lower semi-continuity of the
norm under the weak topology

1 ¢ 1 t
S 80O + [ 198y < 5 1Al Faey + [ (it oot Je) (s

where I, ..., Ig are eight terms which we bound separately without details

1
o 1= | [ V(@A du) Vavde| < 0i(®) (ol + [180lFa)* 1780520

where g; € L%(0,T).

1
< 92(8) (101720 + 11A0]1 720y ) * IV A0 2y -

o I = / V (v A H(up)) VAvdz
Q
where go € L™>(0,T).

1
.« = < 05(0) (1ol 720y + 18017200 IVAV] 2y

/ V (ug A Av) VAvdz
Q
where g3 € L*(0,T).

12



1
o Li=| [V (ua A H(©) VAvda| < ga(t) ([olaiey + 1801 Eaey)* [TV g2y

where g4 € L*°(0,T).

1
o Iy =| [ V(IVu, o) Vavda] < g5(0) (JolFa@) + [A0]Fa0) [T A0] 200y

where g5 € LY(0,T).

o [ = /QV ((|Vu1|2 - |VU2|2) ug) V Avdx

1
< 00 (10l + 1801Ea(@y) + (IolEaiey + 1801E2@))* IV A0l 20
where gg € L*(0,T).

1
o I =| [ VA AH@)) VAvde| < gr(0) (ol Fa@) + [1801F200)) 19 A0] 200

where g7 € L*°(0,T).

< gs(t) (0l 220y + 1800 2 ) »

o Iy = / Vi(ug A (v A H(up)+ug A H(v))) VAvdx
Q
where gg € L*>(0,T).

Furthermore, using Young inequality, we get the existence of a function denoted f lying in
L'(0,T) such that

t
1A 22y +2 /0 IV A0(3)] 2 ds < [[A00] 2200,
(4.3)
+ / £(5) (1) 22 + 11A0(8) 22 ) .

Then, integrating (4.2) and summing with (4.3) we obtain

t
(IOl + 180N Fa@y) +2 | (180(5) () + T A0(3) [ ds) <

(o220 + 1A00]1 220y / £(5) (I1o() 122y + 180(3)] 220 ) ds

Using Gronwall Lemma, we derive the proof of Proposition 4.2 and Theorem 1.2.
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5 Proof of Theorem 1.4

We deal now with the problem (1.3)

% =uANAu—uA (uA Au)
Ou =0 on 0N
(1.3) v
u(0) = wo,
lul = 1.

Under Assumption (H), the proof of local existence of regular solutions (see Theorem 1.3) is
now straightforward : it is a simplification of the proof of Theorem 1.1.

Now, in the 2D case, we can improve the previous result by showing global existence for small
data.

First step : energy estimate on Vu.

We observe that as |u| = 1, the first equation of (5.4) is equivalent to

%—u/\Au—l—u/\(u/\Au)zO (5.1)
and to 9 5
u u

E+MAE_2U/\AU_O. (5.2)

Now multiplying (5.1) by % and (5.2) by —2Au we get

t Ou
IVu()|Z2(0) +/0 HE(T)H%Q(Q)CZT: IV uol|Z2 - (5.3)

Second step : estimate on Au.

We know that for regular solutions, (1.3) is equivalent to the following problem

U _ Ay = —|Vul?u+uA Auon [0,T] x Q

ot

Ou =0on [0,T] x 02

I (5.4)
u(0) = ug,

|lul =1on [0,T] x Q.

Taking the inner product in L?(Q) of the first equation of (5.4) by Au, we obtain since (u-Au) =
- ’VU|27
1d

§£\WUH%2(Q) +[1AulF20) < IVull7a - (5.5)
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In two dimensional space, the following Sobolev estimate is valid :

1/4
IVl sy < CONIVull gy (IVulaq) + 1Aull2q))

1/3
IVl o) < CONIVull fagy (IVul22q) + 1Aull2q)) "

(5.6)
1/4
IVl o) < COIVull gy (IVul22q) + 1Au]22 ) + [VAUZ:0))
Au 1/2 2 Aull2 1/4
1A sy < CONIAull g, (I1Aul2q) + IVAUZ2 ) -
So inequality (5.5) gives
d 2 2
ZVulia@ + (1= CilIVule) ) 1Aulfag) < Coll Vullfz)- (5.7)
Using (5.3), we obtain that
d 2 2
ZVulia@ + (1= CilVuollia)) |AulFag) < CollVuollfa) (5.8)
1
Integrating (5.8) between 0 and ¢, using (5.8), we obtain that if HVUOH%Q(Q) < 3C; then
t
| 18w a0y dr < [Vu0]Fa0) + Ca [Tl (5.9

Third step : estimate on VAu.
As in Section 3.1, we build regular solutions of (5.4) using a Galerkin approximation process.
We seek a solution u,, in V,, to

ouy,

B — Au, =P, (|Vun|2un + up A Aun) )

(5.10)
un (0) = Py (up).

Taking the inner product of (5.10) by A2u,,, we obtain that

1d

557 (18unlE2(ey) + 19 A B0y < [Vunloqgy IV Aunll 20y

) NV
F llunll oo ) IVt oo () (||Vun||L2(Q) + ||Aun||L2(Q)) IV Augp |20
FIVunll 1) [Aunll o) IV AU 12 (0

According to inequality (5.6), we get
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d
EHAWH%?(Q) +[IVAU[F2 () < Cl[Vunll2(q) {||Vun||2L2(Q) + ||Aun||2L2(Q)} IV Aup |20
€ uall ey V012 ) (Ve ) + 18022 gy + [V A 2y}
nllLee(@) 1V 8nllL2(0) nllL2() nllL2() nllz2(@)
1/2

x {IVunl 72 + 18unlFo@y ) 1V AU 20

1/4
+C [ Vun | oty {1V tnl 220y + | At 20

1/4
< {11 Aun |20y + IV AU T2y b Al 510 IV AU 20 -

Using Young inequality, and after absorbtion of the higher degree term, we get

d

2
E\\Aun“%%ﬂ) +[IVAU 720y < C I VunllF2(q) {HVUHH%Q(Q) + HAUnH%%Q)}

3/2
+C |[un | Foo () [ Vttnll 120 {HVUHH%Q(Q) +C HAUHH%Q(Q)}
4 2 2 2 2
+C lunll oo () VUnllz2 () {||Vun||L2(Q) + ||Aun||L2(Q)}
2 2 1/2 2
+C [ Vunll 20 {IVnlFq) + 1 AunlFagy } * 1AUA7 (g

+C || Vtn|[72(q) {||Vun||%2(sz) + ||Aun||%2(n)} AU 120

We perform an integration in time of the previous equation. As |u| = 1, ||Vu(t)||z2 < ||Vuol|r2
and as the norms are lower semi continuous for the weak topology we obtain
a constant k4 such that

t t
18U oy + [ IV AU Faqydr < [Auollzay +ha [ (14 [8u() [agdr  (.11)

Fourth step : conclusion.

Now for HVUOH%Q(Q) < ﬁ, we have obtain inequality (5.9) in the second step.

So we can apply Gronwall lemma to (5.11) to obtain
t
VEST<T" A0} + [ 1V8u()Baaydr < h()
0

where h is a nonnegative continuous function on IRy. So the solution given by theorem 1.3 is

global as soon as
1

2
IVuoll72(q) < 30,

This ends the proof of Theorem 1.4.
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