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Abstract : in this paper, we study a singular perturbation of an eigenvalues problem related to supra-

conductor wave guides. Using boundary layer tools we perform a complete asymptotic expansion of the

eigenvalues as the conductivity tends to +∞.

1 Introduction

Let Ω and O two bounded connected smooth domains of IR2 such that Ω ⊂⊂ O. We denote
U = O \ Ω.
We consider the self adjoint operator Hσ on L2(O) with domain H2(O) ∩H1

0 (O) defined by:

Hσ = −∆ + σ1Ω, (1.1)

where σ is a positive real number. In this paper we study the asymptotic behavior of the eigenvalues
of Hσ as σ tends to +∞. The limit operator is H∞ = −∆ defined on H2(U)∩H1

0 (U), that is u = 0
on ∂U = ∂O ∪ ∂Ω.

Remark 1.1 Such a problem appears in the study of an electromagnetic wave guide O × IR with
section O, where U × IR is a dielectric body and Ω × IR is a supra-conductor material with very
large conductivity. For mathematical studies concerning electromagnetic wave guides, see [3] and
[4].

According to general monotone convergence theorems (see [15]), it is well known that Hσ tends to
H∞ in strong resolvent sense, as σ → +∞. In our case, where the operators are self-adjoint, non
negative with compact resolvents, this implies that the eigenvalues of Hσ tend to ones of H∞ (see
also [5]). To our knowledge, there is no result concerning the rate of the convergence (see below for
more references).
The goal of this paper is to build an asymptotic expansion of the eigenvalues of Hσ when σ tends
to +∞.
We denote Rσ(ξ) = (Hσ−ξI)−1 the resolvent of Hσ, defined on L2(O) with values inH2(O)∩H1

0(O)
for ξ /∈ spec Hσ.
We first prove that the resolvent of Hσ admits a first order asymptotic expansion :

Theorem 1.1 We define the operator R∞(ξ) by : if f ∈ H1(O), R∞(ξ)(f) is defined by R∞(ξ)(f)(x) =
U0(x) if x ∈ U and R∞(ξ)(f)(x) = 0 if x ∈ Ω, where






U0 = 0 on ∂Ω ∪ ∂O,

(−∆ − ξ)U 0 = f on U .

On the other hand we define Rσ
1 (ξ) by : if f ∈ H1(O),

Rσ
1 (ξ)(f)(x) =





ψ(x)α1(x)e
−
√

σϕ(x) if x ∈ Ω,

U1(x) if x ∈ U ,
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where 



U1 = 0 on ∂O,

U1 =
∂U0

∂ν
on ∂Ω,

(−∆ − ξ)U 1 = 0 on U ,
and

• α1 is an extension of U 1|∂Ω on Ω,

• for x ∈ Ω, ϕ(x) = dist(x, ∂Ω),

• ψ is a cut-off function equal to 1 in a neighborhood of ∂Ω.

Then when σ tends to +∞, Rσ(ξ) admits an asymptotic expansion of the type :

Rσ(ξ) = R∞(ξ) +
1√
σ
Rσ

1 (ξ) +
1√
σ
Kσ

2 (ξ),

and there exists C independent on σ such that the remainder term Kσ
2 (ξ) satisfies :

∀ f ∈ H1(O),





‖Ks
2(ξ)(f)‖H1(O) ≤ C‖f‖H1(O),

‖Ks
2(ξ)(f)‖L2(O) ≤

C

σ
1
4

‖f‖H1(O).

Remark 1.2 We denote R̃∞(ξ) = (H∞− ξI)−1 the resolvent of H∞, defined on L2(U) with values
in H2(U)∩H1

0 (U). Then the first term of the asymptotic expansion of Rσ(ξ) is R∞(ξ) = eR̃∞(ξ)r,
where e : L2(U) −→ L2(O) is the extension by zero in Ω and r : L2(O) −→ L2(U) is the restriction
operator.

Theorem 1.1 prove the existence of a first order asymptotic expansion of the resolvent and we
deduce the following theorem concerning eigenvalues :

Theorem 1.2 Let λ∞ be an eigenvalue of H∞ with multiplicity m. We fix η > 0 such that
B(λ∞, η) ∩ spec H∞ = {λ∞}, where B(λ∞, η) =

{
ξ ∈ C, |λ∞ − ξ| ≤ η

}
.

Then for sufficiently large σ, Hσ has exactly m eigenvalues counted according to their multiplicities
in B(λ∞, η), and these eigenvalues λσ

i admit an asymptotic expansion of the type :

λσ
i = λ∞ +

1√
σ
µi + o(

1√
σ

). (1.2)

Furthermore if we denote (f1, . . . , fm) an L2(U) orthonormal basis of the eigenspace ker(H∞−λ∞I),
then (µi)1≤i≤m are the eigenvalues of the matrix A with coefficients :

aij =

∫

∂Ω

∂fi

∂ν

∂fj

∂ν
.

Remark 1.3 The computation of the eigenvalues and eigenvectors of the limit operator H∞ give
easily a first order approximation of the eigenvalues of Hσ, since A is deduced from the eigenvectors
of H∞.
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Remark 1.4 In the proof of Theorem 1.2, we show in fact that the remainder term in (1.2) is

O
(

1

σ
3
4

)
. This estimate is not optimal as we will see in Theorem 1.3.

We can not build an asymptotic expansion of the resolvent at any order in L(H 1;H1) as it is done
at order 1 in Theorem 1.1. Nevertheless it is possible to prove that the eigenvalues of H σ admit an
asymptotic expansion at any order :

Theorem 1.3 Let λ∞ be an eigenvalue of H∞. With the notations of Theorem 1.2, for any i,
1 ≤ i ≤ m, λσ

i admits an asymptotic expansion at any order, that is there exists a sequence
(µj

i )j∈IN such that for all N ,

λσ
i = λ∞ +

N∑

j=1

1

σ
j

2

µj
i + O

(
1

σ
N+1

2

)
.

Remark 1.5 Theorem 1.1 remains valid in all dimension, but in Theorem 1.2, we use a Sobolev
embedding which prevents the generalization of our proof at any dimension. Nevertheless the proof
of Theorem 1.3 does not depend on the dimension, so the eigenvalues of Hσ admit an asymptotic
expansion at any order in all dimension.

Without any assumption on the dimension and on the multiplicity of the eigenvalues, it seems
to be the first asymptotic result (at all order) in Large-coupling Limit. Large coupling limit are
essentially discussed for operators with continuous spectrum. For example, for periodic problems
let us quote works of Hempel-Lineau-Herbst (see [11] and their references). They use a Floquet
decomposition (or direct fiber-integral decomposition [14]) and a monotonic convergence theorem
in each fiber. Concerning perturbations of the Laplacian on IRn of the form Hλ = −∆ + V + λ1Ω,
with V ∈ L2(IRn), Demuth [7] use a Feynman-Kac formula to prove trace norm convergence of
the resolvent (Hλ − z)−r, r ≥ 1 + n/2, to the resolvent of associated Dirichlet problem. More
general perturbations of the type Hλ = −∆ + V + λW , with V ∈ L∞(IRn) and 0 ≤ W ∈ L∞(IRn)
are studied by Gesztesy and al. [8]. Exploiting monotonic convergence theorems they prove that
the discrete and essential spectrums of Hλ tend to the ones of the associated Dirichlet operator.
Furthermore, in [8], using WKB machinery, 1-order asymptotic expansions are given in 1-dimension
and for multiplicity m ≤ 2. Further order asymptotic expansion is proved by Ashbaugh-Harrel [2]
in 1-dimension (on IR+) for Hλ = −∆ + V + λ1Ω, with V continuous supported in [0, 1] and
W = (x− 1)p1[1,+∞[. By an analytic implicit function theorem they prove that the eigenvalues of

Hλ are analytic with respect to λ−
1

p+2 .

In the following, we fix an eigenvalue λ∞ of the operator H∞. The resolvent of H∞ is compact, so
there exists η > 0 such that spec H∞ ∩B(λ∞, η) = {λ∞}.
We will use the following notations :

• Eσ is the sum of the eigenspaces associated with the eigenvalues of Hσ contained in B(λ∞, η).

• P σ is the spectral projection onto Eσ. It is given by :

P σ =
−1

2iπ

∫

C(λ∞,η)
Rσ(ξ)dξ, (1.3)

where C(λ∞, η) is the circle of center λ∞ and of radius η.
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• Ẽ∞ is the eigenspace of H∞ associated to λ∞. We denote P̃∞ the spectral projection onto
Ẽ∞.

• E∞ = e(Ẽ∞) and P∞ = eP̃∞r which satisfies :

P∞ =
−1

2iπ

∫

C(λ∞,η)
R∞(ξ)dξ. (1.4)

In order to perform the asymptotic expansion of the resolvent we use boundary layers machinery
inside Ω, that is we seek Rσ(ξ)(f) on the form :

Rσ(ξ)(f)(x) = V 0(x,
√
σϕ(x)) +

1√
σ
V 1(x,

√
σϕ(x)) + . . . ,

where ϕ(x) denotes the distance from x to ∂Ω. The term ψ(x)α1(x)e
−
√

σϕ(x) represents the forma-
tion of the thin layer near the boundary of Ω.

Remark 1.6 Boundary layers should appear in the case of viscous perturbation of hyperbolic and
parabolic systems (see [9], [10] and [6]).

In the proof of Theorem 1.2, following Kato [12], we introduce the invertible operator Aσ = 1 −
P∞ + P σP∞. This operator maps E∞ onto Eσ . The first order asymptotic expansion of the
resolvent gives a first order asymptotic expansion of Aσ in the space L(H1;H1).

We denote Qσ = P∞[Aσ]−1HσAσP∞. This operator belongs to L(E∞) and has the same eigenval-
ues than HσP σ. Using asymptotic expansions of the resolvent we obtain a first order asymptotic
expansion of Qσ. Applying classical finite dimensional results due to Kato (see [12]) we deduce
Theorem 1.2.

In order to prove Theorem 1.3, we introduce the unitary operator Bσ defined by :

Bσ = (1 −W σ)−
1
2

(
(1 − P σ)(1 − P∞) + P σP∞

)
,

with W σ = (P σ − P∞)2, and we remark that Q̃σ = P∞[Bσ]−1HσBσP∞ has the same eigenvalues
than Hσ. On the other hand, with algebraic arguments, we see that it suffices to perform the
asymptotic expansion of the resolvent for f ∈ E∞ that is f = 0 on Ω and f ∈ C∞(U)∩H1

0 (U). This
is possible at any order in an algebra and we can compose the asymptotic expansions to obtain
that Q̃σ admit an asymptotic expansion at any order. Since Q̃σ is self-adjoint, the eigenvalues of
Q̃σ admit then a complete asymptotic expansion.

The article is organized as follows. In Section 2, we prove technical estimates and we introduce
the boundary layers tools. The asymptotic expansions of the resolvent are given in Section 3. We
conclude the proof of Theorem 1.2 in Section 4. The last section is devoted to the proof of Theorem
1.3.

2 Preliminaries

2.1 Boundary layers tools

We denote ϕ : Ω −→ IR+ the distance from x to ∂Ω. The open set Ω being smooth, there exists
Ω1 ⊂ Ω a neighborhood of the boundary ∂Ω such that ϕ is smooth on Ω1. Then we have |∇ϕ| = 1
on Ω1 and ∇ϕ = −ν on ∂Ω, where ν is the outward unitary normal on ∂Ω.
We have the following proposition :
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Proposition 2.1 Let γ ∈ H
1
2 (∂Ω) and f ∈ H

1
2 (Ω1). Then there exists an unique α ∈ H

1
2 (Ω1)

such that 



2(∇ϕ,∇α) + ∆ϕα = f in Ω1

α = γ on ∂Ω.
(2.5)

Furthermore there exists a constant C such that :

‖α‖
H

1
2 (Ω1)

≤ C

(
‖γ‖

H
1
2 (∂Ω)

+ ‖f‖
H

1
2 (Ω1)

)
.

Proof. Even if it means reducing Ω1, we give a parameterization of Ω1 of the form :

Λ : ∂Ω × [0, δ] −→ Ω1

(x, s) 7−→ x− sν(x)

We denote α̃ = α ◦ Λ. Equation (2.5) is equivalent to :






2
∂α̃

∂s
+ ∆ϕ(Λ(x, s))α̃ = (f ◦ Λ)(x, s),

α̃(x, 0) = γ(x).

(2.6)

This is a linear differential equation with regular coefficients. Cauchy-Lipschitz Theorem shows
that there exists a unique α̃ ∈ C∞(0, δ;H

1
2 (∂Ω)) satisfying (2.6) and there exists a constant C

independent on γ such that :

‖α̃‖
C1(0,δ;H

1
2 )

≤ C

(
‖γ‖

H
1
2 (∂Ω)

+ ‖f‖
H

1
2 (Ω1)

)
.

Since α = α̃ ◦ Λ−1, we obtain that α ∈ H
1
2 (Ω1) and that there exists a constant C such that

‖α‖
H

1
2 (Ω1)

≤ C

(
‖γ‖

H
1
2 (∂Ω)

+ ‖f‖
H

1
2 (Ω1)

)
.

2.2 Estimates

First we recall in Lemma 2.1 and Lemma 2.2 two classical a priori estimates.

Lemma 2.1 There exists a constant C such that for any ξ ∈ C(λ∞, η), for any u ∈ H1(U) such
that (−∆ − ξ)u ∈ L2(U), we have :

‖u‖L2(U) ≤ C
(
‖u‖L2(∂U) + ‖(−∆ − ξ)u‖L2(U)

)
.

Proof. Let f ∈ L2(U). There exists w ∈ H2(U)∩H1
0 (U) such that −∆w− ξw = f in U . Moreover,

‖w‖H2(U) ≤ C‖f‖L2(U), where C does not depend on ξ ∈ C(λ∞, η) and f .
Then we have : ∫

U
uf =

∫

U
u(−∆w − ξw)

= −
∫

U
∆uw − ξ

∫

U
uw +

∫

∂U
u
∂w

∂ν
.
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Hence, ∣∣∣∣
∫

U
uf

∣∣∣∣ ≤ ‖ − ∆u− ξu‖L2(U)‖w‖L2(U) + ‖u‖L2(∂U)‖
∂w

∂ν
‖L2(U)

≤ C
(
‖ − ∆u− ξu‖L2(U) + ‖u‖L2(∂U)

)
‖f‖L2(U).

These estimates are true for all f ∈ L2(U), so by a duality argument, we obtain :

‖u‖L2(U) ≤ C
(
‖ − ∆u− ξu‖L2(U) + ‖u‖L2(∂U)

)
.

Remark 2.1 More general estimates of this type are proved in [13].

Lemma 2.2 There exists a constant C such that for all v ∈ H 1(Ω),

‖v‖2
L2(∂Ω) ≤ C

(
‖v‖2

L2(Ω) + ‖v‖L2(Ω)‖∇v‖L2(Ω)

)
.

Sketch of the Proof. We prove the estimate for regular maps and we conclude the proof by a
density argument (see [1]).

In the asymptotic expansion of the resolvent, the following a priori estimate will be used to estimates
remainder terms.

Proposition 2.2 Let g ∈ L2(Ω), γ ∈ L2(∂Ω) and ξ ∈ C(λ∞, η). There exist σ0 > 0 and a constant
C, independent on g, γ and ξ, such that for all σ ≥ σ0, if a and b are the solution of the following
system, 




(−∆ − ξ)b+ σb = g on Ω (i)

(−∆ − ξ)a = 0 on U (ii)

a = b and
∂b

∂ν
=
∂a

∂ν
+ γ on ∂Ω (iii)

a = 0 on ∂O (iv)

then we have the following estimate :
∫

Ω
|∇b|2 +

∫

U
|∇a|2 + σ

∫

Ω
|b|2 ≤ C

σ
‖g‖2

L2(Ω) +
C√
σ
‖γ‖2

L2(∂Ω). (2.7)

Proof. We multiply the first equation by b̄ and the second by ā. We add up the two equalities and
we obtain :

∫

Ω
|∇b|2 +

∫

U
|∇a|2 + σ

∫

Ω
|b|2 = ξ

∫

Ω
|b|2 + ξ

∫

U
|a|2 +

∫

Ω
gb̄+

∫

∂Ω

∂b

∂ν
b̄−

∫

∂Ω

∂a

∂ν
ā.

Using (iii), we have :
∫

Ω
|∇b|2 +

∫

U
|∇a|2 + σ

∫

Ω
|b|2 ≤ |ξ|

∫

Ω
|b|2 + |ξ|

∫

U
|a|2 + ‖g‖L2(Ω)‖b‖L2(Ω) +

∫

∂Ω
|γ||b|.

Now, we have the following estimates :
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• For σ sufficiently large, |ξ| ≤ σ

8
.

• ‖g‖L2(Ω)‖b‖L2(Ω) ≤
σ

8
‖b‖2

L2(Ω) +
2

σ
‖g‖2

L2(Ω).

• According to Lemma 2.1, ∫

U
|a2| ≤ C

∫

∂Ω
|a2|,

and since a = b on ∂Ω, using Lemma 2.2, since |ξ| ≤ λ∞ + η,

|ξ|
∫

U
|a|2 ≤ K‖b‖2

L2(Ω) +K‖b‖L2(Ω)‖∇b‖L2(Ω),

and for σ sufficiently large,

|ξ|
∫

U
|a|2 ≤ σ

8
‖b‖2

L2(Ω) +
1

2
‖∇b‖2

L2(Ω).

• Finally, for σ ≥ σ0, with σ0 sufficiently large,

∣∣∣∣
∫

∂Ω
γb̄

∣∣∣∣ ≤ ‖γ‖L2(∂Ω)‖b‖L2(∂Ω)

≤ C‖γ‖L2(∂Ω)‖b‖L2(Ω) +C‖γ‖L2(∂Ω)‖b‖
1
2

L2(Ω)‖∇b‖
1
2

L2(Ω)

≤ σ

8
‖b‖2

L2(Ω) +
1

4
‖∇b‖2

L2(Ω) +
K√
σ
‖γ‖2

L2(∂Ω).

Using these estimates, we obtain the claimed result.

3 Asymptotic expansions of the resolvent

We fix f ∈ L2(O) and we denote uσ (resp vσ) the restriction of Rσ(ξ)(f) on U (resp Ω). The couple
(uσ, vσ) satisfies the following system :






−∆uσ − ξuσ = f on U (1)

−∆vσ + (σ − ξ)vσ = f on Ω (2)

uσ = vσ on ∂Ω (3)

∂uσ

∂ν
=
∂vσ

∂ν
on ∂Ω (4)

uσ = 0 on ∂O (5)

(3.8)

We will seek asymptotic expansion of uσ and vσ of the form :

uσ(x) = U0(x) +
1√
σ
U1(x) +

1

σ
U2(x) + . . .

vσ(x) = V 0(x,
√
σϕ(x)) +

1√
σ
V 1(x,

√
σϕ(x)) +

1

σ
V 2(x,

√
σϕ(x)) + . . .
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where the profiles V i(x, z) can be decomposed on the following way :

V i(x, z) = Ṽ i(x, z) + V
i
(x),

where Ṽ i and their derivatives tend to zero when z −→ +∞.
We formally replace uσ and vσ in (3.8) by their profile and we say that each order of the asymptotic
expansion is zero.

3.1 Order 0

Proposition 3.1 Let λ∞ and η as in Theorem 1.2. Then for all ξ ∈ C(λ∞, η), Rσ(ξ) satisfies the
asymptotic expansion :

Rσ(ξ) = R∞(ξ) +Kσ
1 (ξ),

where Kσ
1 (ξ) is an operator defined on L2(O). Furthermore, there exists a constant C such that :

∀ ξ ∈ C(λ∞, η), ∀ σ > σ0, ∀ f ∈ L2(O),






‖Kσ
1 (ξ)(f)‖H1(O) ≤

C

σ
1
4

‖f‖L2(O)

‖Kσ
1 (ξ)(f)‖L2(O) ≤

C√
σ
‖f‖L2(O).

Proof. Let f ∈ L2(O). We denote uσ (resp. vσ) the restriction of Rσ(ξ)(f) on U (resp. Ω). We
know that uσ and vσ satisfy (3.8). We write





uσ(x) = U0(x) + aσ(x),

vσ(x) = bσ(x),

where U0 satisfies :





U0 = 0 on ∂Ω,

U0 = 0 on ∂O,

(−∆ − ξ)U 0 = f on U ,

that is
U0 = (R̃∞(ξ) ◦ r)(f).

The remainder terms satisfy the following system :






(−∆ − ξ)aσ = 0 in U ,

(−∆ − ξ)bσ + σbσ = f on Ω,

aσ = bσ on ∂Ω,

∂U0

∂ν
+
∂aσ

∂ν
=
∂bσ

∂ν
on ∂Ω.
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We remark that there exist a constant C independent on ξ and f such that :

‖U0‖H2(U) ≤ C‖f‖L2(U).

We apply proposition 2.2 and we obtain that there exists a constant C which does not depend on
ξ and f such that :

‖∇aσ‖2
L2(U) + ‖∇bσ‖2

L2(Ω) + σ‖bσ‖2
L2(Ω) ≤ C

1

σ
‖f‖2

L2(Ω) + C
1√
σ
‖∂U

0

∂ν
‖2

L2(∂Ω),

thus

‖∇aσ‖2
L2(U) + ‖∇bσ‖2

L2(Ω) + σ‖bσ‖2
L2(Ω) ≤ C

1√
σ
‖f‖2

L2(O). (3.9)

Now we have :

Kσ
1 (ξ)(f)(x) =

{
aσ(x) if x ∈ U ,
bσ(x) if x ∈ Ω,

and Estimate (3.9) give that :

‖∇Kσ
1 (ξ)(f)‖L2(O) ≤

C

σ
1
4

‖f‖L2(O).

With estimate (3.9) we have that ‖bσ‖L2(Ω) ≤
C

σ
3
4

‖f‖L2(O) and using Lemma 2.1 and Lemma 2.2,

we can estimate ‖aσ‖L2(U) and we obtain :

‖aσ‖L2(U) ≤ C‖aσ‖L2(∂Ω)

≤ C‖bσ‖L2(∂Ω)

≤ C

(
‖bσ‖L2(Ω) + ‖bσ‖

1
2

L2(Ω)‖∇b
σ‖

1
2

L2(]]Ω)

)

≤ C√
σ
‖f‖L2(O).

Hence we have :

‖Kσ
1 (ξ)(f)‖L2(O) ≤

C√
σ
‖f‖L2(O).

This completes the proof of Proposition 3.1.

3.2 First order asymptotic expansion

First step. Formal asymptotic expansion

With the usual notations we seek formal first order asymptotic expansion on the form :





uσ(x) = U0(x) +
1√
σ
U1(x) + . . .

vσ(x) = V 0(x,
√
σϕ(x)) +

1√
σ
V 1(x,

√
σϕ(x)) + . . .

We recall that uσ and vσ satisfy (3.8). We will replace uσ and vσ by their asymptotic expansion in
(3.8) and we will identify the different powers of σ.

We will use the following notations :
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• x = (x1, . . . , xn) are the coordinates in IRn,

• Vz =
∂V

∂z
and Vzz =

∂2V

∂z2
,

• ∇V =




∂V

∂x1
·
·
∂V

∂xn




and ∇Vz =




∂2V

∂x1∂z
·
·

∂2V

∂xn∂z




,

• ∆V =
∂2V

∂x2
1

+ . . . +
∂2V

∂x2
n

.

We remark that if w(x) = V (x,
√
σϕ(x)),

∇w(x) = ∇V (x,
√
σϕ(x)) +

√
σ∇ϕ(x)Vz(x,

√
σϕ(x)),

and
∆w(x) = σ|∇ϕ|2Vzz(x,

√
σϕ(x))

+
√
σ

(
2(∇ϕ(x),∇Vz(x,

√
σϕ(x))) + ∆ϕ(x)Vz(x,

√
σϕ(x))

)

+∆V (x,
√
σϕ(x)).

Using that |∇ϕ| = 1 we formally obtain the following equations :

from (3.8.1),





(i) (−∆ − ξ)U 0 = f in U ,

(ii) (−∆ − ξ)U 1 = 0 in U ,

from (3.8.2),





(iii) V 0 − V 0
zz = 0 in Ω,

(iv) V 1 − V 1
zz −

[
(2∇ϕ,∇V 0

z ) + ∆ϕV 0
z

]
= 0 in Ω,

from (3.8.3),





(v) U0 = V 0 in ∂Ω,

(vi) U1 = V 1 in ∂Ω,

from (3.8.4),





(vii) V 0
z = 0 in ∂Ω,

(viii)
∂U0

∂ν
= −V 1

z in ∂Ω,

from (3.8.5),





(ix) U0 = 0 in ∂O,

(x) U1 = 0 in ∂O.

(3.10)

Using the equations (3.10), we obtain :
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• from (iii), we have V 0(x, z) = α0(x)e
−z .

• from (vii), α0(x) = 0 on ∂Ω.

• in (iv) we arbitrary cut the equation in two terms and we say that V 1 − V 1
zz = 0, i.e.

V 1(x, z) = α1(x)e
−z , and we have (2∇ϕ,∇α0) + ∆ϕα0 = 0 in Ω.

Using Proposition 2.1 we obtain that :

α0 = 0 on Ω.

• Using (i) and (ix), since (v) implies that U 0 = 0 on ∂Ω, we have :




(−∆ − ξ)U 0 = f on U ,

U0 = 0 on ∂U ,
(3.11)

that is
U0 = (R̃∞(ξ) ◦ r)(f).

• Using (viii) and (vi) we have :

α1 = U1 =
∂U0

∂ν
on ∂Ω,

thus U1 is uniquely determined by :




(−∆ − ξ)U 1 = 0 on U ,

U1 = 0 on ∂O,

U1 =
∂U0

∂ν
on ∂Ω.

(3.12)

• Finally, in order to define α1, we will use a classical trace relevement from ∂Ω to Ω denoted
by EΩ defined on H

3
2 (∂Ω) with values on H2(Ω), and we set

α1 = EΩ(
∂U0

∂ν
).

In short, if we fix f ∈ H1(O), we define R∞(ξ)(f) = e(U 0) by (3.11) and we define Rσ
1 (ξ)(f) by :

Rσ
1 (ξ)(f)(x) =






ψ(x)α1(x)e
−
√

σϕ(x) if x ∈ Ω,

U1(x) if x ∈ U ,
(3.13)

where U1 satisfies (3.12), α1 is defined by

α1 = EΩ(U1) on Ω, (3.14)

and where ψ is a cut-off function with support in Ω1 and equal to 1 in a neighborhood of ∂Ω. The
cut-off function ψ is used to avoid the problems of non regularity of ϕ far from ∂Ω.

The main properties of the operator Rσ
1 (ξ) are listed in the following lemma.

11



Lemma 3.1 The operator Rσ
1 (ξ) satisfies :

1. Rσ
1 (ξ)(f) only depends on rf , the restriction of f to U .

2. rRσ
1 (ξ) does not depend on σ, and there exists a constant C such that for all σ,

∀ f ∈ H1(O), ‖(rRσ
1 (ξ))(f)‖H2(U) ≤ C‖rf‖H1(O). (3.15)

3. There exists a constant C such that :

∀ f ∈ H1(O), ‖Rσ
1 (ξ)(f)‖L2(Ω) ≤

C

σ
1
4

‖rf‖H1(U),

∀ f ∈ H1(O), ‖Rσ
1 (ξ)(f)‖H1(Ω) ≤ Cσ

1
4 ‖rf‖H1(U),

4. P∞Rσ
1 (ξ)P∞ =

1

(λ∞ − ξ)2
AP∞, where A is a linear map in E∞. The coefficients of the

matrix A in an orthonormal basis (f1, . . . , fm) of E∞ are given by the formula :

aij =

∫

∂Ω

∂fi

∂ν

∂fj

∂ν
.

Proof. Let f ∈ H1(O). We define U 0 ∈ H3(U) by (3.11). So U0 only depends on rf . Hence
∂U0

∂ν
|∂Ω ∈ H

3
2 (∂Ω) only depends on rf and by classical results on elliptic equations we obtain

inequality (3.15).
In addition, by property of EΩ,

‖α1‖H2(Ω) ≤ C‖∂U
0

∂ν
‖

H
3
2 (∂Ω)

≤ C‖rf‖H1(U),

and we have : ∥∥Rσ
1 (ξ) (f)

∥∥
L2(Ω)

≤ ‖ψ‖L∞‖α1‖L∞‖e−
√

σϕ‖L2

≤ C

σ
1
4

‖rf‖H1(U).

Furthermore

∥∥∇(Rσ
1 (ξ) (f))

∥∥
L2(Ω)

≤ ‖ψ‖L∞‖α1‖L∞‖∇(e−
√

σϕ)‖L2 + ‖∇ψ‖L∞‖α1‖L∞‖e−
√

σϕ‖L2

+‖ψ‖L∞‖∇α1‖L2‖(e−
√

σϕ‖L∞

≤ Cσ
1
4 ‖rf‖H1(U)

Remark 3.1 We use here the Sobolev embedding H2(Ω) ⊂ L∞(Ω) which is valid in dimension
two. This is only here that there is a restriction on the dimension.
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Let us prove now the last assertion.
Let (f1, . . . , fm) be an orthonormal basis of E∞. Let us compute P∞Rσ

1 (ξ)P∞(fj).
We note U 0 ∈ H1

0 (U) the solution of :

(−∆ − ξ)U 0 = fj in U .

We remark that U 0 =
1

λ∞ − ξ
fj.

We consider U 1 ∈ H1(U) the solution of :






(−∆ − ξ)U 1 = 0 in U ,

U1 =
∂U0

∂ν
on ∂Ω

U1 = 0 on ∂O.

We have :

P∞Rσ
1 (ξ)P∞(fj) =

m∑

i=1

(∫

U
U1 · fi

)
fi.

Now we have : ∫

U
U1fi = − 1

λ∞

∫

U
U1∆fi

= − 1

λ∞

∫

U
∆U1fi +

1

λ∞

∫

∂Ω
U1 ∂fi

∂ν

=
ξ

λ∞

∫

U
U1fi +

1

λ∞

∫

∂Ω

∂U0

∂ν

∂fi

∂ν

Hence we obtain that : ∫

U
U1fi =

1

(λ∞ − ξ)2

∫

∂Ω

∂fj

∂ν
· ∂fi

∂ν
,

thus

P∞Rσ
1 (ξ)P∞(fj) =

1

(λ∞ − ξ)2

m∑

i=1

(∫

∂Ω

∂fj

∂ν
· ∂fi

∂ν

)
fi.

We are now able to prove the following proposition which contains the results of Theorem 1.1 :

Proposition 3.2 The resolvent Rσ(ξ) admits an asymptotic expansion of the form :

Rσ(ξ) = R∞(ξ) +
1√
σ
Rσ

1 (ξ) +
1√
σ
Kσ

2 (ξ), (3.16)

where Rσ
1 (ξ) is defined by (3.11), (3.12) and (3.14).

Furthermore there exists σ0 > 0 and there exists a constant C independent on ξ ∈ C(λ∞, η), such
that :

∀ σ > σ0, ∀ ξ ∈ C(λ∞, η), ∀ f ∈ H1(O),






‖Kσ
2 (ξ)(f)‖H1(O) ≤ C‖f‖H1(O),

‖Kσ
2 (ξ)(f)‖L2(O) ≤

C

σ
1
4

‖f‖H1(O).
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Proof. We fix f ∈ H1(O), we define U 0, U1 and α1 like in (3.11), (3.12), (3.14), and we set :





uσ(x) = U0(x) +
1√
σ
U1(x) +

1√
σ
aσ(x) if x ∈ U ,

vσ(x) =
1√
σ
ψ(x)α1(x)e

−
√

σϕ(x) +
1√
σ
bσ(x) if x ∈ Ω.

The remainder terms aσ and bσ satisfy the following system :






(i) (−∆ − ξ)aσ = 0 in U ,

(ii) aσ = bσ in ∂Ω,

(iii)
∂aσ

∂ν
+
∂U1

∂ν
=
∂bσ

∂ν
+
∂α1

∂ν
in ∂Ω,

(iv) (−∆ − ξ)bσ + σbσ = gσ in Ω,

(v) aσ = 0 on ∂O,

(3.17)

where

gσ =
√
σf +

√
σψ

(
2(∇ϕ,∇α1) + ∆ϕα1

)
e−

√
σϕ

+

(
ψ∆α1 + ξψα1 + ∆ψα1 + 2(∇ψ,∇α1) + 2α1(∇ψ,∇ϕ)

)
e−

√
σϕ.

We have the following estimates :

• ‖∂α1

∂ν
‖L2(∂Ω) ≤ C‖α1‖H2(Ω) ≤ K‖α1‖

H
3
2 (∂Ω)

≤ K‖U0‖H3(U), and we obtain :

‖∂α1

∂ν
‖L2(∂Ω) ≤ K‖f‖H1(U).

• ‖∂U
1

∂ν
‖L2(∂Ω) ≤ C‖U1‖H2(U) ≤ C‖U1‖

H
3
2 (∂Ω)

≤ C‖∂U
0

∂ν
‖

H
3
2 (∂Ω)

hence

‖∂U
1

∂ν
‖L2(∂Ω) ≤ K‖f‖H1(U).

• ‖gσ‖L2(Ω) ≤
√
σ‖f‖L2(Ω) +K

√
σ‖2(∇ϕ,∇α1) + ∆ϕα1)‖L2(Ω)‖e−

√
σϕ‖L∞(Ω) +K‖α1‖H2(Ω) so

‖gσ‖L2(Ω) ≤ K
√
σ‖f‖L2(Ω) +K

√
σ‖f‖H1(U).

We apply Proposition 2.2 and we obtain that :

‖∇aσ‖2
L2(U) + ‖∇bσ‖2

L2(Ω) + σ‖bσ‖2
L2(Ω) ≤ K

(
‖f‖2

L2(Ω) + ‖f‖2
H1(U)

)
.

Furthermore, applying Lemma 2.1 and Lemma 2.2, since aσ = bσ on ∂Ω, we obtain that :

‖aσ‖L2(U) ≤
K

σ
1
4

(
‖f‖2

L2(Ω) + ‖f‖2
H1(U)

)
.

So the proof of Proposition 3.2 is complete.
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4 Proof of Theorem 1.2

Proposition 4.1 The projector P σ admits an asymptotic expansion of the form :

P σ = P∞ +
1√
σ
P 1,σ +

1√
σ
Mσ,

where P 1,σ is an linear operator defined on H1(O). Furthermore, there exist a constant C and σ0

such that for all σ > σ0 and for all f ∈ H1(O),





‖rP 1,σ(f)‖H1(U) ≤ C‖rf‖H1(U)

‖P 1,σ(f)‖H1(Ω) ≤ Cσ
1
4 ‖rf‖H1(U)

‖P 1,σ(f)‖L2(Ω) ≤
C

σ
1
4

‖rf‖H1(U)

and 




‖Mσ(f)‖H1(O) ≤ C‖f‖H1(O)

‖Mσ(f)‖L2(O) ≤
C

σ
1
4

‖f‖H1(U).

Furthermore, rP 1,σ is independent on σ and P∞P 1,σP∞ = 0.

Proof. The operators Hσ and H∞ are self-adjoint thus the projections P σ and P∞ are given by
the relations (1.3) and (1.4).
Therefore, according to Lemma 3.1 and Proposition 3.2, if we set

P 1,σ =
−1

2iπ

∫

C(λ∞,η)
R1,σ(ξ)dξ

and

Mσ =
−1

2iπ

∫

C(λ∞,η)
K2,σ(ξ)dξ,

the first assertion and the estimates are straightforward.
The second assertion is a consequence of Lemma 3.1 since

∫

C(λ∞,η)
(λ∞ − ξ)−2dξ = 0.

Proof of Theorem 1.2.

Using Kato’s method (see [12]), we introduce the operator Aσ :

Aσ = I − P∞ + P σP∞.

This operator maps E∞ into Eσ and leaves the orthogonal of E∞ invariant.
Using Proposition 4.1, we obtain an asymptotic expansion of Aσ :

Aσ = I +
1√
σ
P 1,σP∞ +

1√
σ
MσP∞, (4.18)
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We remark that there exists a constant C such that :

∀ σ > σ0, ∀ f ∈ H1(O),






∥∥∥∥
1√
σ
P 1,σP∞(f)

∥∥∥∥
H1(O)

≤ C

σ
1
4

‖f‖H1(O)

∥∥∥∥
1√
σ
MσP∞(f)

∥∥∥∥
H1(O)

≤ C√
σ
‖f‖H1(O).

(4.19)

So Aσ is invertible in L(H1(Ω);H1(Ω)) and

[Aσ]−1 = Id− 1√
σ
P 1,σP∞ − 1√

σ
MσP∞ +

+∞∑

n=2

(−1)n

σ
n
2

[
P 1,σP∞ + MσP∞

]n

.

Using assertion (4.19) we remark that :

∥∥∥∥∥

+∞∑

n=3

(−1)n

σ
n
2

[
P 1,σP∞ + MσP∞

]n
∥∥∥∥∥
L(H1(O))

≤ K

σ
3
4

.

Furthermore, using that P∞P 1,σP∞ = 0, we obtain that

P∞[Aσ]−1 = P∞ − 1√
σ
P∞MσP∞ + 1

σ
P∞MσP∞MσP∞

+
+∞∑

n=3

(−1)n

σ
n
2

[
P 1,σP∞ + MσP∞

]n

.

Now since P∞ is a regularizing operator,

‖P∞MσP∞‖L(H1;H1) ≤ C‖MσP∞‖L(H1;L2) ≤
K

σ
1
4

.

So we have :

P∞(Aσ)−1 = P∞ +
1√
σ
Nσ, (4.20)

with

‖Nσ‖L(H1) ≤
K

σ
1
4

.

As a consequence, the eigenvalues of Hσ contained in B(λ∞, η) are the eigenvalues of the operator
Qσ defined on E∞ by :

Qσ = P∞(Aσ)−1HσP σAσP∞.

Since we have the relation :

HσP σ = − 1

2iπ

∫

C(λ∞,η)
ξRσ(ξ)dξ, (4.21)

we are lead to study the asymptotic expansion of P∞(Aσ)−1RσP σAσP∞.

Using Proposition 3.2, and equations (4.18) and (4.20) we have :

P∞(Aσ)−1RσP σAσP∞ =

(
P∞ +

1√
σ
Nσ

) (
R∞(ξ) +

1√
σ
Rσ

1 (ξ) +
1√
σ
Kσ

2

)

×
(
P∞ + 1√

σ
P 1,σP∞ + 1√

σ
MσP∞

)
,
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i.e.
P∞(Aσ)−1RσP σAσP∞ = T1 + . . . T6

with

T1 = P∞R∞(ξ)P∞ +
1√
σ
P∞R∞(ξ)P 1,σP∞ +

1√
σ
P∞R∞(ξ)MσP∞,

T2 =
1√
σ
P∞Rσ

1 (ξ)P∞ +
1

σ
P∞Rσ

1 (ξ)P 1,σP∞ +
1

σ
P∞Rσ

1 (ξ)MσP∞,

T3 =
1√
σ
P∞Kσ

2 (ξ)P∞ +
1

σ
P∞Kσ

2 (ξ)P 1,σP∞ +
1

σ
P∞Kσ

2 (ξ)MσP∞,

T4 =
1√
σ
NσR∞(ξ)P∞ +

1

σ
NσR∞(ξ)P 1,σP∞ +

1

σ
NσR∞(ξ)MσP∞,

T5 =
1

σ
NσRσ

1 (ξ)P∞ +
1

σ
3
2

NσRσ
1 (ξ)P 1,σP∞ +

1

σ
3
2

NσRσ
1 (ξ)MσP∞,

T6 =
1

σ
NσKσ

2 (ξ)P∞ +
1

σ
3
2

NσKσ
2 (ξ)P 1,σP∞ +

1

σ
3
2

NσKσ
2 (ξ)MσP∞.

Since P∞ is a regularizing operator, we remark that

‖P∞Kσ
2 (ξ)‖L(H1 ;H1) ≤ ‖P∞‖L(L2;H1)‖Kσ

2 (ξ)‖L(H1 ;L2) ≤
C

σ
1
4

.

Using Lemma 3.1, Proposition 3.2 and Proposition 4.1, we estimate the terms T1, . . . , T6. We recall
that P∞P 1,σP∞ = 0.

• P∞R∞(ξ) =
1

λ∞ − ξ
P∞. Thus T1 =

1

λ∞ − ξ
P∞ +

1

λ∞ − ξ
τσ
1 with τσ

1 =
1√
σ
P∞MσP∞, so

‖τσ
1 ‖L(H1) ≤

K

σ
3
4

.

• T2 =
1√
σ

1

(λ∞ − ξ)2
AP∞ + τσ

2 where τσ
2 =

1

σ

(
P∞Rσ

1 (ξ)P 1,σP∞ + P∞Rσ
1 (ξ)MσP∞

)
, and

we have :

‖τσ
2 ‖L(H1) ≤

C

σ
.

• ‖T3‖L(H1) ≤ 1√
σ
‖Kσ

2 (ξ)‖L(H1;L2) +
1

σ
‖P∞Kσ

2 (ξ)‖L(H1)

(
‖P 1,σP∞‖L(H1) + ‖MσP∞‖L(H1)

)
.

Since P∞ is a regularizing operator, and using Proposition 4.1 we obtain that

‖T3‖L(H1) ≤
K

σ
.

In the same way we prove that T4, T5 and T6 are bounded in L(H1) by
K

σ
3
4

.

Therefore we obtain that

P∞(Aσ)−1Rσ(ξ)AσP∞ = (λ∞ − ξ)−1P∞ +
1√
σ

(λ∞ − ξ)−2AP∞ + o(σ−
1
2 ).
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Hence integrating this asymptotic expansion on C(λ∞, η), we obtain that :

P∞(Aσ)−1HσP σAσP∞ = λ∞P∞ +
1√
σ
AP∞ + o(σ−

1
2 ).

Theorem 1.2 is then a consequence of the well known results in finite dimensional spaces (see [12]).

5 Further order asymptotic

In this section we seek an asymptotic expansion of the eigenvalues of Hσ at any order. The main
difficulty comes from the fact that the asymptotic at any order of the resolvent operator is not
valid in an algebra. The first order approximation is only in L(H 1, L2) and the further order ones
are in L(Hk, L2) with k sufficiently large. Then we can not compose the asymptotic expansions in
the study of Qσ = P∞(Aσ)−1HσAσP∞.
The second difficulty is that Qσ is not self-adjoint and the existence of an asymptotic expansion of
the operator at any order does not imply the existence of the corresponding asymptotic expansion
for the eigenvalues.
We consider W σ = (P σ − P∞)2. This is a self-adjoint operator which tends to zero as σ tends to
+∞, according to Proposition 3.1. Consequently, for σ sufficiently large, we can define :

Bσ := (1 −W σ)−
1
2

(
(1 − P σ)(1 − P∞) + P σP∞

)
. (5.22)

Since W σ commute with P σ and P∞, Bσ maps E∞ in Eσ and (E∞)⊥ in (Eσ)⊥. Moreover using
that P∞P∞ = P∞ and that P σP σ = P σ, we remark that

Bσ τBσ = (1 −W σ)−
1
2 (1 −W σ)(1 −W σ)−

1
2 = I,

that is Bσ is unitary and then HσP σ and Q̃σ = P∞(Bσ)−1HσBσP∞ have the same eigenvalues.
The crucial result to obtain the asymptotic expansion at any order is the following proposition :

Proposition 5.1 For Bσ defined above, we have:

P∞(Bσ)−1HσBσP∞ = (1 −W σP∞)−
1
2P∞HσP σP∞(1 −W σP∞)−

1
2P∞.

Proof. By definition of Bσ and by using that W σ commute with P σ and P∞ we have :

BσP∞ = (1 −W σ)−
1
2P σP∞ = P σP∞(1 −W σ)−

1
2P∞.

In the same way, P∞(Bσ)−1 = P∞(1 −W σ)−
1
2P∞P σ. Furthermore since W σP∞ = P∞W σ and

P∞P∞ = P∞, we have :

(1 −W σ)−
1
2P∞ = (1 −W σP∞)−

1
2P∞.

This complete the proof of the proposition.

Therefore using the relation (4.21) the asymptotic expansion of P∞(Bσ)−1HσBσP∞ will be a con-

sequence of the asymptotic expansion of (1 −W σP∞)−
1
2P∞Rσ(ξ)P∞(1 −W σP∞)−

1
2P∞. More-

over since W σP∞ = P∞W σP∞ = P∞ − P∞P σP∞, according to relation (1.3), we are re-
duced to discuss the asymptotic expansion of P∞Rσ(ξ)P∞. We remark that if g ∈ H1(O) then
P∞(g) ∈ C∞(U) and vanishes on Ω, thus it suffices to perform an asymptotic expansion of Rσ(ξ)(f)
with f ∈ H1

0 (U) ∩ C∞(U) and f = 0 in Ω.
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Proposition 5.2 Let N ∈ IN. Let f ∈ H1(O) such that f = 0 in Ω and such that the restriction
of f in U is in C∞(U). Then Rσ(ξ)(f) admits an asymptotic expansion of the form :

Rσ(ξ)(f) =





N∑

k=0

1

σ
k
2

Uk(x) +
1

σ
N
2

aσ(x) if x ∈ U ,

N∑

k=1

1

σ
k
2

ψ(x)αk(x)e−
√

σϕ(x) +
1

σ
N
2

bσ(x) if x ∈ Ω,

and there exists a constant C independent on f and on σ > σ0 sufficiently large such that the
remainder terms aσ and bσ satisfy :





‖aσ‖L2(U) ≤
C

σ
‖f‖H2N (U),

‖∇aσ‖L2(U) ≤
C

σ
1
4

‖f‖H2N (U),

‖bσ‖L2(Ω) ≤
C

σ
3
4

‖f‖H2N (U),

‖∇bσ‖L2(Ω) ≤
C

σ
1
4

‖f‖H2N (U).

Proof.

First step. Formal asymptotic expansion.

As in the Section 3, with the usual notations, we seek (uσ, vσ) of the form:




uσ(x) = U0(x) +
1√
σ
U1(x) +

1

σ
U2(x) + ...

vσ(x) = V 0(x,
√
σϕ(x)) +

1√
σ
V 1(x,

√
σϕ(x)) +

1

σ
V 2(x,

√
σϕ(x)) + ...

We recall that uσ and vσ satisfy (3.8). Replacing uσ and vσ by their asymptotic expansion in (3.8)
and identifying the different powers of

√
σ, we obtain :

• In U , for k = 0 : 



(−∆ − ξ)U 0 = f on U

U0 = 0 on ∂U
that is

U0 = (R̃∞(ξ) ◦ r)(f).

• In Ω, for k ≥ 0 :





(−∆ − ξ)V k−1 −
[
(2∇ϕ,∇V k

z ) + ∆ϕV k
z

]
+ (V k+1 − V k+1

zz ) = 0 in Ω

−V k
z =

∂Uk−1

∂ν
− ∂V k−1

∂ν
on ∂Ω

with V −1 = V 0 = 0 (see Section 3).
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• In U , for k ≥ 1 : 




(−∆ − ξ)Uk = 0 on U

Uk = V k on ∂Ω

Uk = 0 on ∂O

Then we construct functions V k and Uk, k ≥ 1, by induction. We set V k(x, z) = αk(x)e
−z with αk

solution of 



(2∇ϕ,∇αk) + ∆ϕαk = (∆ + ξ)αk−1 in Ω

αk =
∂Uk−1

∂ν
− ∂αk−1

∂ν
on ∂Ω

(5.23)

and Uk, solution of 




(−∆ − ξ)Uk = 0 on U

Uk = αk on ∂Ω

Uk = 0 on ∂O

(5.24)

where U 0 = rR∞(ξ)(f) and α0 = 0.

Second step. Properties of the profiles.

Using (5.23) we remark that if αk−1 ∈ Hp(Ω) and Uk−1 ∈ Hp(U) then, αk|∂Ω ∈ Hp− 3
2 (∂Ω) and

(∆ + ξ)αk−1 ∈ Hp−2(Ω). Hence αk ∈ Hp−2(Ω) with Proposition 2.1.
Using classical results on elliptic equations, we obtain now that U k ∈ Hp−1(U).
A straightforward induction allows us to claim that there exists a constant C independent on f
and σ such that :

∀ k ≤ N, ‖αk‖H2(N−k)+2(Ω) + ‖Uk‖H2(N−k)+2(U) ≤ C‖f‖H2N (U). (5.25)

Third step. Estimation of the remainder terms.

For any N ∈ IN we decompose uσ and vσ on the form :





uσ(x) =
N∑

k=0

σ−
k
2Uk(x) + σ−

N
2 aσ(x) if x ∈ U ,

vσ(x) =
N∑

k=0

σ−
k
2ψ(x)αk(x)e−

√
σϕ(x) + σ−

N
2 bσ(x) if x ∈ Ω.

The remainder terms aσ and bσ satisfy the following system :
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



(i) (−∆ − ξ)aσ = 0 in U ,

(ii) aσ = bσ in ∂Ω,

(iii)
∂aσ

∂ν
+
∂UN

∂ν
=
∂bσ

∂ν
+
∂αN

∂ν
in ∂Ω,

(iv) (−∆ − ξ)bσ + σbσ = gσ in Ω,

(v) aσ = 0 on ∂Ω,

(5.26)

where

gσ =
N−1∑

k=0

σ
N−k

2 (2(∇ψ,∇ϕ)αk+1 + ∆ψαk + 2(∇ψ,∇αk)) e−
√

σϕ

+(2(∇ψ, αN ) + ∆ψαN ) e−
√

σϕ + ψ(∆ + ξ)αNe
−
√

σϕ,

which is bounded in L2(Ω) by C‖f‖H2N (U) because ϕ(x) > ε > 0 on the support of the derivative
of ψ, and using estimate (5.25).
We apply Proposition 2.2 and we obtain that :

‖∇aσ‖2
L2(U) + ‖∇bσ‖2

L2(Ω) + σ‖bσ‖2
L2(Ω) ≤

K√
σ
‖f‖H2N (U).

Furthermore, applying Lemma 2.1, we obtain that :

‖bσ‖L2(∂Ω) ≤
K

σ
‖f‖H2N (U).

and applying Lemma 2.1 it concludes the proof of Proposition 5.2.

We consider f ∈ E∞. We remark that since P∞f = f and since P∞ is a regularizing operator,
there exists a constant C such that :

‖f‖H2N (U) = ‖P∞f‖H2N (U) ≤ C‖f‖L2(U). (5.27)

We introduce now the profiles U 0, . . . , UN defined by (5.24) and we set

Ak(ξ)(f) = P∞(Uk).

Using (5.25) and (5.27), since P∞ is a regularizing operator, we obtain that there exists a constant
C independent on f , ξ and k ∈ {1, . . . , N} such that :

‖Ak(ξ)(f)‖L2(U) ≤ C‖f‖L2(U).

Furthermore if we denote Kσ
N (ξ)(f) = P∞(aσ) where aσ is defined by (5.26), we obtain the propo-

sition :

Proposition 5.3 For any N ∈ IN

P∞Rσ(ξ)P∞ = (λ∞ − ξ)−1P∞ +
N∑

k=1

1

σ
k
2

Ak(ξ)P∞ +
1

σ
N
2

Kσ
N ,

with ‖Kσ
N‖L2(U) ≤ C√

σ
.
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Corollary 5.1 There exist (P k)k≥2 ∈ L(E∞)IN such that for any N ≥ 2:

P∞P σP∞ = P∞ +
N∑

k=2

1

σ
k
2

P kP∞ +
1

σ
N
2

P σ
N ,

with ‖P σ
N‖L2(U) ≤ C√

σ
.

Proof. It is a direct consequence of the above Proposition using the relation (1.3). The coefficient

of σ−
1
2 vanishes because

∫

C
(λ∞ − ξ)−2dξ = 0. For k ≥ 2, P k =

−1

2iπ

∫

C(λ∞,η)
Ak(ξ)dξ.

Proof of Theorem 1.3. Let Bσ defined by (5.22). Since Bσ maps E∞ on Eσ , the eigenvalues of
HσP σ are the ones of Q̃σ = P∞(Bσ)−1HσBσP∞. This operator is self-adjoint then exploiting the
perturbation theory in finite dimension we will deduce the asymptotic expansion of the eigenvalues
of Q̃σ from the one of Q̃σ itself. According to the proposition 5.1,

Q̃σ = (1 −W σP∞)−
1
2P∞HσP σP∞(1 −W σP∞)−

1
2P∞.

Using the relations W σP∞ = P∞ − P∞P σP∞ and (4.21), from Proposition 5.3 and its Corollary
we deduce that Q̃σ admits an asymptotic expansion at any order with respect to 1/

√
σ. Since Q̃σ

is a self adjoint operator, using finite dimensional results (see [12]), we obtain that the eigenvalues
of Hσ admit an asymptotic expansion at any order. This complete the proof of Theorem 1.3.
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