Regular Solutions for Landau-Lifschitz Equation in a Bounded Domain.

Gilles Carbou, Pierre Fabrie

Mathématiques Appliquées de Bordeaux, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence cedex, France.

Abstract

: in this paper we prove local existence and uniqueness of regular solutions for a quasistatic model arising in micromagnetism theory. Moreover we show global existence of regular solutions for small data in the 2D case for the Landau-Lifschitz equation. These results extend those already obtained by the authors in the whole space.

AMS Subjects : 35K20, 35Q60.

1 Introduction

The micromagnetism theory is the study of electromagnetic phenomena occuring in soft magnetic material (see [4]). A soft magnetic material is characterized by a spontaneous magnetisation represented by a magnetic moment denoted by $u(t, x)$. This vector field is defined in $[0, T] \times \Omega$, where Ω is the domain where the material is confined. It links the magnetic field H and the magnetic induction by the relation $B=H+\bar{u}$, where \bar{u} is the extension of u by zero outside Ω. Furthermore the norm of u is constant and equal to 1 in $[0, T] \times \Omega$.

The behavior of u is governed by the following Landau-Lifschitz type equation

$$
\begin{cases}\frac{\partial u}{\partial t}-u \wedge(\Delta u+H(u))+u \wedge(u \wedge(\Delta u+H(u)))=0 & \text { in }[0, T] \times \Omega \tag{1.1}\\ \frac{\partial u}{\partial \nu}=0 & \text { on }[0, T] \times \partial \Omega \\ u(0, \cdot)=u_{0} & \text { in } \Omega,\end{cases}
$$

where ν is the outward unitary normal on $\partial \Omega$.
In this equation, $H(u)$ represents the magnetic field generated by u. The operator $v \mapsto H(v)$ is defined for v in $L^{2}(\Omega)$ by :

$$
\left\{\begin{array}{l}
\operatorname{curl} H(v)=0 \text { in } \mathbb{R}^{3} \text { (from stationary Maxwell equation), } \tag{1.2}\\
\operatorname{div}(H(v)+\bar{v})=0 \text { in } \mathbb{R}^{3} \text { (since div } B=0 \text { according to Faraday's law), } \\
H(v) \in L^{2}\left(\mathbb{R}^{3}\right),
\end{array}\right.
$$

where \bar{v} is the extension of v by zero outside Ω.
We assume that the initial data u_{0} satisfies the hypothesis (\mathcal{H}) below

$$
(\mathcal{H})\left\{\begin{array}{l}
u_{0} \in H^{2}(\Omega) \\
\frac{\partial u_{0}}{\partial \nu}=0 \text { on } \partial \Omega \\
\left|u_{0}\right| \equiv 1
\end{array}\right.
$$

Our first result is one of local existence and uniqueness of a regular solution for (1.1).
Theorem 1.1 Assuming that u_{0} satisfies (\mathcal{H}), there exists a time $T^{*}>0$ depending only on the size of the data and there exists a unique u such that for all $T<T^{*}$,

$$
\left\{\begin{array}{l}
u \in \mathcal{C}^{0}\left([0, T] ; H^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H^{3}(\Omega)\right), \\
|u(x, t)|=1 \text { in }[0, T] \times \Omega, \\
u \text { satisfies (1.1). }
\end{array}\right.
$$

We next prove the following stability result of the solution.
Theorem 1.2 Under assumption (\mathcal{H}), the regular solution given by theorem 1.1 depends continuously on u_{0} for the topology of $\mathcal{C}^{0}\left([0, T] ; H^{2}(\Omega)\right)$.

Finally, we consider the following problem

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=u \wedge \Delta u-u \wedge(u \wedge \Delta u) \text { in }[0, T] \times \Omega, \tag{1.3}\\
\frac{\partial u}{\partial \nu}=0 \text { on }[0, T] \times \partial \Omega, \\
u(0, x)=u_{0}(x) \text { in } \Omega, \\
|u(t, x)|=1 \text { in }[0, T] \times \Omega .
\end{array}\right.
$$

Adapting the proof of Theorem 1.1 we obtain that
Theorem 1.3 Under assumption (\mathcal{H}), there exists a time $T^{*}>0$ and there exists a unique $u \in \mathcal{C}^{0}\left([0, T] ; H^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H^{3}(\Omega)\right)$ for all $T<T^{*}$ such that u satisfies (1.3).

In the 2 dimensional case, we can improve this result and we obtain a theorem of global existence for small data.

Theorem 1.4 Assuming that $\Omega \subset \mathbb{R}^{2}$, there exists $\delta>0$ such that if u_{0} satisfies (\mathcal{H}) and if $\left\|\nabla u_{0}\right\|_{H^{1}(\Omega)} \leq \delta$ then the regular solution of (1.3) with initial data u_{0} exists on \mathbb{R}^{+}.

The paper is organized as follows. In section 2, we prove technical Lemmas. Section 3 is devoted to the proof of Theorem 1.1. We prove the stability theorem in section 4. In the last part, we establish Theorem 1.4. The proof of Theorem 1.3 is a simple adaptation of Theorem 1.1 and is left to the reader.

2 Preliminary results

2.1 Regularity results

Lemma 2.1 Let Ω be a bounded regular open set. There exists a constant C such that for all $u \in H^{2}(\Omega)$ such that $\frac{\partial u}{\partial \nu}=0$ on $\partial \Omega$,

$$
\begin{equation*}
\|u\|_{H^{2}(\Omega)} \leq C\left(\|u\|_{L^{2}(\Omega)}^{2}+\|\Delta u\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}} \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\|\nabla u\|_{H^{1}(\Omega)} \leq C\left(\|\nabla u\|_{L^{2}(\Omega)}^{2}+\|\Delta u\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}}, \tag{2.2}
\end{equation*}
$$

and for $u \in H^{3}(\Omega)$ such that $\frac{\partial u}{\partial \nu}=0$ on $\partial \Omega$,

$$
\begin{equation*}
\|\nabla u\|_{H^{2}(\Omega)} \leq C\left(\|\nabla u\|_{L^{2}(\Omega)}^{2}+\|\Delta u\|_{L^{2}(\Omega)}^{2}+\|\nabla \Delta u\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}} . \tag{2.3}
\end{equation*}
$$

Proof. The first inequality results from the regularity of the operator $A=I-\Delta$ with domain

$$
D(A)=\left\{u \in H^{2}(\Omega), \frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega\right\}
$$

see for example [7].
Furthermore, in [8], we find the following result
Proposition 2.1 Let Ω be a bounded regular open set of \mathbb{R}^{d}, $d \leq 3$. Then, there exists a constant C such that for all $V \in H^{m}(\Omega)$ such that $V \cdot \nu=0$ on $\partial \Omega$,

$$
\|V\|_{H^{m}(\Omega)} \leq C\left(\|V\|_{L^{2}(\Omega)}+\|\operatorname{div} V\|_{H^{m-1}(\Omega)}+\|\operatorname{curl} V\|_{H^{m-1}(\Omega)}\right) .
$$

We set $V=\nabla u$ and since $\frac{\partial u}{\partial \nu}=0$ on $\partial \Omega$, we can apply Proposition 2.1 to conclude the proof of Lemma 2.1.

Using Lemma 2.1 and the classical interpolation inequality, we rewrite Sobolev and GagliardoNirenberg inequalities on the following form:

Lemma 2.2 Let Ω be a regular bounded domain of \mathbb{R}^{3}. There exists a constant C such that for all $u \in H^{2}(\Omega)$ such that $\frac{\partial u}{\partial \nu}=0$ on $\partial \Omega$,

$$
\begin{gather*}
\|u\|_{L^{\infty}(\Omega)} \leq C\left(\|u\|_{L^{2}(\Omega)}^{2}+\|\Delta u\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}}, \tag{2.4}\\
\|\nabla u\|_{L^{6}(\Omega)} \leq C\left(\|u\|_{L^{2}(\Omega)}^{2}+\|\Delta u\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}}, \tag{2.5}\\
\|\nabla u\|_{L^{4}(\Omega)}^{2} \leq C\|u\|_{L^{\infty}(\Omega)}\left(\|u\|_{L^{2}}^{2}+\|\Delta u\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}}, \tag{2.6}
\end{gather*}
$$

and for all $u \in H^{3}(\Omega)$ such that $\frac{\partial u}{\partial \nu}=0$ on $\partial \Omega$,

$$
\begin{equation*}
\left\|D^{2} u\right\|_{L^{3}(\Omega)} \leq C\left(\left(\|u\|_{L^{2}(\Omega)}^{2}+\|\Delta u\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}}+\left(\|u\|_{L^{2}(\Omega)}^{2}+\|\Delta u\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{4}}\|\nabla \Delta u\|_{L^{2}(\Omega)}^{\frac{1}{2}}\right) . \tag{2.7}
\end{equation*}
$$

Proof. In the estimates (2.4)-(2.5) we use (2.1) and classical embedding theorem.
Estimate (2.6) is the well known Gagliardo-Nirenberg inequality, and (2.7) is the usual embeding of $H^{1 / 2}(\Omega)$ in $L^{3}(\Omega)$.

2.2 Study of the operator H

We consider the operator $u \mapsto H(u)$ defined by (1.2). It satisfies

$$
\begin{cases}H(u) \in L^{2}\left(\mathbb{R}^{3}\right), & \\ \operatorname{curl} H(u)=0 & \text { in } \mathbb{R}^{3} \\ \operatorname{div}(H(u)+\bar{u})=0 & \text { in } \mathbb{R}^{3}\end{cases}
$$

where \bar{u} is the extension of u by zero outside $\bar{\Omega}$.
We observe that $u \mapsto-H(u)$ is the orthogonal projection of \bar{u} on the vector fields of gradients in $L^{2}\left(\mathbb{R}^{3}\right)$. Classicaly, we have

$$
\begin{equation*}
\|H(u)\|_{L^{p}(\Omega)} \leq c\|u\|_{L^{p}(\Omega)}, \quad 1<p<+\infty \tag{2.8}
\end{equation*}
$$

Following Ladyshenskaya [10] page 196 we can derive the following regularity result
Lemma 2.3 Let $p \in] 1,+\infty\left[\right.$. Then, if u belongs to $W^{1, p}(\Omega)$ (resp. $W^{2 . p}(\Omega)$), the restriction of $H(u)$ to Ω belongs to $W^{1, p}(\Omega)$ (resp. $W^{2 \cdot p}(\Omega)$) and there exists a constant C such that

$$
\begin{equation*}
\|H(u)\|_{W^{1, p}(\Omega)} \leq C\|u\|_{W^{1, p}(\Omega)}, \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\|H(u)\|_{W^{2, p}(\Omega)} \leq C\|u\|_{W^{2, p}(\Omega)} . \tag{2.10}
\end{equation*}
$$

Proof : as curl $H=0$ in \mathbb{R}^{3} we can assume that H is gradient vector field

$$
H=-\nabla \psi .
$$

So we have to solve

$$
\begin{cases}-\Delta \psi=-\operatorname{div} u & \text { in } \Omega, \tag{2.11}\\ -\Delta \psi=0 & \text { in } \Omega^{\prime}, \\ {[\psi]_{\mid \partial \Omega}=0,\left[\frac{\partial \psi}{\partial \nu}\right]_{\mid \partial \Omega}=u \cdot \nu,} & \end{cases}
$$

where $\Omega^{\prime}={ }^{C} \bar{\Omega}$ and $\left.[\psi]\right|_{\partial \Omega}$ is the jump of ψ across $\partial \Omega$.
First step : $W^{1, p}$ regularity.
The main idea is to reduce the problem to an homogeneous problem in \mathbb{R}^{3}.
By classical properties of the trace operator, for u belonging to $W^{k, p}(\Omega)$, there exists a function ψ_{1} in $W^{k+1, p}\left(\Omega_{2} \backslash \bar{\Omega}\right)$ such that

$$
\left.\psi_{1}\right|_{\partial \Omega}=0,\left.\psi_{1}\right|_{\partial \Omega_{2}^{\prime}}=0,\left.\frac{\partial \psi_{1}}{\partial \nu}\right|_{\partial \Omega_{2}^{\prime}}=0,\left.\frac{\partial \psi_{1}}{\partial \nu}\right|_{\partial \Omega}=u \cdot \nu
$$

Obviously, one has, for some constante c

$$
\left\|\psi_{1}\right\|_{W^{k+1, p}\left(\Omega_{2} \backslash \bar{\Omega}\right)} \leq c\|u\|_{W^{k, p}(\Omega)} .
$$

So, it is equivalent to find a ψ solution of (2.11) or to find a φ solution of the following homogeneous problem

$$
\begin{cases}-\Delta \varphi=-\operatorname{div} u & \text { in } \Omega, \tag{2.12}\\ -\Delta\left(\varphi+\psi_{1}\right)=0 & \text { in } \Omega_{2} \backslash \bar{\Omega} \\ -\Delta \varphi=0 & \text { in } \Omega_{2}^{\prime} \\ {\left.[\varphi]\right|_{\partial \Omega_{2}}=\left.0\left[\frac{\partial \varphi}{\partial \nu}\right]\right|_{\partial \Omega_{2}}=0,} & \end{cases}
$$

In the sequel we use the following notations : $f_{1}=-\operatorname{div} u \mathbb{I}_{\Omega}, f_{2}=\Delta \psi_{1} \mathbb{I}_{\Omega_{2} \backslash \bar{\Omega}}$ and $f=f_{1}+f_{2}$. With these notations, φ is solution of

$$
\begin{equation*}
-\Delta \varphi=f \quad \text { in } \mathbb{R}^{3} \tag{2.13}
\end{equation*}
$$

and classical regularity results for the Dirichlet problem imply that there exists $\varphi \in W^{2, p}\left(\mathbb{R}^{3}\right)$ as soon as $f \in L^{p}\left(\mathbb{R}^{3}\right)$. So $\nabla \psi=\nabla \varphi$ belongs to $W^{1, p}(\Omega)$.
Second step : $W^{2, p}$ regularity.
If we assume that $f_{1} \in W^{1, p}(\Omega)$ and that $f_{2} \in W^{1, p}\left(\Omega_{2} \backslash \bar{\Omega}\right)$, we can show that φ belongs to $W^{3, p}(\Omega) \cap W^{3, p}\left(\Omega_{2} \backslash \bar{\Omega}\right) \cap W^{3, p}\left(\Omega_{2}^{\prime}\right)$.
Let us differentiate (2.13) in Ω, in $\Omega_{2} \backslash \bar{\Omega}$ and in Ω_{2}^{\prime}, we find

$$
\left\{\begin{array}{l}
-\Delta \frac{\partial \varphi}{\partial x}=\frac{\partial f_{1}}{\partial x} \text { in } \Omega \\
-\Delta \frac{\partial \varphi}{\partial x}=\frac{\partial f_{2}}{\partial x} \text { in } \Omega_{2} \backslash \bar{\Omega} \\
-\Delta \frac{\partial \varphi}{\partial x}=0 \text { in } \Omega_{2}^{\prime}
\end{array}\right.
$$

We observe that as $\left.[\varphi]\right|_{\Omega}=0$ and $\left.\left[\frac{\partial \varphi}{\partial \nu}\right]\right|_{\Omega}=0$, then $\left.\left[\frac{\partial \varphi}{\partial x}\right]\right|_{\Omega}=0$.
It remains to study the regularity of $\left.\left[\frac{\partial}{\partial \nu}\left(\frac{\partial \varphi}{\partial x}\right)\right]\right|_{\Omega}$.
We claim that $\left.\left[\frac{\partial}{\partial \nu}\left(\frac{\partial \varphi}{\partial x}\right)\right]\right|_{\Omega_{2}}$ has the same regularity as $\left.\left(f_{2}-f_{1}\right)\right|_{\partial \Omega_{2}}=\left.[\Delta \varphi]\right|_{\partial \Omega_{2}}$. This is obvious in the half space, and for regular open set, we have by local chart the following properties.

- For any tangential vector field $\tau,\left.\left[\frac{\partial}{\partial \tau}\left(\frac{\partial \varphi}{\partial x}\right)\right]\right|_{\partial \Omega_{2}}=0$
- $\left.\left[\frac{\partial}{\partial \nu}\left(\frac{\partial \varphi}{\partial x}\right)\right]\right|_{\partial \Omega_{2}}$ is equal to some linear expression between $\left.\left[\frac{\partial}{\partial \tau}\left(\frac{\partial \varphi}{\partial x}\right)\right]\right|_{\partial \Omega_{2}}=0$ and $\left.[\Delta \varphi]\right|_{\partial \Omega_{2}}$. So $\left[\frac{\partial}{\partial \nu}\left(\frac{\partial \varphi}{\partial x}\right)\right]\left|\left.\right|_{\partial \Omega_{2}} \text { has the same regularity as }\left(f_{2}-f_{1}\right)\right|_{\partial \Omega_{2}}$.
We have proved that $\frac{\partial \varphi}{\partial x}$ satisfies

$$
\left\{\begin{array}{l}
-\Delta \frac{\partial \varphi}{\partial x}=\frac{\partial f_{1}}{\partial x} \text { in } \Omega \\
-\Delta \frac{\partial \varphi}{\partial x}=\frac{\partial f_{2}}{\partial x} \text { in } \Omega_{2} \backslash \bar{\Omega} \\
-\Delta \frac{\partial \varphi}{\partial x}=0 \text { in } \Omega_{2}^{\prime} \\
{\left.\left[\frac{\partial \varphi}{\partial x}\right]\right|_{\partial \Omega_{2}}=0,\left.\left[\frac{\partial}{\partial \nu}\left(\frac{\partial \varphi}{\partial x}\right)\right]\right|_{\partial \Omega_{2}}=g}
\end{array}\right.
$$

where g belongs to $W^{1-1 / p, p}\left(\partial \Omega_{2}\right)$. Thus we conclude as in the previous step.

2.3 Comparison Lemma

We recall without proof a classical comparison Lemma.

Lemma 2.4 Let $f: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}, \mathcal{C}^{1}$ be non decreasing in its second variable.
Assume moreover that $y: I \subset \mathbb{R} \longrightarrow \mathbb{R}$ is a continuous function satisfying:

$$
\forall t>0, \quad y(t) \leq y_{0}+\int_{0}^{t} f(\tau, y(\tau)) d \tau
$$

Let $z: J \longrightarrow \mathbb{R}$ be the solution of

$$
\left\{\begin{array}{l}
z^{\prime}(t)=f(t, z(t)), \\
z(0)=y_{0}
\end{array}\right.
$$

Then $\forall t>0, \quad y(t) \leq z(t)$.

3 Proof of Theorem 1.1

Taking formaly the inner product in $L^{2}(\Omega)$ of (1.1) with Δu makes appear a dissipative term of the form $\|u \wedge \Delta u\|_{L^{2}(\Omega)}$. This dissipation is not sufficient to obtain energy estimate in $H^{2}(\Omega)$. We observe then, that for u regular enough and $|u|=1$ in Ω, the system (1.1) is equivalent to:

$$
\begin{cases}\frac{\partial u}{\partial t}-\Delta u=|\nabla u|^{2} u+u \wedge \Delta u+u \wedge H(u)-u \wedge(u \wedge H(u)) & \text { in } \mathbb{R}_{t}^{+} \times \Omega \tag{3.1}\\ \frac{\partial u}{\partial \nu}=0 & \text { on } \mathbb{R}_{t}^{+} \times \partial \Omega \\ u(0, \cdot)=u_{0} & \text { in } \Omega\end{cases}
$$

This equation appears to be more convenient to build regular approximate solutions of (1.1), provide we can show a posteriori that $|u| \equiv 1$. This property results from the uniqueness of the
following parabolic equation

$$
\left\{\begin{array}{l}
\frac{\partial a}{\partial t}-\Delta a-2|\nabla u|^{2}(a-1)=0 \\
\frac{\partial a}{\partial \nu}=0 \text { on } \partial \Omega \\
a(0, \cdot)=a_{0}=1
\end{array}\right.
$$

where $a=|u|^{2}$ for $u \in L^{\infty}\left(0, T ; H^{2}(\Omega)\right)$.

3.1 Resolution of (3.1)

First step : approximate problem.
We denote by V_{n} the finite dimension space built on the n first eigen-functions of $-\Delta+I d$ with domain $D(A)=\left\{u \in H^{2}(\Omega), \frac{\partial u}{\partial \nu}=0\right.$ on $\left.\partial \Omega\right\}$, and by P_{n} the orthogonal projection from $L^{2}(\Omega)$ on V_{n}.
So we seek a solution u_{n} in V_{n} of

$$
\left\{\begin{array}{l}
\frac{\partial u_{n}}{\partial t}-\Delta u_{n}-P_{n}\left[\left|\nabla u_{n}\right|^{2} u_{n}+u_{n} \wedge\left(\Delta u_{n}+H\left(u_{n}\right)\right)-u_{n} \wedge\left(u_{n} \wedge H\left(u_{n}\right)\right)\right]=0 \tag{3.2}\\
u_{n}(0)=P_{n}\left(u_{0}\right)
\end{array}\right.
$$

Thanks to the Cauchy-Lipschitz Theorem, there exists an unique solution of (3.2) defined on $\left[0, T_{n}[\right.$.
Second step : L^{2} estimate for the approximate solution.
Taking the inner product in $L^{2}(\Omega)$ of (3.2) by u_{n}, we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left(\left\|u_{n}\right\|_{L^{2}(\Omega)}^{2}\right)+\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)}^{2} \leq\left\|u_{n}\right\|_{L^{\infty}(\Omega)}^{2}\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)}^{2} \tag{3.3}
\end{equation*}
$$

Third step : H^{2} estimate for the approximate solution.
We take the inner product of (3.2) by $\Delta^{2} u_{n}$, and we integrate by parts to get

$$
\frac{1}{2} \frac{d}{d t}\left(\left\|\Delta u_{n}(t)\right\|_{L^{2}(\Omega)}^{2}\right)+\left\|\nabla \Delta u_{n}(t)\right\|_{L^{2}(\Omega)}^{2}=I_{1}+I_{2}+I_{3}+I_{4}
$$

with

$$
\begin{gathered}
I_{1}=\int_{\Omega} \nabla\left(\left|\nabla u_{n}(t)\right|^{2} u_{n}(t)\right) \nabla \Delta u_{n}(t) d x, \\
I_{2}=\int_{\Omega} \nabla \Delta\left(u_{n}(t) \wedge \Delta u_{n}(t)\right) \nabla \Delta u_{n}(t) d x, \\
I_{3}=\int_{\Omega} \nabla\left(u_{n}(t) \wedge H\left(u_{n}(t)\right)\right) \nabla \Delta u_{n}(t) d x, \\
I_{4}=-\int_{\Omega} \nabla\left(u_{n}(t) \wedge\left(u_{n}(t) \wedge H\left(u_{n}(t)\right)\right)\right) \nabla \Delta u_{n}(t) d x .
\end{gathered}
$$

We bound separately each term.

- Estimate on I_{1}

$$
\left|I_{1}\right| \leq C_{1} I_{11}+C_{2} I_{12}
$$

with

$$
I_{11}=\int_{\Omega}\left|\nabla u_{n}\right|^{3}\left|\nabla \Delta u_{n}\right| d x,
$$

and

$$
I_{12}=\int_{\Omega}\left|D^{2} u_{n}\right|\left|\nabla u_{n} \| u_{n}\right|\left|\nabla \Delta u_{n}\right| d x
$$

where $D^{p} u$ denotes the collection of all derivatives of order exactly p.
Using Lemma 2.2, we obtain

$$
\begin{gathered}
I_{11} \leq\left\|\nabla u_{n}\right\|_{L^{6}(\Omega)}^{3}\left\|\nabla \Delta u_{n}\right\|_{L^{2}(\Omega)} \\
\leq C\left(\left\|u_{n}\right\|_{L^{2}(\Omega)}^{2}+\left\|\Delta u_{n}\right\|_{L^{2}(\Omega)}^{2}\right)^{\frac{3}{2}}\left\|\nabla \Delta u_{n}\right\|_{L^{2}(\Omega)}
\end{gathered}
$$

from (2.5).
Furthermore

$$
\begin{aligned}
& \left|I_{12}\right| \leq\left\|u_{n}\right\|_{L^{\infty}(\Omega)}\left\|D^{2} u_{n}\right\|_{L^{3}(\Omega)}\left\|\nabla u_{n}\right\|_{L^{6}(\Omega)}\left\|\nabla \Delta u_{n}\right\|_{L^{2}(\Omega)}, \\
& \leq\left\|u_{n}\right\|_{L^{\infty}(\Omega)}\left(\left(\left\|u_{n}\right\|_{L^{2}(\Omega)}^{2}+\left\|\Delta u_{n}\right\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}}+\left(\left\|u_{n}\right\|_{L^{2}(\Omega)}^{2}+\left\|\Delta u_{n}\right\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{4}}\left\|\nabla \Delta u_{n}\right\|_{L^{2}(\Omega)}\right) \\
& \quad \times\left(\left\|u_{n}\right\|_{L^{2}(\Omega)}^{2}+\left\|\Delta u_{n}\right\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}}\left\|\nabla \Delta u_{n}\right\|_{L^{2}(\Omega)} \\
& \leq C\left(\left\|u_{n}\right\|_{L^{2}(\Omega)}^{2}+\left\|\Delta u_{n}\right\|_{L^{2}(\Omega)}^{2}\right)^{\frac{3}{2}}\left\|\nabla \Delta u_{n}\right\|_{L^{2}(\Omega)}+C\left(\left\|u_{n}\right\|_{L^{2}(\Omega)}^{2}+\left\|\Delta u_{n}\right\|_{L^{2}(\Omega)}^{2}\right)^{\frac{5}{4}}\left\|\nabla \Delta u_{n}\right\|_{L^{2}(\Omega)}^{\frac{3}{2}},
\end{aligned}
$$

with(2.4), (2.5) and (2.7).

- Estimate on I_{2}

By Sobolev embeddings and interpolation, I_{2} is bounded as follow

$$
\begin{gathered}
\left|I_{2}\right| \leq\left\|\nabla u_{n}\right\|_{L^{6}(\Omega)}\left\|\Delta u_{n}\right\|_{L^{3}(\Omega)}\| \| \nabla \Delta u_{n} \|_{L^{2}(\Omega)} \\
\leq C\left(\left\|u_{n}\right\|_{L^{2}(\Omega)}^{2}+\left\|\Delta u_{n}\right\|_{L^{2}(\Omega)}^{2}\right)\left\|\nabla \Delta u_{n}\right\|_{L^{2}(\Omega)}+C\left(\left\|u_{n}\right\|_{L^{2}(\Omega)}^{2}+\left\|\Delta u_{n}\right\|_{L^{2}(\Omega)}^{2}\right)^{\frac{3}{4}}\left\|\nabla \Delta u_{n}\right\|_{L^{2}(\Omega)}^{\frac{3}{2}},
\end{gathered}
$$

from (2.5) and (2.7).

- Estimate on I_{3}

$$
\begin{gathered}
I_{3}=\int_{\Omega}\left(\nabla u_{n} \wedge H\left(u_{n}\right)\right) \nabla \Delta u_{n} d x+\int_{\Omega}\left(u_{n} \wedge \nabla H\left(u_{n}\right)\right) \nabla \Delta u_{n} d x \\
\left|I_{3}\right| \leq\left(\left\|\nabla u_{n}\right\|_{L^{6}(\Omega)}\left\|H\left(u_{n}\right)\right\|_{L^{3}(\Omega)}+\left\|u_{n}\right\|_{L^{3}(\Omega)}\left\|\nabla H\left(u_{n}\right)\right\|_{L^{6}(\Omega)}\right)\left\|\nabla \Delta u_{n}\right\|_{L^{2}(\Omega)} \\
\left|I_{3}\right| \leq C\left\|\nabla \Delta u_{n}\right\|_{L^{2}(\Omega)}\left(\left\|u_{n}\right\|_{L^{2}(\Omega)}^{2}+\left\|\Delta u_{n}\right\|_{L^{2}(\Omega)}^{2}\right)
\end{gathered}
$$

from (2.8), (2.9) and (2.5).

- Estimate on I_{4}

$$
I_{4}=I_{41}+I_{42}+I_{43}
$$

with

$$
\begin{aligned}
& I_{41}=\int_{\Omega} \nabla u_{n} \wedge\left(u_{n} \wedge H\left(u_{n}\right)\right) \nabla \Delta u_{n} d x, \\
& I_{42}=\int_{\Omega} u_{n} \wedge\left(\nabla u_{n} \wedge H\left(u_{n}\right)\right) \nabla \Delta u_{n} d x, \\
& I_{43}=\int_{\Omega} u_{n} \wedge\left(u_{n} \wedge \nabla H\left(u_{n}\right)\right) \nabla \Delta u_{n} d x,
\end{aligned}
$$

We bound separately each term.

$$
\begin{gathered}
\left|I_{41}\right|+\left|I_{42}\right| \leq 2\left\|u_{n}\right\|_{L^{\infty}(\Omega)}\left\|\nabla u_{n}\right\|_{L^{6}(\Omega)}\left\|H\left(u_{n}\right)\right\|_{L^{3}(\Omega)}\left\|\nabla \Delta u_{n}\right\|_{L^{2}(\Omega)} \\
\quad \leq C\left\|u_{n}\right\|_{L^{\infty}(\Omega)}^{2}\left(\left\|u_{n}\right\|_{L^{2}(\Omega)}^{2}+\left\|\Delta u_{n}\right\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}}\left\|\nabla \Delta u_{n}\right\|_{L^{2}(\Omega)}
\end{gathered}
$$

from (2.5), (2.8).

$$
\begin{gathered}
\left|I_{43}\right| \leq C\left\|u_{n}\right\|_{L^{\infty}(\Omega)}^{2}\left\|\nabla H\left(u_{n}\right)\right\|_{L^{2}(\Omega)}\left\|\nabla \Delta u_{n}\right\|_{L^{2}(\Omega)}, \\
\leq C\left\|u_{n}\right\|_{L^{\infty}(\Omega)}^{2}\left(\left\|u_{n}\right\|_{L^{2}(\Omega)}^{2}+\left\|\Delta u_{n}\right\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}}\left\|\nabla \Delta u_{n}\right\|_{L^{2}(\Omega)},
\end{gathered}
$$

Summing the estimates on I_{1}, I_{2}, I_{3} and I_{4}, and using (2.4), we obtain that there exists a constant C independent of u_{0} and n such that

$$
\begin{gather*}
\frac{d}{d t}\left(\left\|\Delta u_{n}\right\|_{L^{2}(\Omega)}\right)^{2}+2\left\|\nabla \Delta u_{n}\right\|_{L^{2}(\Omega)}^{2} \leq \\
C\left(1+\left(\left\|u_{n}\right\|_{L^{2}(\Omega)}^{2}+\left\|\Delta u_{n}\right\|_{L^{2}(\Omega)}^{2}\right)^{\frac{5}{4}}\right)\left\|\nabla \Delta u_{n}\right\|_{L^{2}(\Omega)}^{\frac{3}{2}} . \tag{3.4}
\end{gather*}
$$

Fourth step : limit when n goes to $+\infty$.

Summing (3.3) and (3.4) and absorbing $\left\|\nabla \Delta u_{n}\right\|_{L^{2}(\Omega)}$, one finds a constant k_{1} such that

$$
\begin{gather*}
\frac{d}{d t}\left(\left\|u_{n}\right\|_{L^{2}(\Omega)}^{2}+\left\|\Delta u_{n}\right\|_{L^{2}(\Omega)}^{2}\right)+\left\|\nabla \Delta u_{n}\right\|_{L^{2}(\Omega)}^{2} \leq \\
k_{1}\left(1+\left(\left\|u_{n}\right\|_{L^{2}(\Omega)}^{2}+\left\|\Delta u_{n}\right\|_{L^{2}(\Omega)}^{2}\right)^{5}\right) . \tag{3.5}
\end{gather*}
$$

Using the comparison Lemma, we obtain that there exist a time T^{*} and a constant C depending on the size of the initial data in $H^{2}(\Omega)$, but independent of n, such that for any $T<T^{\star}$

$$
\sup _{t \leq T}\left\|u_{n}(t)\right\|_{H^{2}(\Omega)}^{2} \leq C,
$$

$$
\int_{0}^{T}\left(\left\|\nabla u_{n}(\tau)\right\|_{L^{2}}^{2}+\left\|\nabla \Delta u_{n}(\tau)\right\|_{L^{2}}^{2}\right) d \tau \leq C
$$

and also, by the equation (3.2),

$$
\begin{gathered}
\sup _{t \leq T}\left\|\frac{\partial u_{n}}{\partial t}(t)\right\|_{L^{2}(\Omega)}^{2} \leq C, \\
\int_{0}^{T}\left\|\frac{\partial}{\partial t} \nabla u_{n}(\tau)\right\|_{L^{2}(\Omega)}^{2} d \tau \leq C .
\end{gathered}
$$

Hence, we obtain the existence of a subsequence $u_{n_{k}}$ and a function u such that

$$
\left\{\begin{array}{rll}
u_{n_{k}} & \rightharpoonup u \text { in } L^{2}\left(0, T ; H^{3}(\Omega)\right) & \text { weak, } \\
u_{n_{k}} & \rightharpoonup u \text { in } L^{\infty}\left(0, T ; H^{2}(\Omega)\right) & \text { weak } \\
\frac{\partial u_{n_{k}}}{\partial t} & \rightharpoonup \frac{\partial u}{\partial t} \text { in } L^{2}\left(0, T ; H^{1}(\Omega)\right) & \text { weak }
\end{array}\right.
$$

and according to Aubin's lemma we can assume that

$$
u_{n_{k}} \longrightarrow u \text { in } L^{2}\left(0, T ; H^{2}(\Omega)\right) \text { strong. }
$$

And so,

$$
u_{n_{k}} \longrightarrow u \text { in } L^{p}\left(0, T ; H^{2}(\Omega)\right) \text { strong, } \quad 1<p<\infty
$$

Moreover, as H is a continuous map on $H^{m}(\Omega)$, for $m=0,1,2$, one has

$$
H\left(u_{n_{k}}\right) \longrightarrow H(u) \text { in } L^{p}\left(0, T ; H^{2}(\Omega)\right) \quad \text { strong, } \quad 1<p<\infty
$$

So, we can take the limit in (3.2), and we obtain that u satisfies

$$
\left\{\begin{array}{c}
\frac{\partial u}{\partial t}-\Delta u=|\nabla u|^{2} u+u \wedge(\Delta u+H(u))-u \wedge(u \wedge H(u)) \text { on }\left[0, T^{\star}[\times \Omega\right. \\
\frac{\partial u}{\partial \nu}=0 \text { on }\left[0, T^{\star}[\times \partial \Omega\right. \\
u(0)=u_{0}
\end{array}\right.
$$

3.2 Conservation of the ponctual norm

Taking the scalar product in \mathbb{R}^{3} of (3.1) by u, we get

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}|u|^{2}-(u \cdot \Delta u)-|\nabla u|^{2}|u|^{2}=0 \text { in }(0, T) \times \Omega . \tag{3.6}
\end{equation*}
$$

As u belongs to $L^{\infty}\left((0, T) ; H^{2}(\Omega)\right)$ the following identity is valid for $d \leq 3$:

$$
\Delta|u|^{2}=2(u \cdot \Delta u)+2|\nabla u|^{2},
$$

so (3.6) becomes

$$
\frac{d}{d t}|u|^{2}-\Delta|u|^{2}-2|\nabla u|^{2}\left(|u|^{2}-1\right)=0
$$

Let us note by $b=|u|^{2}-1$. We have proved that b solves

$$
\left\{\begin{array}{l}
\frac{\partial b}{\partial t}-\Delta b-2|\nabla u|^{2} b=0 \tag{3.7}\\
\frac{\partial b}{\partial \nu}=0 \text { on } \partial \Omega \\
b(0)=\left|u_{0}\right|^{2}-1=0
\end{array}\right.
$$

Now, we remark that $|\nabla u|^{2}$ belongs to $L^{1}\left(0, T ; L^{\infty}(\Omega)\right)$ since $H^{2}(\Omega) \subset L^{\infty}(\Omega)$. Hence the energy estimate associated to (3.7) gives

$$
\frac{d}{d t}\|b\|_{L^{2}}^{2}+\|\nabla b\|_{L^{2}}^{2} \leq\|\nabla u\|_{L^{\infty}}^{2}\|b\|_{L^{2}}^{2}
$$

and we conclude that $\|b\|_{L^{2}}^{2}=0$ through Gronwall inequality.
So we have proved that $|u|=1$ in $[0, T] \times \Omega$, as soon as $\left|u_{0}\right|=1$ on Ω.
Now, if $|u| \equiv 1$, then (3.1) is equivalent to (1.1). Hence, the proof of Theorem 1.1 is fulfilled.

4 Stability Results

Let us denote by u_{1} and u_{2} two solutions of (3.1), $T^{\star}=\min \left(T_{1}^{\star}, T_{2}^{\star}\right)$, and $v=u_{1}-u_{2}$. Then, we have the following proposition

Proposition 4.1 For all $T<T^{\star}$, there exists a constant C such that

$$
\sup _{t \leq T}\|v(t)\|_{L^{2}}^{2} \leq C\|v(0)\|_{L^{2}}^{2}
$$

Furthermore, we can prove the following H^{2} stability result
Proposition 4.2 For all $T<T^{\star}$ there exists a constant C such that

$$
\sup _{t \leq T}\left(\|v(t)\|_{L^{2}(\Omega)}^{2}+\|\Delta v(t)\|_{L^{2}(\Omega)}^{2}\right) \leq C\left(\|v(0)\|_{L^{2}(\Omega)}^{2}+\|\Delta v(0)\|_{L^{2}(\Omega)}^{2}\right)
$$

and such that

$$
\|v\|_{L^{2}\left(0, T ; H^{3}(\Omega)\right)} \leq C\left(\|v(0)\|_{L^{2}(\Omega)}^{2}+\|\Delta v(0)\|_{L^{2}(\Omega)}^{2}\right)
$$

4.1 Uniqueness and L^{2} stability

Proof : the difference v satisfies the following equation

$$
\begin{align*}
\frac{\partial v}{\partial t}-\Delta v & =v \wedge\left(\Delta u_{1}+H\left(u_{1}\right)\right)+u_{2} \wedge(\Delta v+H(v)) \\
+\left|\nabla u_{1}\right|^{2} v & +\left(\left|\nabla u_{1}\right|^{2}-\left|\nabla u_{2}\right|^{2}\right) u_{2}-v \wedge\left(u_{1} \wedge H\left(u_{1}\right)\right) \tag{4.1}\\
-u_{2} & \wedge\left(v \wedge H\left(u_{1}\right)+u_{2} \wedge H(v)\right)
\end{align*}
$$

Taking the inner product in L^{2} of (4.1) by v, we obtain

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left(\|v\|_{L^{2}(\Omega)}^{2}\right)+\|\nabla v\|_{L^{2}(\Omega)}^{2} \leq \int_{\Omega}\left(u_{2} \wedge \Delta v\right) v d x+\int_{\Omega}\left(u_{2} \wedge H(v)\right) v d x \\
& \quad+\int_{\Omega}\left|\nabla u_{1}\right|^{2}|v|^{2} d x+\int_{\Omega}\left(\left|\nabla u_{1}\right|+\left|\nabla u_{2}\right|\right)\left|\nabla v \| u_{2}\right||v| d x \\
& \quad-\int_{\Omega} u_{2} \wedge\left(v \wedge H\left(u_{1}\right)\right) v d x-\int_{\Omega} u_{2} \wedge\left(u_{2} \wedge H(v)\right) v d x
\end{aligned}
$$

After an integration by parts of the first term of the right-hand side of the equation above, we obtain, as $\left|u_{1}\right| \equiv 1$ and $\left|u_{2}\right| \equiv 1$,

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left(\|v\|_{L^{2}(\Omega)}^{2}\right)+2\|\nabla v\|_{L^{2}(\Omega)}^{2} \leq\|v\|_{L^{2}(\Omega)}\|\nabla v\|_{L^{2}(\Omega)}\left\|\nabla u_{2}\right\|_{L^{\infty}(\Omega)} \\
& +C\left(1+\left\|\nabla u_{1}\right\|_{L^{\infty}(\Omega)}^{2}\right)\|v\|_{L^{2}(\Omega)}^{2}+\left\|H\left(u_{1}\right)\right\|_{L^{\infty}(\Omega)}\|v\|_{L^{2}(\Omega)}^{2} \\
& +C\left(\left\|\nabla u_{1}\right\|_{L^{\infty}(\Omega)}+\left\|\nabla u_{2}\right\|_{L^{\infty}(\Omega)}\right)\|\nabla v\|_{L^{2}(\Omega)}\|v\|_{L^{2}(\Omega)}
\end{aligned}
$$

As u_{1} and u_{2} are bounded in $L^{\infty}\left(0, T ; H^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H^{3}(\Omega)\right)$, we obtain that there exists a function f belonging to $L^{1}(0, T)$ such that

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|v\|_{L^{2}}^{2}+\|\nabla v\|_{L^{2}}^{2} \leq f(t)\|v\|_{L^{2}}^{2} \tag{4.2}
\end{equation*}
$$

The end of the proof of Proposition 4.1 follows from Gronwall lemma.

$4.2 \quad H^{2}$ stability

We go back to Galerkin approximation of (4.1). Taking the inner product of this approximation with $\Delta^{2} v_{n}$, integrating by parts on Ω, integrating in time between 0 and t, and taking the limit when n tends to $+\infty$, we obtain the following inequality, using the lower semi-continuity of the norm under the weak topology

$$
\frac{1}{2}\|\Delta v(t)\|_{L^{2}(\Omega)}^{2}+\int_{0}^{t}\|\nabla \Delta v\|_{L^{2}(\Omega)}^{2} \leq \frac{1}{2}\left\|\Delta v_{0}\right\|_{L^{2}(\Omega)}^{2}+\int_{0}^{t}\left(I_{1}+\ldots+I_{8}\right)(s) d s
$$

where I_{1}, \ldots, I_{8} are eight terms which we bound separately without details

- $I_{1}=\left|\int_{\Omega} \nabla\left(v \wedge \Delta u_{1}\right) \nabla \Delta v d x\right| \leq g_{1}(t)\left(\|v\|_{L^{2}(\Omega)}^{2}+\|\Delta v\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}}\|\nabla \Delta v\|_{L^{2}(\Omega)}$, where $g_{1} \in L^{2}(0, T)$.
- $I_{2}=\left|\int_{\Omega} \nabla\left(v \wedge H\left(u_{1}\right)\right) \nabla \Delta v d x\right| \leq g_{2}(t)\left(\|v\|_{L^{2}(\Omega)}^{2}+\|\Delta v\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}}\|\nabla \Delta v\|_{L^{2}(\Omega)}$, where $g_{2} \in L^{\infty}(0, T)$.
- $I_{3}=\left|\int_{\Omega} \nabla\left(u_{2} \wedge \Delta v\right) \nabla \Delta v d x\right| \leq g_{3}(t)\left(\|v\|_{L^{2}(\Omega)}^{2}+\|\Delta v\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}}\|\nabla \Delta v\|_{L^{2}(\Omega)}$, where $g_{3} \in L^{4}(0, T)$.
- $I_{4}=\left|\int_{\Omega} \nabla\left(u_{2} \wedge H(v)\right) \nabla \Delta v d x\right| \leq g_{4}(t)\left(\|v\|_{L^{2}(\Omega)}^{2}+\|\Delta v\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}}\|\nabla \Delta v\|_{L^{2}(\Omega)}$,
where $g_{4} \in L^{\infty}(0, T)$.
- $I_{5}=\left|\int_{\Omega} \nabla\left(\left|\nabla u_{1}\right|^{2} v\right) \nabla \Delta v d x\right| \leq g_{5}(t)\left(\|v\|_{L^{2}(\Omega)}^{2}+\|\Delta v\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}}\|\nabla \Delta v\|_{L^{2}(\Omega)}$, where $g_{5} \in L^{1}(0, T)$.
- $I_{6}=\left|\int_{\Omega} \nabla\left(\left(\left|\nabla u_{1}\right|^{2}-\left|\nabla u_{2}\right|^{2}\right) u_{2}\right) \nabla \Delta v d x\right|$ $\leq g_{6}(t)\left(\left(\|v\|_{L^{2}(\Omega)}^{2}+\|\Delta v\|_{L^{2}(\Omega)}^{2}\right)+\left(\|v\|_{L^{2}(\Omega)}^{2}+\|\Delta v\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}}\|\nabla \Delta v\|_{L^{2}(\Omega)}\right)$ where $g_{6} \in L^{4}(0, T)$.
- $I_{7}=\left|\int_{\Omega} \nabla\left(v \wedge\left(u_{1} \wedge H\left(u_{1}\right)\right)\right) \nabla \Delta v d x\right| \leq g_{7}(t)\left(\|v\|_{L^{2}(\Omega)}^{2}+\|\Delta v\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}}\|\nabla \Delta v\|_{L^{2}(\Omega)}$, where $g_{7} \in L^{\infty}(0, T)$.
- $I_{8}=\left|\int_{\Omega} \nabla\left(u_{2} \wedge\left(v \wedge H\left(u_{1}\right)+u_{2} \wedge H(v)\right)\right) \nabla \Delta v d x\right| \leq g_{8}(t)\left(\|v\|_{L^{2}(\Omega)}^{2}+\|\Delta v\|_{L^{2}(\Omega)}^{2}\right)$, where $g_{8} \in L^{\infty}(0, T)$.

Furthermore, using Young inequality, we get the existence of a function denoted f lying in $L^{1}(0, T)$ such that

$$
\begin{align*}
& \|\Delta v(t)\|_{L^{2}(\Omega)}^{2}+2 \int_{0}^{t}\|\nabla \Delta v(s)\|_{L^{2}(\Omega)}^{2} d s \leq\left\|\Delta v_{0}\right\|_{L^{2}(\Omega)}^{2} \\
& \quad+\int_{0}^{t} f(s)\left(\|v(s)\|_{L^{2}(\Omega)}^{2}+\|\Delta v(s)\|_{L^{2}(\Omega)}^{2}\right) d s \tag{4.3}
\end{align*}
$$

Then, integrating (4.2) and summing with (4.3) we obtain

$$
\begin{gathered}
\left(\|v(t)\|_{L^{2}(\Omega)}^{2}+\|\Delta v(t)\|_{L^{2}(\Omega)}^{2}\right)+2 \int_{0}^{t}\left(\|\Delta v(s)\|_{L^{2}(\Omega)}^{2}+\|\nabla \Delta v(s)\|_{L^{2}(\Omega)}^{2} d s\right) \leq \\
\left(\left\|v_{0}\right\|_{L^{2}(\Omega)}^{2}+\left\|\Delta v_{0}\right\|_{L^{2}(\Omega)}^{2}\right)+\int_{0}^{t} f(s)\left(\|v(s)\|_{L^{2}(\Omega)}^{2}+\|\Delta v(s)\|_{L^{2}(\Omega)}^{2}\right) d s
\end{gathered}
$$

Using Gronwall Lemma, we derive the proof of Proposition 4.2 and Theorem 1.2.

5 Proof of Theorem 1.4

We deal now with the problem (1.3)

$$
\text { (1.3) }\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=u \wedge \Delta u-u \wedge(u \wedge \Delta u) \\
\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega \\
u(0)=u_{0} \\
|u| \equiv 1 .
\end{array}\right.
$$

Under Assumption (H), the proof of local existence of regular solutions (see Theorem 1.3) is now straightforward : it is a simplification of the proof of Theorem 1.1.
Now, in the 2D case, we can improve the previous result by showing global existence for small data.

First step : energy estimate on ∇u.
We observe that as $|u| \equiv 1$, the first equation of (5.4) is equivalent to

$$
\begin{equation*}
\frac{\partial u}{\partial t}-u \wedge \Delta u+u \wedge(u \wedge \Delta u)=0 \tag{5.1}
\end{equation*}
$$

and to

$$
\begin{equation*}
\frac{\partial u}{\partial t}+u \wedge \frac{\partial u}{\partial t}-2 u \wedge \Delta u=0 . \tag{5.2}
\end{equation*}
$$

Now multiplying (5.1) by $\frac{\partial u}{\partial t}$ and (5.2) by $-2 \Delta u$ we get

$$
\begin{equation*}
\|\nabla u(t)\|_{L^{2}(\Omega)}^{2}+\int_{0}^{t}\left\|\frac{\partial u}{\partial t}(\tau)\right\|_{L^{2}(\Omega)}^{2} d \tau=\left\|\nabla u_{0}\right\|_{L^{2}(\Omega)}^{2} . \tag{5.3}
\end{equation*}
$$

Second step : estimate on Δu.

We know that for regular solutions, (1.3) is equivalent to the following problem

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}-\Delta u=-|\nabla u|^{2} u+u \wedge \Delta u \text { on }[0, T] \times \Omega \tag{5.4}\\
\frac{\partial u}{\partial \nu}=0 \text { on }[0, T] \times \partial \Omega \\
u(0)=u_{0}, \\
|u|=1 \text { on }[0, T] \times \Omega .
\end{array}\right.
$$

Taking the inner product in $L^{2}(\Omega)$ of the first equation of (5.4) by Δu, we obtain since $(u \cdot \Delta u)=$ $-|\nabla u|^{2}$,

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|\nabla u\|_{L^{2}(\Omega)}^{2}+\|\Delta u\|_{L^{2}(\Omega)}^{2} \leq\|\nabla u\|_{L^{4}(\Omega)}^{4} . \tag{5.5}
\end{equation*}
$$

In two dimensional space, the following Sobolev estimate is valid :

$$
\begin{align*}
& \|\nabla u\|_{L^{4}(\Omega)} \leq C(\Omega)\|\nabla u\|_{L^{2}(\Omega)}^{1 / 2}\left(\|\nabla u\|_{L^{2}(\Omega)}^{2}+\|\Delta u\|_{L^{2}(\Omega)}^{2}\right)^{1 / 4}, \\
& \|\nabla u\|_{L^{6}(\Omega)} \leq C(\Omega)\|\nabla u\|_{L^{2}(\Omega)}^{1 / 3}\left(\|\nabla u\|_{L^{2}(\Omega)}^{2}+\|\Delta u\|_{L^{2}(\Omega)}^{2}\right)^{1 / 3}, \\
& \|\nabla u\|_{L^{\infty}(\Omega)} \leq C(\Omega)\|\nabla u\|_{L^{2}(\Omega)}^{1 / 2}\left(\|\nabla u\|_{L^{2}(\Omega)}^{2}+\|\Delta u\|_{L^{2}(\Omega)}^{2}+\|\nabla \Delta u\|_{L^{2}(\Omega)}^{2}\right)^{1 / 4}, \tag{5.6}\\
& \|\Delta u\|_{L^{4}(\Omega)} \leq C(\Omega)\|\Delta u\|_{L^{2}(\Omega)}^{1 / 2}\left(\|\Delta u\|_{L^{2}(\Omega)}^{2}+\|\nabla \Delta u\|_{L^{2}(\Omega)}^{2}\right)^{1 / 4} .
\end{align*}
$$

So inequality (5.5) gives

$$
\begin{equation*}
\frac{d}{d t}\|\nabla u\|_{L^{2}(\Omega)}^{2}+\left(1-C_{1}\|\nabla u\|_{L^{2}(\Omega)}^{2}\right)\|\Delta u\|_{L^{2}(\Omega)}^{2} \leq C_{2}\|\nabla u\|_{L^{2}(\Omega)}^{4} . \tag{5.7}
\end{equation*}
$$

Using (5.3), we obtain that

$$
\begin{equation*}
\frac{d}{d t}\|\nabla u\|_{L^{2}(\Omega)}^{2}+\left(1-C_{1}\left\|\nabla u_{0}\right\|_{L^{2}(\Omega)}^{2}\right)\|\Delta u\|_{L^{2}(\Omega)}^{2} \leq C_{2}\left\|\nabla u_{0}\right\|_{L^{2}(\Omega)}^{4} . \tag{5.8}
\end{equation*}
$$

Integrating (5.8) between 0 and t, using (5.8), we obtain that if $\left\|\nabla u_{0}\right\|_{L^{2}(\Omega)}^{2} \leq \frac{1}{2 C_{1}}$, then

$$
\begin{equation*}
\int_{0}^{t}\|\Delta u(\tau)\|_{L^{2}(\Omega)}^{2} d \tau \leq\left\|\nabla u_{0}\right\|_{L^{2}(\Omega)}^{2}+C_{2}\left\|\nabla u_{0}\right\|_{L^{2}(\Omega)}^{4} t \tag{5.9}
\end{equation*}
$$

Third step : estimate on $\nabla \Delta u$.

As in Section 3.1, we build regular solutions of (5.4) using a Galerkin approximation process. We seek a solution u_{n} in V_{n} to

$$
\left\{\begin{array}{l}
\frac{\partial u_{n}}{\partial t}-\Delta u_{n}=P_{n}\left(\left|\nabla u_{n}\right|^{2} u_{n}+u_{n} \wedge \Delta u_{n}\right), \tag{5.10}\\
u_{n}(0)=P_{n}\left(u_{0}\right) .
\end{array}\right.
$$

Taking the inner product of (5.10) by $\Delta^{2} u_{n}$, we obtain that

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left(\left\|\Delta u_{n}\right\|_{L^{2}(\Omega)}^{2}\right)+\left\|\nabla \Delta u_{n}\right\|_{L^{2}(\Omega)}^{2} \leq\left\|\nabla u_{n}\right\|_{L^{6}(\Omega)}^{3}\left\|\nabla \Delta u_{n}\right\|_{L^{2}(\Omega)} \\
& +\left\|u_{n}\right\|_{L^{\infty}(\Omega)}\left\|\nabla u_{n}\right\|_{L^{\infty}(\Omega)}\left(\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)}^{2}+\left\|\Delta u_{n}\right\|_{L^{2}(\Omega)}^{2}\right)^{1 / 2}\left\|\nabla \Delta u_{n}\right\|_{L^{2}(\Omega)} \\
& +\left\|\nabla u_{n}\right\|_{L^{4}(\Omega)}\left\|\Delta u_{n}\right\|_{L^{4}(\Omega)}\left\|\nabla \Delta u_{n}\right\|_{L^{2}(\Omega)}
\end{aligned}
$$

According to inequality (5.6), we get

$$
\begin{aligned}
& \frac{d}{d t}\left\|\Delta u_{n}\right\|_{L^{2}(\Omega)}^{2}+\left\|\nabla \Delta u_{n}\right\|_{L^{2}(\Omega)}^{2} \leq C\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)}\left\{\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)}^{2}+\left\|\Delta u_{n}\right\|_{L^{2}(\Omega)}^{2}\right\}\left\|\nabla \Delta u_{n}\right\|_{L^{2}(\Omega)} \\
& +C\left\|u_{n}\right\|_{L^{\infty}(\Omega)}\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)}^{1 / 2}\left\{\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)}^{2}+\left\|\Delta u_{n}\right\|_{L^{2}(\Omega)}^{2}+\left\|\nabla \Delta u_{n}\right\|_{L^{2}(\Omega)}^{2}\right\}^{1 / 4} \\
& \times\left\{\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)}^{2}+\left\|\Delta u_{n}\right\|_{L^{2}(\Omega)}^{2}\right\}^{1 / 2}\left\|\nabla \Delta u_{n}\right\|_{L^{2}(\Omega)} \\
& +C\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)}^{1 / 2}\left\{\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)}^{2}+\left\|\Delta u_{n}\right\|_{L^{2}(\Omega)}^{2}\right\}^{1 / 4} \\
& \times\left\{\left\|\Delta u_{n}\right\|_{L^{2}(\Omega)}^{2}+\left\|\nabla \Delta u_{n}\right\|_{L^{2}(\Omega)}^{2}\right\}^{1 / 4}\left\|\Delta u_{n}\right\|_{L^{2}(\Omega)}^{1 / 2}\left\|\nabla \Delta u_{n}\right\|_{L^{2}(\Omega)} .
\end{aligned}
$$

Using Young inequality, and after absorbtion of the higher degree term, we get

$$
\begin{aligned}
& \frac{d}{d t}\left\|\Delta u_{n}\right\|_{L^{2}(\Omega)}^{2}+\left\|\nabla \Delta u_{n}\right\|_{L^{2}(\Omega)}^{2} \leq C\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)}^{2}\left\{\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)}^{2}+\left\|\Delta u_{n}\right\|_{L^{2}(\Omega)}^{2}\right\}^{2} \\
& +C\left\|u_{n}\right\|_{L^{\infty}(\Omega)}^{2}\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)}\left\{\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)}^{2}+C\left\|\Delta u_{n}\right\|_{L^{2}(\Omega)}^{2}\right\}^{3 / 2} \\
& +C\left\|u_{n}\right\|_{L^{\infty}(\Omega)}^{4}\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)}^{2}\left\{\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)}^{2}+\left\|\Delta u_{n}\right\|_{L^{2}(\Omega)}^{2}\right\}^{2} \\
& +C\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)}\left\{\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)}^{2}+\left\|\Delta u_{n}\right\|_{L^{2}(\Omega)}^{2}\right\}^{1 / 2}\left\|\Delta u_{n}\right\|_{L^{2}(\Omega)}^{2} \\
& +C\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)}^{2}\left\{\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)}^{2}+\left\|\Delta u_{n}\right\|_{L^{2}(\Omega)}^{2}\right\}\left\|\Delta u_{n}\right\|_{L^{2}(\Omega)}^{2}
\end{aligned}
$$

We perform an integration in time of the previous equation. As $|u| \equiv 1,\|\nabla u(t)\|_{L^{2}} \leq\left\|\nabla u_{0}\right\|_{L^{2}}$ and as the norms are lower semi continuous for the weak topology we obtain a constant k_{4} such that

$$
\begin{equation*}
\|\Delta u(t)\|_{L^{2}(\Omega)}^{2}+\int_{0}^{t}\|\nabla \Delta u(\tau)\|_{L^{2}(\Omega)}^{2} d \tau \leq\left\|\Delta u_{0}\right\|_{L^{2}(\Omega)}+k_{4} \int_{0}^{t}\left(1+\|\Delta u(\tau)\|_{L^{2}(\Omega)}^{4}\right) d \tau \tag{5.11}
\end{equation*}
$$

Fourth step : conclusion.

Now for $\left\|\nabla u_{0}\right\|_{L^{2}(\Omega)}^{2} \leq \frac{1}{2 C_{1}}$, we have obtain inequality (5.9) in the second step.
So we can apply Gronwall lemma to (5.11) to obtain

$$
\forall t \leq T<T^{\star}, \quad\|\Delta u(t)\|_{L^{2}(\Omega)}^{2}+\int_{0}^{t}\|\nabla \Delta u(\tau)\|_{L^{2}(\Omega)}^{2} d \tau \leq h(t)
$$

where h is a nonnegative continuous function on \mathbb{R}_{+}. So the solution given by theorem 1.3 is global as soon as

$$
\left\|\nabla u_{0}\right\|_{L^{2}(\Omega)}^{2} \leq \frac{1}{2 C_{1}}
$$

This ends the proof of Theorem 1.4.

References

[1] R. A. Adams, "Sobolev space, Pure and Applied Math. ", Vol 65, Academic press 1975.
[2] S. Agmon, "Elliptic boundary values problems", Van Nostrand Company, 1965.
[3] F. Alouges and A. Soyeur, On global solutions for Landau Lifschitz equations : existence and non uniqueness, Nonlinear Anal. TMA 18 (11) 1071-1084 (1992).
[4] W.F. Brown, " Micromagnetics, Interscience Publisher", John Willey and Sons, New York 1963.
[5] G. Carbou and F. Fabrie, Time average in Micromagnetism, Journal of Differential Equations 147, 383-409 (1998).
[6] G. Carbou and F. Fabrie, Regular solutions for Landau-Lifschitz equation in \mathbb{R}^{3}, Communications in Applied Analysis, to appear.
[7] R. Dautray, J.-L. Lions, "Mathematical analysis and numerical methods, sciences and technology", Springer Verlag.
[8] G. Foias and R. Temam, Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation, An. Sc. Norm. Super. Pisa IV, 5, 29-63 (1978).
[9] J.-L. Joly, G. Metivier and J. Rauch, Global solutions to Maxwell equations in a ferromagnetic medium, Preprint MAB.
[10] O.A. Ladysenskaya, "The boundary value problem of mathematical physics", Springer Verlag Applied Math. Sciences, Vol 49, 1985
[11] J.-L. Lions, "Quelques méthodes de résolution des problèmes aux limites non linéaires", Dunod, Gauthier-Villars, Paris 1969
[12] G. Metivier Private communication
[13] J. Simon, Compact sets in the space $L^{p}(0, T ; B)$, Ann. Mat. Pura Appl, vol 4, 146, 65-96 (1987).
[14] A. Visintin, On Landau Lifschitz equation for ferromagnetism, Japan Journal of Applied Mathematics, Vol 2, 1, 69-84 (1985).

