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1 Introduction

The micromagnetism theory is the study of electromagnetic phenomena occuring in soft magnetic
material (see [4]). A soft magnetic material is characterized by a spontaneous magnetisation
represented by a magnetic moment denoted by u(t, x). This vector field is defined in [0, T ] ×Ω,
where Ω is the domain where the material is confined. It links the magnetic field H and the
magnetic induction by the relation B = H + ū, where ū is the extension of u by zero outside Ω.
Furthermore the norm of u is constant and equal to 1 in [0, T ] × Ω.

The behavior of u is governed by the following Landau-Lifschitz type equation
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


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

∂u

∂t
− u ∧ (∆u+H(u)) + u ∧

(

u ∧ (∆u+H(u))

)

= 0 in [0, T ] × Ω,

∂u

∂ν
= 0 on [0, T ] × ∂Ω,

u(0, ·) = u0 in Ω,

(1.1)

where ν is the outward unitary normal on ∂Ω.

In this equation, H(u) represents the magnetic field generated by u. The operator v 7→ H(v) is
defined for v in L2(Ω) by :



























curlH(v) = 0 in IR3 (from stationary Maxwell equation),

div(H(v) + v̄) = 0 in IR3 (since divB = 0 according to Faraday’s law),

H(v) ∈ L2(IR3),

(1.2)

where v̄ is the extension of v by zero outside Ω.

We assume that the initial data u0 satisfies the hypothesis (H) below

(H)


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










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





u0 ∈ H2(Ω),

∂u0

∂ν
= 0 on ∂Ω,

|u0| ≡ 1.
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Our first result is one of local existence and uniqueness of a regular solution for (1.1).

Theorem 1.1 Assuming that u0 satisfies (H), there exists a time T ∗ > 0 depending only on
the size of the data and there exists a unique u such that for all T < T ∗,



























u ∈ C0([0, T ];H2(Ω)) ∩ L2(0, T ;H3(Ω)),

|u(x, t)| = 1 in [0, T ] × Ω,

u satisfies (1.1).

We next prove the following stability result of the solution.

Theorem 1.2 Under assumption (H), the regular solution given by theorem 1.1 depends con-
tinuously on u0 for the topology of C0([0, T ];H2(Ω)).

Finally, we consider the following problem

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


























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











∂u

∂t
= u ∧ ∆u− u ∧ (u ∧ ∆u) in [0, T ] × Ω,

∂u

∂ν
= 0 on [0, T ] × ∂Ω,

u(0, x) = u0(x) in Ω,

|u(t, x)| = 1 in [0, T ] × Ω.

(1.3)

Adapting the proof of Theorem 1.1 we obtain that

Theorem 1.3 Under assumption (H), there exists a time T ∗ > 0 and there exists a unique
u ∈ C0([0, T ];H2(Ω)) ∩ L2(0, T ;H3(Ω)) for all T < T ∗ such that u satisfies (1.3).

In the 2 dimensional case, we can improve this result and we obtain a theorem of global existence
for small data.

Theorem 1.4 Assuming that Ω ⊂ IR2, there exists δ > 0 such that if u0 satisfies (H) and if
‖∇u0‖H1(Ω) ≤ δ then the regular solution of (1.3) with initial data u0 exists on IR+.

The paper is organized as follows. In section 2, we prove technical Lemmas. Section 3 is devoted
to the proof of Theorem 1.1. We prove the stability theorem in section 4. In the last part, we
establish Theorem 1.4. The proof of Theorem 1.3 is a simple adaptation of Theorem 1.1 and is
left to the reader.

2 Preliminary results

2.1 Regularity results

Lemma 2.1 Let Ω be a bounded regular open set. There exists a constant C such that for all

u ∈ H2(Ω) such that
∂u

∂ν
= 0 on ∂Ω,

‖u‖H2(Ω) ≤ C
(

‖u‖2
L2(Ω) + ‖∆u‖2

L2(Ω)

)
1

2
, (2.1)
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‖∇u‖H1(Ω) ≤ C
(

‖∇u‖2
L2(Ω) + ‖∆u‖2

L2(Ω)

)
1

2
, (2.2)

and for u ∈ H3(Ω) such that
∂u

∂ν
= 0 on ∂Ω,

‖∇u‖H2(Ω) ≤ C
(

‖∇u‖2
L2(Ω) + ‖∆u‖2

L2(Ω) + ‖∇∆u‖2
L2(Ω)

)
1

2
. (2.3)

Proof. The first inequality results from the regularity of the operator A = I − ∆ with domain

D(A) =

{

u ∈ H2(Ω),
∂u

∂ν
= 0 on ∂Ω

}

see for example [7].

Furthermore, in [8], we find the following result

Proposition 2.1 Let Ω be a bounded regular open set of IRd, d ≤ 3. Then, there exists a
constant C such that for all V ∈ Hm(Ω) such that V · ν = 0 on ∂Ω,

‖V ‖Hm(Ω) ≤ C
(

‖V ‖L2(Ω) + ‖div V ‖Hm−1(Ω) + ‖ curlV ‖Hm−1(Ω)

)

.

We set V = ∇u and since
∂u

∂ν
= 0 on ∂Ω, we can apply Proposition 2.1 to conclude the proof of

Lemma 2.1.

Using Lemma 2.1 and the classical interpolation inequality, we rewrite Sobolev and Gagliardo-
Nirenberg inequalities on the following form:

Lemma 2.2 Let Ω be a regular bounded domain of IR3. There exists a constant C such that for

all u ∈ H2(Ω) such that
∂u

∂ν
= 0 on ∂Ω,

‖u‖L∞(Ω) ≤ C
(

‖u‖2
L2(Ω) + ‖∆u‖2

L2(Ω)

)
1

2
, (2.4)

‖∇u‖L6(Ω) ≤ C
(

‖u‖2
L2(Ω) + ‖∆u‖2

L2(Ω)

)
1

2
, (2.5)

‖∇u‖2
L4(Ω) ≤ C‖u‖L∞(Ω)

(

‖u‖2
L2 + ‖∆u‖2

L2(Ω)

)
1

2
, (2.6)

and for all u ∈ H3(Ω) such that
∂u

∂ν
= 0 on ∂Ω,

‖D2u‖L3(Ω) ≤ C

(

(

‖u‖2
L2(Ω) + ‖∆u‖2

L2(Ω)

)
1

2 +
(

‖u‖2
L2(Ω) + ‖∆u‖2

L2(Ω)

)
1

4 ‖∇∆u‖
1

2

L2(Ω)

)

. (2.7)

Proof. In the estimates (2.4)-(2.5) we use (2.1) and classical embedding theorem.
Estimate (2.6) is the well known Gagliardo-Nirenberg inequality, and (2.7) is the usual embeding
of H1/2(Ω) in L3(Ω).
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2.2 Study of the operator H

We consider the operator u 7→ H(u) defined by (1.2). It satisfies



























H(u) ∈ L2(IR3),

curlH(u) = 0 in IR3,

div
(

H(u) + ū
)

= 0 in IR3,

where ū is the extension of u by zero outside Ω.
We observe that u 7→ −H(u) is the orthogonal projection of ū on the vector fields of gradients
in L2(IR3). Classicaly, we have

‖H(u)‖Lp(Ω) ≤ c‖u‖Lp(Ω), 1 < p < +∞. (2.8)

Following Ladyshenskaya [10] page 196 we can derive the following regularity result

Lemma 2.3 Let p ∈]1,+∞[. Then, if u belongs to W 1,p(Ω) (resp. W 2.p(Ω)), the restriction of
H(u) to Ω belongs to W 1,p(Ω) (resp. W 2.p(Ω)) and there exists a constant C such that

‖H(u)‖W 1,p(Ω) ≤ C‖u‖W 1,p(Ω), (2.9)

and
‖H(u)‖W 2,p(Ω) ≤ C‖u‖W 2,p(Ω). (2.10)

Proof : as curlH = 0 in IR3 we can assume that H is gradient vector field

H = −∇ψ.

So we have to solve


































−∆ψ = −div u in Ω,

−∆ψ = 0 in Ω′,

[ψ]|∂Ω
= 0,

[

∂ψ

∂ν

]

|∂Ω

= u · ν,

(2.11)

where Ω′ =C Ω and [ψ] |∂Ω is the jump of ψ across ∂Ω.

First step : W 1,p regularity.

The main idea is to reduce the problem to an homogeneous problem in IR3.
By classical properties of the trace operator, for u belonging to W k,p(Ω), there exists a function
ψ1 in W k+1,p(Ω2 \ Ω) such that

ψ1|∂Ω = 0 , ψ1|∂Ω′

2
= 0 ,

∂ψ1

∂ν

∣

∣

∣

∣

∂Ω′

2

= 0 ,
∂ψ1

∂ν

∣

∣

∣

∣

∂Ω
= u · ν.

Obviously, one has, for some constante c

‖ψ1‖W k+1,p(Ω2\Ω) ≤ c ‖u‖W k,p(Ω) .
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So, it is equivalent to find a ψ solution of (2.11) or to find a ϕ solution of the following homo-
geneous problem























































−∆ϕ = −div u in Ω,

−∆(ϕ+ ψ1) = 0 in Ω2 \ Ω,

−∆ϕ = 0 in Ω′
2

[ϕ]|∂Ω2
= 0

[

∂ϕ

∂ν

]∣

∣

∣

∣

∂Ω2

= 0,

(2.12)

In the sequel we use the following notations : f1 = −div u IIΩ, f2 = ∆ψ1 IIΩ2\Ω
and f = f1 + f2.

With these notations, ϕ is solution of

−∆ϕ = f in IR3, (2.13)

and classical regularity results for the Dirichlet problem imply that there exists ϕ ∈ W 2,p(IR3)
as soon as f ∈ Lp(IR3). So ∇ψ = ∇ϕ belongs to W 1,p(Ω).

Second step : W 2,p regularity.

If we assume that f1 ∈ W 1,p(Ω) and that f2 ∈ W 1,p(Ω2 \ Ω), we can show that ϕ belongs to
W 3,p(Ω)

⋂

W 3,p(Ω2 \ Ω)
⋂

W 3,p(Ω′
2).

Let us differentiate (2.13) in Ω, in Ω2 \ Ω and in Ω′
2 , we find











































−∆
∂ϕ

∂x
=
∂f1

∂x
in Ω

−∆
∂ϕ

∂x
=
∂f2

∂x
in Ω2 \ Ω.

−∆
∂ϕ

∂x
= 0 in Ω′

2.

We observe that as [ϕ] |Ω = 0 and

[

∂ϕ

∂ν

]∣

∣

∣

∣

Ω
= 0, then

[

∂ϕ

∂x

]∣

∣

∣

∣

Ω
= 0.

It remains to study the regularity of

[

∂

∂ν

(

∂ϕ

∂x

)]
∣

∣

∣

∣

Ω
.

We claim that

[

∂

∂ν

(

∂ϕ

∂x

)]
∣

∣

∣

∣

Ω2

has the same regularity as (f2 − f1)|∂Ω2
= [∆ϕ]|∂Ω2

. This is

obvious in the half space, and for regular open set, we have by local chart the following properties.

• For any tangential vector field τ ,

[

∂

∂τ

(

∂ϕ

∂x

)]∣

∣

∣

∣

∂Ω2

= 0

•

[

∂

∂ν

(

∂ϕ

∂x

)]
∣

∣

∣

∣

∂Ω2

is equal to some linear expression between

[

∂

∂τ

(

∂ϕ

∂x

)]
∣

∣

∣

∣

∂Ω2

= 0 and [∆ϕ]|∂Ω2
.

So

[

∂

∂ν

(

∂ϕ

∂x

)]∣

∣

∣

∣

|∂Ω2
has the same regularity as (f2 − f1)|∂Ω2

.

We have proved that
∂ϕ

∂x
satisfies
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


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




















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





















−∆
∂ϕ

∂x
=
∂f1

∂x
in Ω,

−∆
∂ϕ

∂x
=
∂f2

∂x
in Ω2 \ Ω,

−∆
∂ϕ

∂x
= 0 in Ω′

2

[

∂ϕ

∂x

]∣

∣

∣

∣

∂Ω2

= 0 ,

[

∂

∂ν

(

∂ϕ

∂x

)]∣

∣

∣

∣

∂Ω2

= g,

where g belongs to W 1−1/p, p(∂Ω2). Thus we conclude as in the previous step.

2.3 Comparison Lemma

We recall without proof a classical comparison Lemma.

Lemma 2.4 Let f : IR× IR −→ IR, C1 be non decreasing in its second variable.
Assume moreover that y : I ⊂ IR −→ IR is a continuous function satisfying :

∀ t > 0, y(t) ≤ y0 +

∫ t

0
f(τ, y(τ))dτ.

Let z : J −→ IR be the solution of

{

z′(t) = f(t, z(t)),
z(0) = y0,

Then ∀ t > 0, y(t) ≤ z(t).

3 Proof of Theorem 1.1

Taking formaly the inner product in L2(Ω) of (1.1) with ∆u makes appear a dissipative term of
the form ‖u ∧ ∆u‖L2(Ω). This dissipation is not sufficient to obtain energy estimate in H 2(Ω).

We observe then, that for u regular enough and |u| = 1 in Ω, the system (1.1) is equivalent to:







































∂u

∂t
− ∆u = |∇u|2u+ u ∧ ∆u+ u ∧H(u) − u ∧ (u ∧H(u)) in IR+

t × Ω,

∂u

∂ν
= 0 on IR+

t × ∂Ω,

u(0, ·) = u0 in Ω.

(3.1)

This equation appears to be more convenient to build regular approximate solutions of (1.1),
provide we can show a posteriori that |u| ≡ 1. This property results from the uniqueness of the
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following parabolic equation







































∂a

∂t
− ∆a− 2|∇u|2(a− 1) = 0,

∂a

∂ν
= 0 on ∂Ω,

a(0, ·) = a0 = 1,

where a = |u|2 for u ∈ L∞
(

0, T ;H2(Ω)
)

.

3.1 Resolution of (3.1)

First step : approximate problem.

We denote by Vn the finite dimension space built on the n first eigen-functions of −∆+ Id with

domain D(A) =

{

u ∈ H2(Ω),
∂u

∂ν
= 0 on ∂Ω

}

, and by Pn the orthogonal projection from L2(Ω)

on Vn.
So we seek a solution un in Vn of















∂un

∂t
− ∆un − Pn

[

|∇un|
2un + un ∧ (∆un +H (un)) − un ∧ (un ∧H (un))

]

= 0.

un(0) = Pn(u0)

(3.2)

Thanks to the Cauchy-Lipschitz Theorem, there exists an unique solution of (3.2) defined on
[0, Tn[.

Second step : L2 estimate for the approximate solution.

Taking the inner product in L2(Ω) of (3.2) by un, we obtain

1

2

d

dt

(

‖un‖
2
L2(Ω)

)

+ ‖∇un‖
2
L2(Ω) ≤ ‖un‖

2
L∞(Ω) ‖∇un‖

2
L2(Ω) (3.3)

Third step : H2 estimate for the approximate solution.

We take the inner product of (3.2) by ∆2un, and we integrate by parts to get

1

2

d

dt

(

‖∆un(t)‖2
L2(Ω)

)

+ ‖∇∆un(t)‖2
L2(Ω) = I1 + I2 + I3 + I4

with

I1 =

∫

Ω
∇

(

|∇un(t)|2un(t)
)

∇∆un(t)dx,

I2 =

∫

Ω
∇∆

(

un(t) ∧ ∆un(t)

)

∇∆un(t)dx,

I3 =

∫

Ω
∇

(

un(t) ∧H (un(t))

)

∇∆un(t)dx,

I4 = −

∫

Ω
∇

(

un(t) ∧

(

un(t) ∧H (un(t))

))

∇∆un(t)dx.

We bound separately each term.
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• Estimate on I1

|I1| ≤ C1I11 + C2I12

with

I11 =

∫

Ω
|∇un|

3|∇∆un|dx,

and

I12 =

∫

Ω
|D2un||∇un||un||∇∆un|dx,

where Dpu denotes the collection of all derivatives of order exactly p.
Using Lemma 2.2, we obtain

I11 ≤ ‖∇un‖
3
L6(Ω)‖∇∆un‖L2(Ω),

≤ C
(

‖un‖
2
L2(Ω) + ‖∆un‖

2
L2(Ω)

)
3

2 ‖∇∆un‖L2(Ω) ,

from (2.5).

Furthermore

|I12| ≤ ‖un‖L∞(Ω) ‖D
2un‖L3(Ω)‖∇un‖L6(Ω)‖∇∆un‖L2(Ω),

≤ ‖un‖L∞(Ω)

(

(

‖un‖
2
L2(Ω) + ‖∆un‖

2
L2(Ω)

)
1

2 +
(

‖un‖
2
L2(Ω) + ‖∆un‖

2
L2(Ω)

)
1

4 ‖∇∆un‖L2(Ω)

)

×
(

‖un‖
2
L2(Ω) + ‖∆un‖

2
L2(Ω)

)
1

2 ‖∇∆un‖L2(Ω)

≤ C
(

‖un‖
2
L2(Ω) + ‖∆un‖

2
L2(Ω)

)
3

2 ‖∇∆un‖L2(Ω) + C
(

‖un‖
2
L2(Ω) + ‖∆un‖

2
L2(Ω)

)
5

4 ‖∇∆un‖
3

2

L2(Ω) ,

with(2.4), (2.5) and (2.7).

• Estimate on I2
By Sobolev embeddings and interpolation, I2 is bounded as follow

|I2| ≤ ‖∇un‖L6(Ω)‖∆un‖L3(Ω)‖ ‖∇∆un‖L2(Ω) ,

≤ C
(

‖un‖
2
L2(Ω) + ‖∆un‖

2
L2(Ω)

)

‖∇∆un‖L2(Ω) + C
(

‖un‖
2
L2(Ω) + ‖∆un‖

2
L2(Ω)

)
3

4 ‖∇∆un‖
3

2

L2(Ω) ,

from (2.5) and (2.7).

• Estimate on I3

I3 =

∫

Ω
(∇un ∧H(un))∇∆undx+

∫

Ω
(un ∧∇H(un))∇∆undx.

|I3| ≤
(

‖∇un‖L6(Ω)‖H(un)‖L3(Ω) + ‖un‖L3(Ω)‖∇H(un)‖L6(Ω)

)

‖∇∆un‖L2(Ω) ,

|I3| ≤ C ‖∇∆un‖L2(Ω)

(

‖un‖
2
L2(Ω) + ‖∆un‖

2
L2(Ω)

)

,
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from (2.8), (2.9) and (2.5).

• Estimate on I4

I4 = I41 + I42 + I43,

with

I41 =

∫

Ω
∇un ∧ (un ∧H(un))∇∆undx,

I42 =

∫

Ω
un ∧ (∇un ∧H(un))∇∆undx,

I43 =

∫

Ω
un ∧ (un ∧∇H(un))∇∆undx,

We bound separately each term.

|I41| + |I42| ≤ 2 ‖un‖L∞(Ω) ‖∇un‖L6(Ω)‖H(un)‖L3(Ω) ‖∇∆un‖L2(Ω)

≤ C ‖un‖
2
L∞(Ω)

(

‖un‖
2
L2(Ω) + ‖∆un‖

2
L2(Ω)

)
1

2 ‖∇∆un‖L2(Ω)

from (2.5), (2.8).

|I43| ≤ C ‖un‖
2
L∞(Ω) ‖∇H(un)‖L2(Ω) ‖∇∆un‖L2(Ω) ,

≤ C ‖un‖
2
L∞(Ω)

(

‖un‖
2
L2(Ω) + ‖∆un‖

2
L2(Ω)

)
1

2 ‖∇∆un‖L2(Ω) ,

Summing the estimates on I1, I2, I3 and I4, and using (2.4), we obtain that there exists a
constant C independent of u0 and n such that

d

dt

(

‖∆un‖L2(Ω)

)2
+ 2 ‖∇∆un‖

2
L2(Ω) ≤

C

(

1 +
(

‖un‖
2
L2(Ω) + ‖∆un‖

2
L2(Ω)

)
5

4

)

‖∇∆un‖
3

2

L2(Ω) .

(3.4)

Fourth step : limit when n goes to +∞.

Summing (3.3) and (3.4) and absorbing ‖∇∆un‖L2(Ω), one finds a constant k1 such that

d

dt

(

‖un‖
2
L2(Ω) + ‖∆un‖

2
L2(Ω)

)

+ ‖∇∆un‖
2
L2(Ω) ≤

k1

(

1 +
(

‖un‖
2
L2(Ω) + ‖∆un‖

2
L2(Ω)

)5
)

.

(3.5)

Using the comparison Lemma, we obtain that there exist a time T ∗ and a constant C depending
on the size of the initial data in H2(Ω), but independent of n, such that for any T < T ?

sup
t≤T

‖un(t)‖2
H2(Ω) ≤ C,
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∫ T

0

(

‖∇un(τ)‖2
L2 + ‖∇∆un(τ)‖2

L2

)

dτ ≤ C,

and also, by the equation (3.2),

sup
t≤T

‖
∂un

∂t
(t)‖2

L2(Ω) ≤ C,

∫ T

0
‖
∂

∂t
∇un(τ)‖2

L2(Ω)dτ ≤ C.

Hence, we obtain the existence of a subsequence unk
and a function u such that



































unk
⇀ u in L2(0, T ;H3(Ω)) weak,

unk
⇀ u in L∞(0, T ;H2(Ω)) weak?,

∂unk

∂t
⇀

∂u

∂t
in L2(0, T ;H1(Ω)) weak,

and according to Aubin’s lemma we can assume that

unk
−→ u in L2(0, T ;H2(Ω)) strong.

And so,
unk

−→ u in Lp(0, T ;H2(Ω)) strong, 1 < p <∞

Moreover, as H is a continuous map on Hm(Ω), for m = 0, 1, 2, one has

H(unk
) −→ H(u) in Lp(0, T ;H2(Ω)) strong, 1 < p <∞

So, we can take the limit in (3.2), and we obtain that u satisfies







































∂u

∂t
− ∆u = |∇u|2u+ u ∧ (∆u+H (u)) − u ∧ (u ∧H (u)) on [0, T ?[×Ω

∂u

∂ν
= 0 on [0, T ?[×∂Ω,

u(0) = u0

3.2 Conservation of the ponctual norm

Taking the scalar product in IR3 of (3.1) by u , we get

1

2

d

dt
|u|2 − (u · ∆u) − |∇u|2 |u|2 = 0 in (0, T ) × Ω. (3.6)

As u belongs to L∞
(

(0, T );H2(Ω)
)

the following identity is valid for d ≤ 3:

∆|u|2 = 2 (u · ∆u) + 2|∇u|2,

so (3.6) becomes
d

dt
|u|2 − ∆|u|2 − 2|∇u|2(|u|2 − 1) = 0.
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Let us note by b = |u|2 − 1. We have proved that b solves







































∂b

∂t
− ∆b− 2|∇u|2b = 0

∂b

∂ν
= 0 on ∂Ω

b(0) = |u0|
2 − 1 = 0

(3.7)

Now, we remark that |∇u|2 belongs to L1(0, T ;L∞(Ω)) since H2(Ω) ⊂ L∞(Ω). Hence the energy
estimate associated to (3.7) gives

d

dt
‖b‖2

L2 + ‖∇b‖2
L2 ≤ ‖∇u‖2

L∞‖b‖2
L2

and we conclude that ‖b‖2
L2 = 0 through Gronwall inequality.

So we have proved that |u| = 1 in [0, T ] × Ω, as soon as |u0| = 1 on Ω.

Now, if |u| ≡ 1, then (3.1) is equivalent to (1.1). Hence, the proof of Theorem 1.1 is fulfilled.

4 Stability Results

Let us denote by u1 and u2 two solutions of (3.1), T ? = min(T ?
1 , T

?
2 ), and v = u1 − u2. Then,

we have the following proposition

Proposition 4.1 For all T < T ?, there exists a constant C such that

sup
t≤T

‖v(t)‖2
L2 ≤ C‖v(0)‖2

L2 .

Furthermore, we can prove the following H2 stability result

Proposition 4.2 For all T < T ? there exists a constant C such that

sup
t≤T

(

‖v(t)‖2
L2(Ω) + ‖∆v(t)‖2

L2(Ω)

)

≤ C
(

‖v(0)‖2
L2(Ω) + ‖∆v(0)‖2

L2(Ω)

)

.

and such that
‖v‖L2(0,T ;H3(Ω)) ≤ C

(

‖v(0)‖2
L2(Ω) + ‖∆v(0)‖2

L2(Ω)

)

.

4.1 Uniqueness and L
2 stability

Proof : the difference v satisfies the following equation

∂v

∂t
− ∆v = v ∧ (∆u1 +H(u1)) + u2 ∧ (∆v +H(v))

+|∇u1|
2v +

(

|∇u1|
2 − |∇u2|

2
)

u2 − v ∧ (u1 ∧H(u1))

−u2 ∧ (v ∧H(u1) + u2 ∧H(v)) .

(4.1)
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Taking the inner product in L2 of (4.1) by v, we obtain

1

2

d

dt

(

‖v‖2
L2(Ω)

)

+ ‖∇v‖2
L2(Ω) ≤

∫

Ω
(u2 ∧ ∆v) vdx+

∫

Ω
(u2 ∧H(v)) vdx

+

∫

Ω
|∇u1|

2|v|2dx+

∫

Ω
(|∇u1| + |∇u2|) |∇v||u2||v|dx

−

∫

Ω
u2 ∧ (v ∧H(u1)) vdx−

∫

Ω
u2 ∧ (u2 ∧H(v)) vdx.

After an integration by parts of the first term of the right-hand side of the equation above, we
obtain, as |u1| ≡ 1 and |u2| ≡ 1,

1

2

d

dt

(

‖v‖2
L2(Ω)

)

+2 ‖∇v‖
2
L2(Ω) ≤ ‖v‖L2(Ω) ‖∇v‖L2(Ω) ‖∇u2‖L∞(Ω)

+C
(

1 + ‖∇u1‖
2
L∞(Ω)

)

‖v‖2
L2(Ω) + ‖H(u

1
)‖L∞(Ω) ‖v‖

2
L2(Ω)

+C
(

‖∇u1‖L∞(Ω) + ‖∇u2‖L∞(Ω)

)

‖∇v‖L2(Ω) ‖v‖L2(Ω) .

As u1 and u2 are bounded in L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H3(Ω)), we obtain that there exists a
function f belonging to L1(0, T ) such that

1

2

d

dt
‖v‖2

L2 + ‖∇v‖2
L2 ≤ f(t)‖v‖2

L2 . (4.2)

The end of the proof of Proposition 4.1 follows from Gronwall lemma.

4.2 H
2 stability

We go back to Galerkin approximation of (4.1). Taking the inner product of this approximation
with ∆2vn, integrating by parts on Ω, integrating in time between 0 and t, and taking the limit
when n tends to +∞, we obtain the following inequality, using the lower semi-continuity of the
norm under the weak topology

1

2
‖∆v(t)‖2

L2(Ω) +

∫ t

0
‖∇∆v‖2

L2(Ω) ≤
1

2
‖∆v0‖

2
L2(Ω) +

∫ t

0
(I1 + . . .+ I8) (s)ds

where I1, . . . , I8 are eight terms which we bound separately without details

• I1 =

∣

∣

∣

∣

∫

Ω
∇ (v ∧ ∆u1)∇∆vdx

∣

∣

∣

∣

≤ g1(t)
(

‖v‖2
L2(Ω) + ‖∆v‖2

L2(Ω)

)
1

2 ‖∇∆v‖L2(Ω) ,

where g1 ∈ L2(0, T ).

• I2 =

∣

∣

∣

∣

∫

Ω
∇ (v ∧H(u1))∇∆vdx

∣

∣

∣

∣

≤ g2(t)
(

‖v‖2
L2(Ω) + ‖∆v‖2

L2(Ω)

)
1

2 ‖∇∆v‖L2(Ω) ,

where g2 ∈ L∞(0, T ).

• I3 =

∣

∣

∣

∣

∫

Ω
∇ (u2 ∧ ∆v)∇∆vdx

∣

∣

∣

∣

≤ g3(t)
(

‖v‖2
L2(Ω) + ‖∆v‖2

L2(Ω)

)
1

2 ‖∇∆v‖L2(Ω) ,

where g3 ∈ L4(0, T ).
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• I4 =

∣

∣

∣

∣

∫

Ω
∇ (u2 ∧H(v))∇∆vdx

∣

∣

∣

∣

≤ g4(t)
(

‖v‖2
L2(Ω) + ‖∆v‖2

L2(Ω)

)
1

2 ‖∇∆v‖L2(Ω) ,

where g4 ∈ L∞(0, T ).

• I5 =

∣

∣

∣

∣

∫

Ω
∇

(

|∇u
1
|2v

)

∇∆vdx

∣

∣

∣

∣

≤ g5(t)
(

‖v‖2
L2(Ω) + ‖∆v‖2

L2(Ω)

)
1

2 ‖∇∆v‖L2(Ω) ,

where g5 ∈ L1(0, T ).

• I6 =

∣

∣

∣

∣

∫

Ω
∇

((

|∇u1|
2 − |∇u2|

2
)

u2

)

∇∆vdx

∣

∣

∣

∣

≤ g6(t)

(

(

‖v‖2
L2(Ω) + ‖∆v‖2

L2(Ω)

)

+
(

‖v‖2
L2(Ω) + ‖∆v‖2

L2(Ω)

)
1

2 ‖∇∆v‖L2(Ω)

)

where g6 ∈ L4(0, T ).

• I7 =

∣

∣

∣

∣

∫

Ω
∇ (v ∧ (u1 ∧H(u1)))∇∆vdx

∣

∣

∣

∣

≤ g7(t)
(

‖v‖2
L2(Ω) + ‖∆v‖2

L2(Ω)

)
1

2 ‖∇∆v‖L2(Ω) ,

where g7 ∈ L∞(0, T ).

• I8 =

∣

∣

∣

∣

∫

Ω
∇ (u2 ∧ (v ∧H(u1) + u2 ∧H(v)))∇∆vdx

∣

∣

∣

∣

≤ g8(t)
(

‖v‖2
L2(Ω) + ‖∆v‖2

L2(Ω)

)

,

where g8 ∈ L∞(0, T ).

Furthermore, using Young inequality, we get the existence of a function denoted f lying in
L1(0, T ) such that

‖∆v(t)‖2
L2(Ω) + 2

∫ t

0
‖∇∆v(s)‖2

L2(Ω) ds ≤ ‖∆v0‖
2
L2(Ω)

+

∫ t

0
f(s)

(

‖v(s)‖2
L2(Ω) + ‖∆v(s)‖2

L2(Ω)

)

ds.

(4.3)

Then, integrating (4.2) and summing with (4.3) we obtain

(

‖v(t)‖2
L2(Ω) + ‖∆v(t)‖2

L2(Ω)

)

+ 2

∫ t

0

(

‖∆v(s)‖2
L2(Ω) + ‖∇∆v(s)‖2

L2(Ω) ds
)

≤

(

‖v0‖
2
L2(Ω) + ‖∆v0‖

2
L2(Ω)

)

+

∫ t

0
f(s)

(

‖v(s)‖2
L2(Ω) + ‖∆v(s)‖2

L2(Ω)

)

ds

Using Gronwall Lemma, we derive the proof of Proposition 4.2 and Theorem 1.2.
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5 Proof of Theorem 1.4

We deal now with the problem (1.3)

(1.3)























































∂u
∂t

= u ∧ ∆u− u ∧ (u ∧ ∆u)

∂u

∂ν
= 0 on ∂Ω

u(0) = u0,

|u| ≡ 1.

Under Assumption (H), the proof of local existence of regular solutions (see Theorem 1.3) is
now straightforward : it is a simplification of the proof of Theorem 1.1.
Now, in the 2D case, we can improve the previous result by showing global existence for small
data.

First step : energy estimate on ∇u.

We observe that as |u| ≡ 1, the first equation of (5.4) is equivalent to

∂u

∂t
− u ∧ ∆u+ u ∧ (u ∧ ∆u) = 0 (5.1)

and to
∂u

∂t
+ u ∧

∂u

∂t
− 2u ∧ ∆u = 0. (5.2)

Now multiplying (5.1) by
∂u

∂t
and (5.2) by −2∆u we get

‖∇u(t)‖2
L2(Ω) +

∫ t

0
‖
∂u

∂t
(τ)‖2

L2(Ω)dτ = ‖∇u0‖
2
L2(Ω). (5.3)

Second step : estimate on ∆u.

We know that for regular solutions, (1.3) is equivalent to the following problem























































∂u
∂t

− ∆u = −|∇u|2u+ u ∧ ∆u on [0, T ] × Ω

∂u

∂ν
= 0 on [0, T ] × ∂Ω

u(0) = u0,

|u| = 1 on [0, T ] × Ω.

(5.4)

Taking the inner product in L2(Ω) of the first equation of (5.4) by ∆u, we obtain since (u ·∆u) =
−|∇u|2,

1

2

d

dt
‖∇u‖2

L2(Ω) + ‖∆u‖2
L2(Ω) ≤ ‖∇u‖4

L4(Ω). (5.5)
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In two dimensional space, the following Sobolev estimate is valid :

‖∇u‖L4(Ω) ≤ C(Ω)‖∇u‖
1/2
L2(Ω)

(

‖∇u‖2
L2(Ω) + ‖∆u‖2

L2(Ω)

)1/4
,

‖∇u‖L6(Ω) ≤ C(Ω)‖∇u‖
1/3
L2(Ω)

(

‖∇u‖2
L2(Ω) + ‖∆u‖2

L2(Ω)

)1/3
,

‖∇u‖L∞(Ω) ≤ C(Ω)‖∇u‖
1/2
L2(Ω)

(

‖∇u‖2
L2(Ω) + ‖∆u‖2

L2(Ω) + ‖∇∆u‖2
L2(Ω)

)1/4
,

‖∆u‖L4(Ω) ≤ C(Ω)‖∆u‖
1/2
L2(Ω)

(

‖∆u‖2
L2(Ω) + ‖∇∆u‖2

L2(Ω)

)1/4
.

(5.6)

So inequality (5.5) gives

d

dt
‖∇u‖2

L2(Ω) +
(

1 − C1‖∇u‖
2
L2(Ω)

)

‖∆u‖2
L2(Ω) ≤ C2‖∇u‖

4
L2(Ω). (5.7)

Using (5.3), we obtain that

d

dt
‖∇u‖2

L2(Ω) +
(

1 − C1‖∇u0‖
2
L2(Ω)

)

‖∆u‖2
L2(Ω) ≤ C2‖∇u0‖

4
L2(Ω). (5.8)

Integrating (5.8) between 0 and t, using (5.8), we obtain that if ‖∇u0‖
2
L2(Ω) ≤

1

2C1
, then

∫ t

0
‖∆u(τ)‖2

L2(Ω) dτ ≤ ‖∇u0‖
2
L2(Ω) + C2 ‖∇u0‖

4
L2(Ω) t. (5.9)

Third step : estimate on ∇∆u.

As in Section 3.1, we build regular solutions of (5.4) using a Galerkin approximation process.

We seek a solution un in Vn to















∂un

∂t
− ∆un = Pn

(

|∇un|
2un + un ∧ ∆un

)

,

un(0) = Pn(u0).

(5.10)

Taking the inner product of (5.10) by ∆2un, we obtain that

1

2

d

dt

(

‖∆un‖
2
L2(Ω)

)

+ ‖∇∆un‖
2
L2(Ω) ≤ ‖∇un‖

3
L6(Ω) ‖∇∆un‖L2(Ω)

+ ‖un‖L∞(Ω) ‖∇un‖L∞(Ω)

(

‖∇un‖
2
L2(Ω) + ‖∆un‖

2
L2(Ω)

)1/2
‖∇∆un‖L2(Ω)

+ ‖∇un‖L4(Ω) ‖∆un‖L4(Ω) ‖∇∆un‖L2(Ω) .

According to inequality (5.6), we get
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d

dt
‖∆un‖

2
L2(Ω) + ‖∇∆un‖

2
L2(Ω) ≤ C ‖∇un‖L2(Ω)

{

‖∇un‖
2
L2(Ω) + ‖∆un‖

2
L2(Ω)

}

‖∇∆un‖L2(Ω)

+C ‖un‖L∞(Ω) ‖∇un‖
1/2
L2(Ω)

{

‖∇un‖
2
L2(Ω) + ‖∆un‖

2
L2(Ω) + ‖∇∆un‖

2
L2(Ω)

}1/4

×
{

‖∇un‖
2
L2(Ω) + ‖∆un‖

2
L2(Ω)

}1/2
‖∇∆un‖L2(Ω)

+C ‖∇un‖
1/2
L2(Ω)

{

‖∇un‖
2
L2(Ω) + ‖∆un‖

2
L2(Ω)

}1/4

×
{

‖∆un‖
2
L2(Ω) + ‖∇∆un‖

2
L2(Ω)

}1/4
‖∆un‖

1/2
L2(Ω) ‖∇∆un‖L2(Ω) .

Using Young inequality, and after absorbtion of the higher degree term, we get

d

dt
‖∆un‖

2
L2(Ω) + ‖∇∆un‖

2
L2(Ω) ≤ C ‖∇un‖

2
L2(Ω)

{

‖∇un‖
2
L2(Ω) + ‖∆un‖

2
L2(Ω)

}2

+C ‖un‖
2
L∞(Ω) ‖∇un‖L2(Ω)

{

‖∇un‖
2
L2(Ω) + C ‖∆un‖

2
L2(Ω)

}3/2

+C ‖un‖
4
L∞(Ω) ‖∇un‖

2
L2(Ω)

{

‖∇un‖
2
L2(Ω) + ‖∆un‖

2
L2(Ω)

}2

+C ‖∇un‖L2(Ω)

{

‖∇un‖
2
L2(Ω) + ‖∆un‖

2
L2(Ω)

}1/2
‖∆un‖

2
L2(Ω)

+C ‖∇un‖
2
L2(Ω)

{

‖∇un‖
2
L2(Ω) + ‖∆un‖

2
L2(Ω)

}

‖∆un‖
2
L2(Ω) .

We perform an integration in time of the previous equation. As |u| ≡ 1, ‖∇u(t)‖L2 ≤ ‖∇u0‖L2

and as the norms are lower semi continuous for the weak topology we obtain
a constant k4 such that

‖∆u(t)‖2
L2(Ω) +

∫ t

0
‖∇∆u(τ)‖2

L2(Ω)dτ ≤ ‖∆u0‖L2(Ω) + k4

∫ t

0
(1 + ‖∆u(τ)‖4

L2(Ω))dτ (5.11)

Fourth step : conclusion.

Now for ‖∇u0‖
2
L2(Ω) ≤

1
2C1

, we have obtain inequality (5.9) in the second step.

So we can apply Gronwall lemma to (5.11) to obtain

∀ t ≤ T < T ?, ‖∆u(t)‖2
L2(Ω) +

∫ t

0
‖∇∆u(τ)‖2

L2(Ω)dτ ≤ h(t)

where h is a nonnegative continuous function on IR+. So the solution given by theorem 1.3 is
global as soon as

‖∇u0‖
2
L2(Ω) ≤

1

2C1
.

This ends the proof of Theorem 1.4.

16



References

[1] R. A. Adams, “ Sobolev space, Pure and Applied Math. ”, Vol 65, Academic press 1975.

[2] S. Agmon, “ Elliptic boundary values problems”, Van Nostrand Company, 1965.

[3] F. Alouges and A. Soyeur, On global solutions for Landau Lifschitz equations : existence
and non uniqueness, Nonlinear Anal. TMA 18 (11) 1071-1084 (1992).

[4] W.F. Brown, “ Micromagnetics, Interscience Publisher”, John Willey and Sons, New York
1963.

[5] G. Carbou and F. Fabrie, Time average in Micromagnetism, Journal of Differential Equa-
tions 147, 383-409 (1998) .

[6] G. Carbou and F. Fabrie, Regular solutions for Landau-Lifschitz equation in IR3, Commu-
nications in Applied Analysis, to appear.

[7] R. Dautray, J.-L. Lions, “Mathematical analysis and numerical methods, sciences and
technology”, Springer Verlag.

[8] G. Foias and R. Temam, Remarques sur les équations de Navier-Stokes stationnaires et les
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