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CHAPTER 1

Categories

1. Categories

1.1. Basic ideas:
• Study classes of objects (as sets, modules, topological spaces,...);
• Avoid the set-theoretic language (do not suppose that our objects are sets).

Definition. A categoryA consists of
– a class Obj(A) of objects;
– for all X,Y ∈ Obj(A), a set MorA(X,Y) called the set of morphisms from

X to Y. We write f : X → Y to say that f ∈ MorA(X,Y).
– For each X ∈ Obj(A), an identity morphism idX ∈ MorA(X, X) :
– For every ordered triple of objects X,Y,Z ∈ Obj(A), a map of sets

MorA(X,Y) ×MorA(Y,Z)→ MorA(X,Z),

called a composition function. This map associates to each f ∈ MorA(X,Y)
and g ∈ MorA(X,Y) a morphism g ◦ f : X → Z (or just simply g f ) called
the composition of f and g.

These data should satisfy the following axioms:
Cat1) (Associativity axiom) For all f ∈ MorA(X,Y), g ∈ MorA(Y,Z) and h ∈

MorA(Z,U),
h ◦ (g ◦ f ) = (h ◦ g) ◦ f .

Cat2) (Unit axiom) For all X,Y ∈ Obj(A) and f ∈ MorA(X,Y),

idY ◦ f = f = f ◦ idX .

Examples. 1) The category Sets of sets. The objects are sets and the mor-
phisms are set functions (maps):

Obj(Sets) = {sets}, MorSets(X,Y) := {maps f : X → Y}.

2) The category A −Mod of left modules over a fixed ring A. The morphisms
are homomorphisms of modules:

MorA−Mod(X,Y) := HomA(X,Y).

3) The category Groups of groups. The morphisms are morphisms of groups.
4) The category Rings of rings. The morphisms are morphisms of rings.
5) The category TSpaces. The objects are topological spaces and

MorTSpaces(X,Y) := {continuous f : X → Y}.
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6 1. CATEGORIES

Definition. LetA be a category. We define the dual (or opposite) categoryA◦

ofA setting:
a) Obj(A◦) := Obj(A). For each X ∈ Obj(A), we write X◦ for X viewed as

an object ofA◦.
b) MorA◦(X◦,Y◦) := MorA(Y, X).

In general, Obj(A) is not a set.

Definition. A categoryA is small if Obj(A) is a set.

1.2. We want to define the notions of isomorphism, monomorphism and epi-
morphism in a completely general setting.

Definition. Let f : X → Y.
i) f is an isomorphism if there exists g : Y → X such that g ◦ f = idX and

f ◦ g = idY .
ii) f is monic (or a monomorphism) if for all Z ∈ Obj(A), the map

MorA(Z, X)→ MorA(Z,Y),
g 7→ f ◦ g

is injective.
iii) f is epi (or an epimorphism) if for all Z ∈ Obj(A), the map

MorA(Y,Z)→ MorA(X,Z),
g 7→ g ◦ f

is injective.

Exercise 1. 1) f is an isomorphism⇒ f is monic and epi.
2) Show that in the category Rings, the natural inclusion f : Z→ Q is monic,

epi, but not an isomorphism.

2. Functors

2.1. LetA and B be two categories.

Definition. A covariant functor from A to B is a rule F : A → B that
associates to each X ∈ Obj(A) an object F (X) ∈ Obj(B) and to each morphism
f : X → Y inA a morphism F ( f ) : F (X)→ F (Y) in B and such that:

Fun1) For all f ∈ MorA(X,Y) and g ∈ MorA(Y,Z),

F (g ◦ f ) = F (g) ◦F ( f ).

Fun2) F (idX) = idF (X) for all X ∈ Obj(A).

Therefore, we have a map

MorA(X,Y)→ MorB(F (X),F (Y)), f 7→ F ( f ).

Definition. A contravariant functor from A to B is a rule F : A → B that
associates to each X ∈ Obj(A) an object F (X) ∈ Obj(B) and to each morphism
f : X → Y inA a morphism F ( f ) : F (Y)→ F (X) in B and such that:
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Fun◦1) For all f ∈ MorA(X,Y) and g ∈ MorA(Y,Z),

F (g ◦ f ) = F ( f ) ◦F (g) (sic!).

Fun◦2) F (idX) = idF (X) for all X ∈ Obj(A).

Therefore, we have a map

MorA(X,Y)→ MorB(F (Y),F (X)), f 7→ F ( f ).

A contravariant functor F defines a covariant functor on the dual category:

F ◦ : A◦ → B, F ◦(X◦) := F (X).

If F : A → B and G : B → C are two functors, then

G ◦F : A → C, G ◦F (X) = G (F (X))

is a functor.

Exercise 2. If F and G are both covariant or contravariant, then G ◦ F is
covariant. If one of functors is covariant and the other is contravariant, then G ◦F
is contravariant.

2.2. We define functors in several variables. IfA1 andA2 are two categories,
we define the product categoryA1 ×A2 by:

Obj(A1 ×A2) = {ordered pairs (X1, X2), where X1 ∈ A1, and X2 ∈ A2},

MorA1×A2((X1, X2), (Y1,Y2)) = MorA1(X1,Y1) ×MorA2(X2,Y2).

Let
F : A1 ×A2 → B

be a rule which assignes to each (X1, X2) ∈ A1 × A2 an object F (X1, X2) ∈ B.
Fixing X2 ∈ A2, we can consider the assignement

F (−, X2) : A1 → B, Z 7→ F (Z, X2).

Analogously, fixing X1 ∈ A1, we can consider the assignment

F (X1,−) : A2 → B, Z 7→ F (X2,Z).

Definition. F : A1 × A2 → B is a functor in two variables if the rules
F (X1,−) and F (−, X2) are functors for all X1 ∈ A1 and X2 ∈ A2. The functor
F is covariant (resp. contravariant) in the first variable if F (−, X2) is covariant
(resp. contravariant) for all X2. The functor F is covariant (resp. contravariant)
in the second variable if F (X1,−) is covariant (resp. contravariant) for all X1.

Examples. 1) LetA be an arbitrary category. Fix A ∈ A. Then
a) hA : A → Sets defined by hA(X) = MorA(A, X) is a covariant functor.
b) a) hA : A → Sets defined by hA(X) = MorA(X, A) is a contravariant

functor.
c) MorA(−,−) : A×A → Sets given by

(X,Y) 7→ MorA(X,Y)
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is a functor which is contravariant in the first variable and covariant in the second
variable.

2) In particular, if A = A − Mod is the category of modules over A, when
MorA(X,Y) = HomA(X,Y) is an abelian group. Therefore

HomA(−,−) : A×A → Ab,

where Ab denotes the category of abelian groups.

3) Let A be a ring. We already introduced the category A − Mod of left A-
modules. We can also consider the category Mod − A of right A-modules. For any
X ∈Mod−A and Y ∈ A−Mod the tensor product X⊗A Y is well defined. This gives
us a two-variable functor (X,Y) 7→ X ⊗A Y. It is covariant in the both variables.

2.3. We define the notion of natural transformation of functors.

Definition. Let F : A → B and F : G → B be two covariant functors. A
natural transformation α : F → G is a rule that to each X ∈ Obj(A) associates
a morphism in B

αX : F (X)→ G (X),
such that for any f : X → Y the following diagram is commutative:

F (X)
αX //

F ( f )
��

G (X)

G ( f )
��

F (Y)
αY // G (Y).

A natural transformation of contrvariant functors can be defined similarly.

Examples. 1) For each category A, the identity functor is the functor idA :
A → A defined by idA(X) = X and idA( f ) = f .

2) Let A, B ∈ A and g : A→ B. For each X ∈ A we have the map
αX : hB(X) := MorA(B, X)→ hA(X) := MorA(A, X),
αX( f ) := f ◦ g.

Then α is a natural transformation α : hB → hA of covariant functors (exercise).
Similarly, the maps

βX : hA(X) := MorA(X, A)→ hB(X) := MorA(X, B),
βX( f ) := g ◦ f

define a natural transformation β : hA → hB of contravariant functors.

Definition. A natural transformation α : F → G is a natural isomorphism
of functors if αX is an isomorphism in B for all X ∈ A. Equivalently, α is a natural
isomorphism if there exists a natural transformation β : G → F such that β ◦α =

idA and α ◦ β = idB.

The usual notation for a naturally isomorphic functors is F ' G .
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2.4. We can define the notion of isomorphism for categories:

Definition. An isomorphism of categories is a functor F : A → B which
is bijection both on objects and morphisms. Equivalently, F : A → B is an
isomorphism if there exists a functor G : B → A such that

G ◦F = idA, F ◦ G = idB.

This notion is not very useful (too restrictive!). In particular, ifA andB are iso-
morphic, there exists a one-to-one correspondence between Obj(A) and Obj(B).
The following notion is more natural:

Definition. An equivalence between two categoriesA and B is a pair of func-
tors F : A → B and G : B → A such that

G ◦F ' idA, F ◦ G ' idB.

2.5. We define some important classes of functors:

Definition. A functor F : A → B is
i) faithful, if for all X,Y ∈ A the map

MorA(X,Y)→ MorB(F (X),F (Y))

is injective;
ii) full, if for all X,Y ∈ A the map

MorA(X,Y)→ MorB(F (X),F (Y))

is surjective.
iii) fully faithful, if it is full and faithful.

Example. A forgetful functor is a functor that forgets some structures. For
example, the functor F : A −Mod → Ab which associates to each A-module X
the same set X equipped only with its abelian group structure, is a forgetful functor.
It is fully faithful. In general, it is not full because for a general ring HomA(X,Y)
is smaller that HomAb(X,Y).

Theorem 2.6. A functor F : A → B is an equivalence of categories if and
only if it is fully faithful and for any Y ∈ Obj(B), there exists X ∈ Obj(A) such
that Y ' F (X) (Y is isomorphic to F (X)).

3. Products

In ths section, we define the notions of direct product and direct sum (or direct
coproduct) in general categories.

Let I be a set and let (Xi)i∈I a family of objects Xi ∈ Obj(A) indexed by I.

Definition. i) An object X ∈ Obj(A) is a product of (Xi)i∈I if it is equipped
with morphisms pi : X → Xi (i ∈ I) such that the following universal property
holds:

For any X′ ∈ Obj(A) equipped with morphisms p′i : X′ → Xi (i ∈ I) there
exists a unique morphism f : X′ → X such that

p′i = pi ◦ f , ∀i ∈ I :
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X′

p′i
��

f

~~
X

pi // Xi.

ii) An object Y ∈ Obj(A) is a coproduct of (Xi)i∈I if it is equipped with mor-
phisms qi : Xi → Y (i ∈ I) such that the following universal property holds:

For any Y ′ ∈ Obj(A) equipped with morphisms q′i : Xi → Y (i ∈ I) there
exists a unique morphism f : Y → Y ′ such that

q′i = f ◦ qi, ∀i ∈ I :

Y ′

Y

f
>>

Xi.qi
oo

q′i

OO

From the universal property it follows that the direct product and the direct
coproduct (if exist!) are unique up to an isomorphism. The usual notations for the
product and coproduct are ∏

i∈I

Xi,
∐
i∈I

Xi

Examples. 1) In the category A−Mod, the products and coproducts exist. The
product of modules Xi is the usual cartesian (direct) product∏

i∈I

Xi =
{
(xi)i∈I | xi ∈ Xi

}
equipped with the componentwise addition and scalar multiplication:

(xi)i∈I + (yi)i∈I = (xi + yi)i∈I , a · (xi)i∈I = (axi)i∈I .

The coproduct of Xi can be constructed as follows:∐
i∈I

Xi =
{
(xi)i∈I | xi ∈ Xi and xi = 0 for almost all i

}
.

2) In Sets, the product is the cartesian product of sets. The coproduct
∐
i∈I

Xi is

the disjoint union of Xi.
3) In Groups, the product is the cartesian (direct) product of groups with the

componentwise multiplication. One can show that coproducts exist (free product
of groups).

Exercise 3. X is a direct product of (Xi)i∈I in A if and only if X◦ is a direct
sum of (X◦i )i∈I inA◦.

4. Additive categories

4.1. Initial, final and zero objects. LetA be a category.

Definition. An object X ∈ Obj(A) is
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– initial, if for any Y ∈ Obj(A) there exists exactly one morphism f : X →
Y.

– final (or terminal) , if for any Y ∈ Obj(A) there exists exactly one mor-
phism f : Y → X.

– zero if it is initial and final.

Properties 4.2. 1) Initial, terminal and zero objects (if exist) are unique up to
isomorphism.

Proof. We will prove only the uniqueness of the initial object. Assume that
X1 and X2 be two initial objects. Then we have unique morphisms f1 : X1 → X2
and f2 : X2 → X1. The composition f2 ◦ f1 : X1 → X1 coincides with the unique
morphism X1 → X1. Therefore f2 ◦ f1 = idX1 . The same argument shows that
f1 ◦ f2 = idX2 . Therefore X1 ' X2. �

2) X is initial (resp. final) inA⇔ X is final (resp. initial ) inA◦.
3) In A −Mod, the module {0} is a zero object.
4) In Sets, the ∅ is an initial object. Any one-point set is a final object.

Proposition 4.3. Assume thatA has a zero object 0A. Then:
i) For each X ∈ Obj(A), the sets MorA(X,OA) and MorA(0A, X) consist

of one element, which we denote by 0.
ii) For all X,Y ∈ Obj(A), let OXY denote the composition

X → 0A → Y.

Then the morphism 0X,Y does not depend on the choice of 0A. For any
morphism f : Y → Z one has f ◦ 0X,Y = 0X,Z:

X
0X,Y //

0X,Z

33Y
f // Z.

For any morphism f : Z → X one has 0X,Y ◦ f = 0Z,X:

Z
f //

0Z,Y

33X
0X,Y // Y.

Proof. i) is clear.
iia) Assume that 0′

A
is another zero element. Then there exist unique mor-

phisms 0A → 0′
A

and 0′
A
→ 0A. We have a commutative diagram

X

  

��

Y

0A

>>

��
0′
A

GG

OO

which shows that the compositions X → 0A → Y and X → 0′
A
→ Y coincide.
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iib) We have a commutative diagram

X 0 //

0   

Y
f // Z

0A

0

OO

0

>>

which shows that f ◦0X,Y = 0X,Z . The proof of the second formula is analogous. �

4.4. Assume thatA satisfies the following axioms:

Ad1) A has a zero object.
Ad2) A has finite products and coproducts:

for all X,Y ∈ Obj(A), there exist X u Y and X t Y inA.

Consider the diagrams

X

X

idX

<<

q′X //

0

""

X u Y

pX

OO

pY

��
Y

X

Y

0
<<

q′Y //

idY

""

X u Y

pX

OO

pY

��
Y.

By the universal property of products, there exist unique morphisms q′X : X →
X u Y and q′Y : Y → X u Y such that

pX ◦ q′X = idX , pY ◦ q′Y = idY

pY ◦ q′X = 0X,Y , pX ◦ q′Y = 0Y,X .

Dually, consider the diagrams

X
qX

||
idX
��

X t Y
p′X // X

Y
qY

bb

0

OO

X
qX

||
0
��

X t Y
p′Y // Y

Y.
qY

bb

idY

OO

By the universal property of coproducts, there exist unique morphisms p′X : X t
Y → X and p′Y : X t Y → Y such that

p′X ◦ qX = idX , p′Y ◦ qY = idY

p′X ◦ qY = 0Y,X , p′Y ◦ qX = 0X,Y .
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Therefore we can consider the diagram

X

X t Y

p′X
::

s //
p′Y

$$

X u Y

pX

OO

pY

��
Y.

By the universal property of direct products, there exists a unique morphism s :
X t Y → X u Y which makes this diagram commute.

4.5. Diagonal and codiagonal. Consider the diagram

X

X

idX

<<

∆X //

idX

""

X u X

p1

OO

p2

��
X,

where p1 (resp. p2) denotes the projection on the first (resp. second) copy of
X. By the universal property of direct products, there exists a unique morphism
∆X : X → X u X which makes this diagram commute. Dually the diagram

X
q1

||
idX
��

X t X
ΣX // X

X
q2

bb

idX

OO

defines a morphism σX : X t X → X.

Definition. The morphism ∆X is called the diagonal morphism. The morphism
ΣX is called the codiagonal morphism or the sum.

Example. In A −Mod, we have X t Y ' X u Y ' X × Y. It is easy to see that
∆X(x) = (x, x),
ΣX(x1, x2) = x1 + x2.

Remark 4.6. The concepts of the diagonal and codiagonal morphisms are
dual to each other. Namely in the dual category, ∆◦X = ΣX◦ and Σ◦X = ∆X◦ .

4.7. Additive categories. Assume that, in addition, A satisfies the following
axiom:

Ad3) For all objects X,Y ∈ Obj(A), the morphism s is an isomorphism:

s : X t Y
∼
−→ X u Y.
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We set
X ⊕ Y := X t Y ' X u Y

and call it the direct sum of X and Y.
We define a law of composition on MorA(X,Y). For any f , γ ∈ MorA(X,Y),

consider the commutative diagram

X

q1

��

f

""
X ∆ // X ⊕ X σ // Y

X

q2

OO

g

<<

Here the map σ exists by the universal property of coproducts. Set:

f + g := ∆ ◦ σ.

Proposition 4.8. i) For all X,Y ∈ Obj(A), (MorA(X,Y),+) is an abelian
semigroup. Namely:

a) The law of composition + is associative;
b) 0X,Y + f = f + 0X,Y = f for all f ∈ MorA(X,Y);
c) The law of composition + is commutative;

ii) The composition of morphisms is bilinear with respect to +. Namely,

( f + g) ◦ h, ∀ f , g ∈ MorA(X,Y) and h ∈ MorA(Z, X),
h ◦ ( f + g), ∀ f , g ∈ MorA(X,Y) and h ∈ MorA(Y,Z).

Proof. Admitted. �

Definition. A categoryA is additive if, in addition to axioms Ad1-3), it satis-
fies the following axiom:

Ad4) For all X,Y ∈ MorA(X,Y), the semigroup (MorA(X,Y),+) is an abelian
group, i.e. each element has an inverse:

∀ f ∈ MorA(X,Y), ∃ − f ∈ MorA(X,Y) such that f + (− f ) = 0X,Y .

Example. The categories A −Mod and Mod − A are additive.

Definition. LetA and B be two additive categories. A covariant functor F :
A → B is additive if for all X,Y ∈ Obj(A), the map

MorA(X,Y)→ MorB(F (X),F (Y))

is a morphism of groups.
A contravariant functor F : A → B is additive if for all X,Y ∈ Obj(A), the

map
MorA(X,Y)→ MorB(F (Y),F (X))

is a morphism of groups.



5. ABELIAN CATEGORIES 15

5. Abelian categories

5.1. Kernels and cokernels. In this section, we assume that A is a category
which has a zero object. To simplify notation, we will often write 0 instead 0X,Y .

Definition. Let f : X → Y. A morphism α : A → X represents the kernel of
f if

i) f ◦ α = 0;
ii) The following universal property holds: for any α′ : A′ → X such that

f ◦ α′ = 0, there exists a unique g : A′ → A such that α′ = α ◦ g:

A α // X
f // Y,

A′

g

OO
α′

??

Properties 5.2. 1) If it exists, the kernel (A, α) is unique up to isomorphism.

Proof. This follows immediately from the universal property. �

2) If (A, α) represents the kernel of a morphism f : X → Y, then α is monic.

Proof. Consider the diagram

Z
β1

55

β2
)) A α // X

f // Y.

Assume that α ◦ β1 = α ◦ β2. Then

f ◦ (α ◦ β1) = f ◦ (α ◦ β2).

By the universal property of (A, α), for any γ : Z → X such that f ◦ γ = 0, there
exists a unique β : Z → A such that γ = α ◦ β. Take γ = α ◦ β1 = α ◦ β2. Then the
above property implies that β1 = β2. �

Definition. Let f : X → Y. A morphism β : Y → B represents the cokernel
of f if

i) β ◦ f = 0;
ii) The following universal property holds: for any β′ : Y → B′ such that

β′ ◦ f = 0, there exists a unique g : B→ B′ such that β′ = g ◦ β:

X
f // Y

β //

β′

��

B

g
��

B′

The universal property shows that if it exists, the cokernel is unique up to
isomorphism. We adopt the following notation:

(ker( f )
α
−→ X) := kernel of f ,

(Y
β
−→ coker( f )) := cokernel of f .
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We will often write ker( f ) and coker( f ) instead ker( f )
α
−→ X and Y

β
−→ coker( f ).

It is easy to see that the notions of kerner and cokernel are dual to each other.
If f ∈ MorA(X,Y) and f ◦ ∈ MorA(X◦,Y◦) is the corresponding morphism in
the dual category, then ker( f )◦ ' coker( f ◦) and coker( f )◦ ' ker( f ◦). Dualizing

property 5.2, 2) above, we obtain that the morphism (Y
β
−→ coker( f ) is epi.

Definition. Let f : X → Y. We define the image Im( f ) and the coimage
Coim( f ) of f as:

Im( f ) := ker(Y
β
−→ coker( f )),

Coim( f ) := coker(ker( f )
α
−→ X).

Remark 5.3. The notions of image and coimage are dual to each other:

Coim( f ) ' Im( f ◦).

5.4. Definition of abelian categories. To say that f : X → Y is a monic
(resp. epi) we will often write f : X� Y (resp. f : X � Y).

Let f : X → Y be an arbitrary morphism. Assume that f has kernel, cokernel,
image and coimage. These data can be represented by the diagram

ker( f ) // α // X
f //

π
����

s

%%

Y
β // // coker( f )

Coim( f ) i // Im( f )
OO

j

OO

where α, j are monic and β, π are epi.
We analyze this diagram. Since β ◦ f = 0, by the definition of the kernel,

there exists a unique map s : X → Im( f ) such that f = j ◦ s. We remark that
j ◦ s ◦ α = f ◦ α = 0. Since j is monic, this implies that s ◦ α = 0. By the universal
property of the cokernel, we deduce that there exists a unique morphism

i : Coim( f )→ Im( f )

such that s = i ◦ π.

Definition. A category A is abelian if it is additive and, in addition, satisfies
the following axioms:

Ab1) Each morphism has a kernel and a cokernel.
Ab2) For any morphism f , the morphism i : Coim( f ) → Im( f ) is an isomor-

phism.

Example. The categories A −Mod and Mod − A are abelian. The following
exercise gives an example of an additive category which satisfies Ab1), but is not
abelian:

Exercise 4. Let K be a field. A filtered finite-dimensional vector space X =

(V, (Vi)i∈Z) over K is a finite dimensional K-vector space K equipped with an in-
creasing filtration by K-subspaces:

. . . ⊆ Vi−1 ⊆ Vi ⊆ Vi+1 ⊆ . . .
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Let Y = (W, (Wi)i∈Z). A morphism f : X → Y is a linear map f : V → W
such that f (Vi) ⊆ Wi for all i ∈ Z. Let FVectK denote the category of filtered
finite-dimensional vector spaces over K.

1) Show that FVectK is additive.
2) Show that each morphism in FVectK has a kernel and a cokernel.
3) Let V be a nonzero vector space and let X = (V, (Vi)i∈Z) and Y = (V, (V ′i )i∈Z)

be the objects defined as:

Vi =

0, if i 6 0,
V, if i > 1,

V ′i =

0, if i 6 −1,
V, if i > 0,

Show that the identity map on V induces a morphism f : X → Y which is monic
and epi, but is not an isomorphism. Deduce that FVectK is not abelian.

5.5. Basic properties of abelian categories. LetA be an abelian category.

Conventions. i) We write X ⊕Y := X tY ' X uY and call it the direct
sum or biproduct of X and Y.

ii) If α : X → Y is monic, we will write Y/X for coker(α) :

Y/X := coker(α).

iii) We will write HomA(X,Y) instead MorA(X,Y).

Properties 5.6. 1)A is abelian if and only ifA◦ is abelian.

Proof. This follows from the observation that the dual of i : Coim( f ) →
Im( f ) is i◦ : Coim( f ◦)→ Im( f ◦). �

2) f : X → Y is monic if and only if ker( f ) = 0A.

Proof. a) Assume that ker( f ) = 0A. Let Z ∈ Obj(A). We want to show that
the map

f ∗Z : HomA(Z, X)→ HomA(Z,Y), g 7→ f ◦ g

is injective. Since A is additive, this map is a morphism of abelian groups, and
it is sufficient to show that ker( f ∗Z ) = 0. Let g ∈ ker( f ∗Z ). Then f ◦ g = 0. By the
universal property of kernels, there exists a map Z → ker( f ) such that g coincides
with the composition Z → ker( f )→ X. But ker( f ) = 0A, and therefore g = 0. This
shows that ker( f ∗Z ) = 0 and f is monic.

b) Conversely, assume that f is monic. Let α : A→ X be such that f ◦ α = 0.
Then f ◦α = f ◦ 0A,X and therefore α = 0A,X . This shows that α is the composition
of morphisms A → 0A → X. Therefore 0A satisfies the universal property of
ker( f ). �

3) f : X → Y is epi if and only if coker( f ) = 0A.

Proof. Apply property 2) to the morphism f ◦ : Y◦ → X◦. �

4) If f : X → Y is monic, then X ' Im( f ).
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Proof. We have ker( f ) = 0A. It is not difficult to see that coker(0A → X) ' X
(exercise). Therefore Coim f ' coker(0A → X) ' X, and the isomorphism i reads
X ' Im( f ). �

5) If f : X → Y is epi, then Y ' Im( f ) and Y ' X/ ker( f ).

Proof. a) One has:

f is epi⇒ f ◦ is mono⇒ coker( f ) ' ker( f ◦) = 0.

Therefore Y ' Im( f ).
b) By property 3), we have Y◦ ' Im( f ◦). Therefore

Y ' Coim( f ) ' X/ ker( f ).

�

6) If f is monic and epi, then f is an isomorphism.

Proof. By properties 3) and 5), we have X ' Im( f ) ' Y. �

Exercise 5. Show that in an additive category the following statements hold
true:

a) ker(X → 0) = X;
b) coker(0→ X) = X;
c) Im(0→ X) = 0;
d) Coim(X → 0) = 0;

Exercise 6. Let X
f
−→ Y

g
−→ Z. Show that if f and g are monic (resp. epi) then

g ◦ f is monic (resp. epi).

Exercise 7. In a an additive category, the zero map X
0
−→ Y is monic (resp. epi)

if and only if X = 0 (resp. Y = 0).

5.7. Exact sequences.

Definition.
1) A sequence of morphisms

X
f
−→ Y

g
−→ Z

is exact if Im( f ) ' ker(g).
2) A sequence

X1
f1
−→ X2

f2
−→ X3

f3
−→ · · · Xn−1

fn−1
−−−→ Xn

is exact if it is exact in each term:

ker( fi+1) = Im( fi), for all 1 6 i 6 n − 2.

3) A short exact sequence is an exact sequence of the form

0→ X
f
−→ Y

g
−→ Z → 0.
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Consider a short exact sequence

0→ X
f
−→ Y

g
−→ Z → 0.

Then:
• ker( f ) = Im(0→ X) = 0 and therefore f is monic;
• Im(g) = ker(Z → 0) = Z. The composition map

Im(g) ' Z → coker(g)

is zero and epi. Therefore coker(g) = 0 (cf. Exercise 7). and g is epi.
• Z ' Y/X.

Proof. We have:
Z =Im(g) ' Coim(g) ' coker(ker(g)→ Y) '
' coker(Im( f )→ Y) ' coker(X → Y) =: Y/X.

�

6. Exact functors

6.1. Exact functors.

Definition. i) Let A and B be two additive categories. A covariant functor
F : A → B is additive if for all X,Y ∈ Obj(A), the map

MorA(X,Y)→ MorB(F (X),F (Y))

is a morphism of groups.
ii) A contravariant functor F : A → B is additive if the covariant functor

F : A◦ → B is additive. Explicitly, F : A → B is additive if for all X,Y ∈
Obj(A), the map

MorA(X,Y)→ MorB(F (Y),F (X))
is a morphism of groups.

In this section, we will always assume that the categoriesA and B are abelian
and write HomA instead MorA.

Definition. An additive functor F : A → B is exact if for each exact se-

quence X
f
−→ Y

g
−→ Z the induced sequence

F (X)
F ( f )
−−−−→ F (Y)

F (g)
−−−−→ F (Z)

is exact.

Proposition 6.2. i) F is exact if and only if for each short exact sequence

0→ X
f
−→ Y

g
−→ Z → 0

the induced sequence

0→ F (X)
F ( f )
−−−−→ F (Y)

F (g)
−−−−→ F (Z)→ 0

is exact.
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ii) Assume that F is exact. Then f respects kernels, cokernels, images and

coimages. Namely, for any morphism X
f
−→ Y, one has:

ker(F ( f )) ' F (ker( f )), Im(F ( f )) ' F (Im( f )),
coker(F ( f )) ' F (coker( f )), Coim(F ( f )) ' F (Coim( f )).

Proof. a) Assume that F is exact. Then for any exact sequence

X1 → X2 → · · · → Xn

the induced sequence

F (X1)→ F (X2)→ · · · → F (Xn)

is exact. Applying this remark to a short exact sequence 0→ X
f
−→ Y

g
−→ Z → 0 we

see that the induced sequence 0→ F (X)
F ( f )
−−−−→ F (Y)

F (g)
−−−−→ F (Z)→ 0 is exact.

b) We prove ii). Let X
f
−→ Y. Applying F to the exact sequence

0→ ker( f )→ X
f
−→ Y → coker( f )→ 0,

we obtain that the sequence

0→ F (ker( f ))→ F (X)
f
−→ F (Y)→ F (coker( f ))→ 0

is exact. Comparing this sequence with the tautological exact sequence

0→ ker(F ( f ))→ F (X)
f
−→ F (Y)→ coker(F ( f ))→ 0

we obtain that ker(F ( f )) ' F (ker( f )) and coker(F ( f )) ' F (coker( f )).
Applying F to the tautological exact sequence

0→ Im( f )→ Y → coker( f )→ 0

we obtain an exact sequence

0→ F (Im( f ))→ F (Y)→ F (coker( f ))→ 0.

Since F (coker( f )) ' coker(F ( f )), we obtain that

F (Im( f )) ' ker(F (Y)→ coker(F ( f ))) =: Im(F ( f )).

An analogous argument shows that Coim(F ( f )) ' F (Coim( f )).
c) It remains to prove that if F preserves short exact sequences, then it is exact.

Consider an exact sequence of the form X
f
−→ Y

g
−→ Z and the induced sequence

F (X)
F ( f )
−−−−→ F (Y)

F (g)
−−−−→ F (Z).

Since F respects kernels and images, we have

ImF ( f ) ' F (Im( f )) ' F (ker(g)) ' ker(F (g)).

Therefore F is exact, and the proposition is proved. �
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6.3. Left and right exact functors. In some sense, the most interesting func-
tors are not exact, but satisfy some weaker properties, which we introduce in this
section.

Definition. i) Let F : A → B be a covariant additive functor. Then F is
said to be left exact if for any exact sequence

0→ X
f
−→ Y

g
−→ Z

the induced sequence

0→ F (X)
F ( f )
−−−−→ F (Y)

F (g)
−−−−→ F (Z)

is exact. It is said to be right exact if for any exact sequence

X
f
−→ Y

g
−→ Z → 0

the induced sequence

F (X)
F ( f )
−−−−→ F (Y)

F (g)
−−−−→ F (Z)→ 0

is exact.
ii) A contravariant additive functor F : A → B is left (respectively right)

exact if the covariant functor F ◦ : A◦ → Y is left (respectively right) exact.
Namely, F is left exact if for any exact sequence

X
f
−→ Y

g
−→ Z → 0

the sequence

0→ F (Z)
F (g)
−−−−→ F (Y)

F ( f )
−−−−→ F (X)

is exact. It is right exact if for any exact sequence

0→ X
f
−→ Y

g
−→ Z

the sequence

F (Z)
F (g)
−−−−→ F (Y)

F ( f )
−−−−→ F (X)→ 0

is exact.

Proposition 6.4. Let F : A → B be a covariant additive functor. Then the
following assertions hold true:

i) F is left exact if and only if for any short exact sequence 0 → X
f
−→ Y

g
−→

Z → 0 the sequence

0→ F (X)
F ( f )
−−−−→ F (Y)

F (g)
−−−−→ F (Z)

is exact.
ii) It is right exact if and only if for any short exact sequence 0 → X

f
−→ Y

g
−→

Z → 0 the induced sequence

F (X)
F ( f )
−−−−→ F (Y)

F (g)
−−−−→ F (Z)→ 0

is exact.
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Proof. The proof is purely technical and is omitted here. �

Consider the rule
HomA(−,−) :A×A → Ab,

(X,Y) 7→ HomA(X,Y).

For any X1
f
−→ X2, we have a natural map

HomA(X2,Y)
f ∗
−−→ HomA(X1,Y),

g 7→ g ◦ f .

SinceA is abelian (and therefore additive), one has:

f ∗(g1 + g2) = (g1 + g2) ◦ f = g1 ◦ f + g2 ◦ f = f ∗(g1) + f ∗(g2).

Hence f ∗ is a morphism of groups. Similarly, for any Y1
f
−→ Y2, the map

HomA(X,Y1)
f ∗
−−→ HomA(X,Y2),

g 7→ f ◦ g

is a morphism of abelian groups. From this observation it follows easily that
HomA(−,−) is an additive functor in two variables, which is contravariant with
respect to the first argument and contravariant with respect to the second one. For
each A ∈ Obj(A), we consider the functors of one variable hA : A → Ab and
hA : A → Ab defined as follows:

hA(X) := HomA(A, X), hA(X) := HomA(X, A).

We remark that hA is covariant and hA is contravariant.

Theorem 6.5. The functors hA and hA are left exact.

Proof. Asuume that 0 → X
f
−→ Y

g
−→ Z is exact. We should check that the

induced sequence

0→ HomA(A, X)
f ∗
−−→ HomA(A,Y)

g∗
−−→ HomA(A,Z)

is exact.
a) Injectivity of f ∗. Assume that α1, α2 ∈ HomA(A, X) are such that f ∗(α1) =

f ∗(α2). Then
f ◦ α1 = f ◦ α2.

Since f is monic, this implies that α1 = α2.
b) Since g ◦ f = 0, we have g∗ ◦ f ∗ = (g ◦ f )∗ = 0. Hence Im( f ∗) ⊆ ker(g∗).
c) Assume that β ∈ ker(g∗). Then β : A → Y is such that g ◦ β = 0. Since

(X
f
−→ Y) represents ker(g), from the universal property of the kernel it follows that

there exists α : A→ X such that β = f ◦ α. The last formula can be written as

β = f ∗(α) ∈ Im f ∗).

Hence ker(g∗) ⊆ Im( f ∗). Together with b), this proves that ker(g∗) = Im( f ∗). To
sum up, we have proved that hA is left exact.
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d) To prove the left exactness of hA it is enough to remark that hA(X) = hA◦(X◦).
The left exactness of hA◦ : A◦ → Ab is already proved. �

7. Yoneda lemma

In this section, we consider an arbitrary category A. For any A ∈ Obj(A), we
consider the covariant functor

hA :A → Sets,
X 7→ HomA(A, X)

and the contravariant functor

hA :A → Sets,
X 7→ HomA(X, A).

Let F : A → Sets be a covariant functor. We denote by Mor(hA,F ) the natural
transformations α : hA → F .

Lemma 7.1 (Yoneda lemma). There exists a natural one-to-one correspon-
dence

Mor(hA,F ) ' F (A).

Proof. a) We construct a correspondence

Φ : Mor(hA,F )→ F (A).

Let α ∈ Mor(hA,F ). Then for each X ∈ Obj(A), we have a morphism αX :
hA(X)→ F (X). In particular, idA ∈ hA(A), and we set

Φ(α) := αA(idA) ∈ F (A).

b) We construct a correspondence

Ψ : F (A)→ Mor(hA,F ).

Let a ∈ F (A). Consider the composition

αX : hA(X) = MorA(A, X)
F
−−→ MorSets(F (A),F (X))

eva
−−→ F (X),

where the map eva is defined as eva( f ) = f (a). The collection of maps (αX)X∈Obj(A)
defines a natural transformation α ∈ Mor(hA,F ). Set Ψ(a) = α.

c) It can be easily checked that Φ and Ψ are inverse to each other. Moreover,
from the above constructions it follows that they are functorial with respect to the
both arguments. Namely, if f : A → A′ is a morphism and F → F ′ a natural
transformation of functors, then the following diagrams commute:

Mor(hA,F ) //

��

F (A)

��
Mor(hA′ ,F ) // F (A′)

, Mor(hA,F ) //

��

F (A)

��
Mor(hA,F ′) // F ′(A).

The lemma is proved. �
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We formulate the contravariant version of Yoneda lemma. Let G : A → Sets
be a contravariant functor. Let Mor(hA,G ) denote the natural transformations of
contravariant functors α : hA → G .

Lemma 7.2 (Yoneda lemma). There exists a natural one-to-one correspon-
dence

Mor(hA,G ) ' G (A).

Proof. The proof is analogous to the previous one and is omitted here. �

Corollary 7.3. Let A, B ∈ Obj(A). Then
Mor(hA, hB) ' MorA(B, A),

Mor(hA, hB) ' MorA(A, B).

Corollary 7.4. Let F unc(A,Sets) denote the category of covariant functors
A → Sets. The morphisms in this category are natural transformations of functors.
Then the correspondence A 7→ hA defines a contravariant functor:

A → F unc(A,Sets).

Corollary 7.3 shows that it is fully faithful.

8. Adjoint functors

8.1. Adjoint functors. In this section, we consider two categories A and B
and a pair of functors:

A
F
// B

Goo

Definition. We say that G is a right adjoint to F and F is a left adjoint to G
if the functors

A× B → Sets,
(X,Y) 7→ MorB(F (X),Y)

and
A× B → Sets,
(X,Y) 7→ MorA(X,G (Y))

are isomorphic.

This condition means that we have a system of bijections

ϕ : MorB(F (X),Y) ' MorA(X,G (Y)),

which are functorial in X and Y.

Example. Consider the functors

Sets
F
// Groups

Goo

defined as follows :
F (X) := free group generated by X.
G (Y) := Y viewed as a set (forgetful functor).

It is easy to see that these functors are adjoint, namely

Hom(F (X),Y) ' Maps(X,G (Y)),



8. ADJOINT FUNCTORS 25

Properties 8.2. Assume that (F ,G ) is a pair of adjoint functors. Then the
following holds true:

1) F respects initial objects, zero objects, cokernels and coproducts. G
respects final objects, zero objects, kernels and products.

2) IfA and B are additive, then F and G are additive.

Proof. a) We prove that F respects initial objects. Let X be an initial object
inA. For any Y ∈ Obj(B), we have a bijection

MorB(F (X),Y) ' MorA(X,G (Y)).

Since X is initial, there exactly one morphism X → G (Y). Therefore there exists
exactly one morphism F (X)→ Y , and we proved that F (X) is initial.

b) We prove that F respect cokernels. Consider the diagram

X
f
−→ Y

β
−→ coker( f ).

It induces a diagram

F (X)
F ( f )
−−−−→ F (Y)

F (β)
−−−−→ F (coker( f )).

We want to prove that (F (coker( f )),F (β)) is a cokernel of F ( f ). Since F (β) ◦
F ( f ) = F (β ◦ f ) = 0, we only need to check the universal property. Consider the
diagram

F (X)
F ( f ) // F (Y)

F (β) //

α

&&

F (coker( f ))

g
��

Z
Let α∗ = ϕ(α) : Y → G (Z). We have a diagram

X
f // Y

β //

α∗

##

coker( f )

g∗
��

G (Z).

By the universal property of cokernels, there exists a unique g∗ : coker( f )→ G (Z)
such that α∗ = g∗ ◦ β. Let g : F (coker( f )) → Z be the unique morphism such
that ϕ(g) = g∗. From the functoriality of morphisms ϕ it follows easily that α =

g◦F (β). This shows that F (coker( f )) satisfies the universal property of cokernels.
c) The proof that F respects coproducts is analogous and is omitted here.

Using dual categories A◦ and B◦, we see that G ◦ is the left adjoint of F ◦ and
therefore respects initial objects, cokernels and coproducts. This implies that F
respects final objects, kernels and products.

d) Assume that A and B are additive. The addition of morphisms in additive
categories is defined using products, coproducts and the diagonal map. The addi-
tivity of F and G can be proved using properties 1). We omit the details here. �

Theorem 8.3. Assume that (F ,G ) is a pair of adjoint functors between abelian
categoriesA and B. Then F is right exact and G is left exact.
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Proof. We prove that G is left exact. (The proof of the right exactness of F
can be proved using duality). Consider an exact sequence

0→ Y ′
f
−→ Y

g
−→ Y ′′.

We will prove that the sequence

0→ G (Y ′)
G ( f )
−−−→ G (Y)

G (g)
−−−→ G (Y ′′).

is exact. Since G respects kernels, the morphism G ( f ) is monic. Moreover from
g ◦ f = 0 it follows that G (g) ◦G ( f ) = 0. Therefore we have a unique (monic) map
i : G (Y1)→ ker(G (g)) such that

(1) α ◦ i = G ( f ).

These data can be represented by the diagram

0 // G (Y ′)
G ( f ) //

i

%%

G (Y)
G (g) // G (Y ′′)

ker(G (g))
s

__

α

OO
0

99

To prove that i is an isomorphism we will construct a section s of i. Consider the
commutative diagram

0 // HomA(X,G (Y ′))

∼

��

G ( f )∗ // HomA(X,G (Y))

∼

��

G (g)∗ // HomA(X,G (Y ′′))

∼

��
0 // HomB(F (X),Y ′) // HomB(F (X),Y) // HomB(F (X),Y ′′)

The vertical morphisms are isomorphisms by the definition of adjoint functors.
Moreover, the bottom row is exact by the left exactness of hA with A = F (X).
Therefore the upper row is exact. Take X = ker(G (g)). The map α : ker(G (g)) →
Y satisfies

G (g)∗(α) = G (g) ◦ α = 0.

Then there exists s : ker(G (g))→ G (Y ′) such that

G ( f ) ◦ s = G ( f )∗(s) = α.

Together with (1) and the fact that α and G ( f ) are monic, it is easy to see that i ◦ s
and s ◦ i are the identity morphisms. �

8.4. Tensor product. Let A be a ring (not necessarily commutative). For any
right A-module M and left A-module N the tensor product M ⊗A N is the abelian
group generated by the symbols m ⊗ n (m ∈ M, n ∈ N) with relations:

1) (m1 + m2) ⊗ n = m1 ⊗ n + m2 ⊗ n;
2) m ⊗ (n1 + n2) = m ⊗ n1 + m ⊗ n2;
3) ma ⊗ n = m ⊗ an, a ∈ A.
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The assignment (M,N) 7→ M ⊗A N define a functor

⊗A : (Mod − A) × (A −Mod)→ Ab,
which is covariant in both arguments.

Definition. Let A and B be two rings. Assume that N is an abelian group
equipped with structures of a left A-module and a right B-module. We say that N
is a (A, B)-bimodule if

(an)b = a(nb), ∀a ∈ A, b ∈ B , n ∈ N.

Assume that N is an (A, B)-bimodule. Then for any right A-module M, the
tensor product M ⊗A N has a natural structure of a right B-module:

(m ⊗ n)b = m ⊗ (nb).

Similarly, for any right B-module L, the group HomB(N, L) has a natural structure
of a right A-module:

( f a)(x) = f (ax), f ∈ HomB(N, L), x ∈ N, a ∈ A.

Proposition 8.5. There exists a canonical and functorial isomorphism

ϕ : HomB(M ⊗A N, L) ' HomA(M,HomB(N, L)).

Proof. Let f ∈ HomB(M⊗A N, L).We set ϕ( f ) := F ∈ HomA(M,HomB(N, L)),
where F is defined by the formula

(F(m)](n) = f (m ⊗ n).

The same formula can be used to construct the converse map ϕ−1 setting ϕ−1(F) :=
f . �

Fix a bimodule N and consider the functors
− ⊗AN : Mod − A→Mod − B
HomB(N,−) : Mod − B→Mod − A.

Corollary 8.6. For any bimodule N, the functor − ⊗A N is a left adjoint of
HomB(N,−) (and therefore HomB(N,−) is a right adjoint of − ⊗A N).

Corollary 8.7. The functor − ⊗A N is right exact.

9. Some diagram lemmas

LetA be an abelian category.

Lemma 9.1 (five lemma). Assume that

X1
f1 //

α1

��

X2
f2 //

α2

��

X3
f3 //

α3

��

X4
f4 //

α4

��

X5

α5

��
Y1

g1 // Y2
g2 // Y3

g3 // Y4
g4 // Y5

is a commutative diagram with exact rows. Then:
i) If α1 is epi and α2 and α4 are monic, then α3 is monic.
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ii) If α5 is monic and α2 and α4 are epi, then α3 is epi.
iii) If α1, α2, α4 and α5 are isomorphisms, then α3 is an isomorphism.

Proof. We will prove this lemma for the category of modules.
i) (A diagram chase). Assume that α3(x3) = 0. Then

α4( f3(x3)) = g3(α3(x3)) = 0.

Since α4 is monic, f3(α3) = 0. By the exactness of the upper row, there exists
x2 ∈ X2 such that f2(x2) = x3. We have

g2(α2(x2)) = α3( f2(x2)) = α3(x3) = 0.

The exactness of the bottom row shows that there exists y1 ∈ Y1 such that g1(y1) =

α2(x2). Since α1 is epi, there exists x1 ∈ X1 such that α1(x1) = y1. Hence

α2( f1(x1)) = g1(α1(y1)) = α2(x2).

Since α2 is monic, this implies that f1(x1) = x2. Therefore x3 = f2(x2) = f2 ◦
f1(x1) = 0. To sum up, we proved that ker(α3) = 0. Hence α3 is monic.

ii) This statement can be deduced from i) using duality.
iii) It is clear that i) and ii) imply iii). �

Lemma 9.2 (snake lemma). Assume that we have a commutative diagram with
exact rows

X1
f1 //

α1

��

X
f //

α

��

X2 //

α2

��

0

0 // Y1
g1 // Y

g // Y2

Then there exists an exact sequence

ker(α1)
f1
−→ ker(α)

f
−→ ker(α2)

δ
−→ coker(α1)

f1
−→ coker(α)

f
−→ coker(α2).

Proof. We prove this lemma for modules. It is not difficult to see that the

morphisms f1 and f induce morphisms ker(α1)
f1
−→ ker(α), ker(α)

f
−→ ker(α2),

coker(α1)
f1
−→ coker(α), coker(α)

f
−→ coker(α2), which we denote by the same

letters f1 and f . A routine diagram chase shows that our exact sequence is exact at
ker( f ) and coker(α).

We construct the map δ. Let x2 ∈ ker(α2). Since f is epi, there exists x ∈ X
such that f (x) = x2. We have

g(α(x)) = α2( f (x)) = 0.

Frome the exactness of the bottm row it follows that there exists a unique y1 ∈ Y1
such that g1(y1) = α(x). Set

δ(x1) := ȳ1 ∈ Y1/Im(α1) ' coker(α1).

We omit the proof of the exactness at ker(α2) and coker(α1). �

We also have the following version of the snake lemma:
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Lemma 9.3. Assume that we have a commutative diagram with exact rows

0 // X1
f1 //

α1

��

X
f //

α

��

X2 //

α2

��

0

0 // Y1
g1 // Y

g // Y2 // 0

Then the sequence

0→ ker(α1)
f1
−→ ker(α)

f
−→ ker(α2)

δ
−→ coker(α1)

f1
−→ coker(α)

f
−→ coker(α2)→ 0

is exact.

The following deep theorem can be used to reduce the proof of the previous
lemmas for general abelian categories to the case of categories of modules:

Theorem 9.4 (Freyd-Mitchell embedding theorem). LetA be a small abelian
category. Then there exists a ring A and a fully faithful exact functor

A → A −Mod.





CHAPTER 2

Complexes

1. Complexes

LetA be an abelian category.

Definition. A chain complex X• in A is a family (Xn)n∈Z of objects Xn ∈

Obj(A) together with morphisms dn : Xn → Xn−1 such that

dn−1 ◦ dn = 0, ∀n ∈ Z.

A chain complex can be represented by the diagram

· · ·
dn+1
−−−→ Xn

dn
−−→ Xn−1

dn−1
−−−→ Xn−2

dn−2
−−−→ · · · .

The morphisms dn are called differentials. We will often write d instead dn. To
each complex we attach the following objects:

Zn := ker(dn) called n-cycles.
Bn := Im(dn+1) called n-boundaries.
Hn(X) := Zn/Bn called n-homology of X.

We define the category K(A) of complexes in A. The objects of this category
are complexes. A morphism of complexes f : X• → Y• is a family of morphisms
fn : Xn → Yn such that the diagram

dn+1 // Xn
dn //

fn
��

Xn−1

fn−1
��

dn−1 // Xn−2
dn−2 //

fn−2
��dn+1 // Yn

dn // Yn−1
dn−1 // Yn−2

dn−2 //

commutes. In other words

fn−1 ◦ dn = dn ◦ fn, ∀n ∈ Z.

The proof of the following theorem is straightforward:

Theorem 1.1. K(A) is an abelian category. In particular,
i) ker( f ) ' (ker( fn))n∈Z;

ii) coker( f ) ' (coker( fn))n∈Z;
iii) A short sequence of complexes

0→ X• → Y• → Z• → 0

is exact if and only if the sequence

0→ Xn → Yn → Zn → 0

31
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is exact for all n ∈ Z.

We will also work with the dual notion of a cochain complex.

Definition. A cochain complex X• in A is a family (Xn)n∈Z of objects Xn ∈

Obj(A) together with morphisms dn : Xn → Xn+1 such that

dn+1 ◦ dn = 0, ∀n ∈ Z.

A cochain complex can be represented by the diagram

· · ·
dn−1

−−−→ Xn dn

−−→ Xn+1 dn+1

−−−→ Xn+2
dn+2

−−−→ · · · .

To each cochain complex we attach:
Zn := ker(dn) called n-cocycles.
Bn := Im(dn−1) called n-coboundaries.
Hn(X) := Zn/Bn called n-cohomology of X.

Morphisms of cochain complexes are defined analogously to the case of chain com-
plexes. We denote by CK(A) the the abelian category of cochain complexes inA.

1.2. Let f : X• → Y• be a morphism of complexes. Considering the diagram

Xn+1
dn+1 //

fn+1
��

Xn

fn
��

dn // Xn−1

fn−1
��

Yn+1
dn+1 // Yn

dn // Yn−1

we see that the morphism fn induces morphisms

Zn(X•)→ Zn(Y•);
Bn(X•)→ Bn(Y•);

Therefore in each degree n, we have a morphism

Hn( f ) : Hn(X•)→ Hn(Y•).

It is easy to see that this defines covariant additive functors

Hn : K(A)→ A,
X• → Hn(X•).

These functors are not exact, but they are related by the following property:

Theorem 1.3 (long exact sequence in homology). Let

0→ M•
f
−→ N•

g
−→ L• → 0

be a short exact sequence in K(A). Then there exists a long exact sequence of
homology:

. . .→ Hn+1(L•)
δ
−→ Hn(M•)

Hn( f )
−−−−→ Hn(N•)

Hn(g)
−−−−→ Hn(L•)

δ
−→ Hn−1(M•)

Hn−1( f )
−−−−−−→ Hn−1(N•)

Hn−1(g)
−−−−−−→ Hn−1(L•)→ · · ·
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Proof. We will apply repeatedly the snake lemma.
a) Consider the commutative diagram

0 // Mn //

dn
��

Nn //

dn
��

Ln //

dn
��

0

0 // Mn−1 // Nn−1 // Ln−1 // 0.
The rows of this diagram are exact and the snake lemma implies that for all n ∈ Z,
the following sequences are exact:

(2)
0→ Zn(M•)→ Zn(N•)→ Zn(L•),
Mn−1/Bn−1(M•)→ Nn−1/Bn−1(N•)→ Ln−1/Bn−1(L•)→ 0.

Consider the commutative diagram

Mn+1/Bn+1(M•) //

dM

��

Nn+1/Bn+1(N•) //

dN

��

Ln+1/Bn+1(L•) //

dL

��

0

0 // Zn(M•) // Zn(N•) // Zn(L•).

From the exactness of sequences (2) it follows that the rows of this diagram are
exact. Applying the snake lemma we obtain an exact sequence

ker(dM)→ ker(dN)→ ker(dL)
δ
−→ coker(dM)→ coker(dN)→ coker(dL).

Il is easy to see that ker(dM) ' Zn+1(M•)/Bn+1(M•) =: Hn+1(M•) and coker(dM) '
Zn(M•)/Bn(M•) =: Hn(M•). Therefore this exact sequence reads:

Hn+1(M•)
Hn+1( f )
−−−−−−→ Hn+1(N•)

Hn+1(g)
−−−−−−→ Hn+1(L•)

δ
−→ Hn(M•)

Hn( f )
−−−−→ Hn(N•)

Hn(g)
−−−−→ Hn(L•).

Gluing together these sequences for different n, we obtain the long exact sequence
in homology. �

The following results shows the functoriality of the long exact sequence in
homology.

Theorem 1.4. Assume that we have a commutative diagram with exact rows:

0 // M• //

α

��

N• //

β

��

L• //

γ

��

0

0 // M′• // N′• // L′• // 0.

Then the diagram

· · · // Hn(M•) //

Hn(α)
��

Hn(N•) //

Hn(β)
��

Hn(L•)
δ //

Hn(γ)
��

Hn−1(M•) //

Hn−1(α)
��

· · ·

· · · // Hn(M′•) // Hn(N′•) // Hn(L′•)
δ // Hn−1(N•) // · · · .

is commutative.
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Proof. The theorem can be proved by diagram chasing and we omit the details.
�

We record the analogous results for cochain complexes.

Theorem 1.5 (long exact sequence in cohomology). Let

0→ M•
f
−→ N•

g
−→ L• → 0

be a short exact sequence of cochain complexes. Then there exists a long exact
sequence of cohomology:

. . .→ Hn−1(L•)
δ
−→ Hn(M•)

Hn( f )
−−−−→ Hn(N•)

Hn(g)
−−−−→ Hn(L•)

δ
−→ Hn+1(M•)

Hn+1( f )
−−−−−−→ Hn+1(N•)

Hn+1(g)
−−−−−−→ Hn+1(L•)→ · · ·

Theorem 1.6. Assume that we have a commutative diagram with exact rows:

0 // M• //

α

��

N• //

β

��

L• //

γ

��

0

0 // M•1
// N•1

// L•1
// 0.

Then the diagram

· · · // Hn(M•) //

Hn(α)
��

Hn(N•) //

Hn(β)
��

Hn(L•) δ //

Hn(γ)
��

Hn+1(M•) //

Hn+1(α)
��

· · ·

· · · // Hn(M•1) // Hn(N•1 ) // Hn(L•1) δ // Hn+1(N•) // · · · .

is commutative.

2. Homotopy

Definition. i) Let f , g : X• → Y• be two morphisms of complexes. A chain
homotopy from f to g is a collection of morphisms sn : Xn → Yn+1 such that

fn − gn = sn−1dn + dn+1sn, ∀n ∈ Z.

We will write this property in the form f − g = sd + ds.
ii) We say that f and g are homotopic and write f ' g if there exists a homotopy

from f to g.
iii) A morphism f : X → Y is null homotopic if f ' 0. In this case there exists

a homotopy s, called a contraction of f , such that f = sd + ds.
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This data can be summarized by the following diagram:

dn+2 // Xn+1
dn+1 //

fn+1

��

gn+1

��

Xn
dn //

sn

~~

fn

��

gn

��

Xn−1

fn−1

��

gn−1

��

dn−1 //

sn−1

~~

Xn−2
dn−2 //

fn−2

��

gn−2

��

sn−2

}}dn+2 // Yn+2
dn+1 // Yn

dn // Yn−1
dn−1 // Yn−2

dn−2 //

Proposition 2.1. If f ' g, then

Hn( f ) = Hn(g) : Hn(X•)→ Hn(Y•), ∀n ∈ Z.

Proof. Let xn ∈ Zn(X•). Then

fn(xn) − gn(xn) = dn+1sn(xn) + sn−1dn(xn) = dn+1sn(xn) ∈ Bn(Y•).

Hence cl( f (xn)) = cl(g(xn)). �

Proposition 2.2. The following properties hold true:
i) ' is an equivalence relation on the set HomK(A)(X•,Y•).
ii) Let f1, f2 : X• → Y• and g : Y → Z. Assume that f1 ' f2 and g1 ' g2.

Then g1 ◦ f1 ' g2 ◦ f2.

Proof. We leave the proof as an exercise. The proof of ii) can be divided into
two parts:

a) Let f1, f2 : X• → Y• and g : Y• → Z•. Assume that f1 ' f2. Then
g ◦ f1 ' g ◦ f2.

b) Let f : X• → Y• and g1, g2 : Y• → Z•. Assume that g1 ' g2. Then
g1 ◦ f ' g2 ◦ f . �

Definition. A morphism f : X• → Y• is a homotopy equivalence if there exists
g : Y• → X• such that

g ◦ f ' idX , f ◦ g ' idY .

Proposition 2.3. If X• and Y• are homotopically equivalent, then Hn(X•) '
Hn(Y•) for all n ∈ Z.

Proof. From Proposition 2.1, it follows that Hn(g)◦Hn( f ) = Hn(idX) = idHn(X)
and Hn( f ) ◦ Hn(g) = Hn(idY ) = idHn(Y). �

3. The mapping cone

In this section, we explain some important construction in the category of chain
complexes. Let f : X• → Y• be a morphism of complexes. Set

cn( f ) := Xn−1 ⊕ Yn, n ∈ Z.

We define the morphisms
dn : cn( f )→ cn−1( f ),
dn(xn−1, yn) = −(dn−1(xn−1), f (xn−1) − dn(yn)).
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It is easy to check that c•( f ) := (cn( f ), dn)n∈Z) is a cochain complex:

(3) d ◦ d(x, y) = −d
(
dx, f (x) − dy

)
= (d2x, f ◦ dx − d( f (x) − dy))

= (0, f ◦ d(x) − d ◦ f (x) + d2y) = (0, f ◦ d(x) − d ◦ f (x)) = (0, 0).

Definition. The complex c( f ) is called the mapping cone of f .

We will use the following notation: if X• is a chain complex, we denote by
X[m]• and call the transition of X• the complex defined as follows:

X[m]n := Xm+n, d[m]n = (−1)mdm+n.

It is clear that Hn(X[m]•) = Hm+n(X•).

Proposition 3.1. Let f : X• → Y• be a morphism of complexes.
i) There is a short exact sequence

(4) 0→ Y•
α
−→ c•( f )

β
−→ X•[−1],

where α(yn) = (0, yn) and β(xn−1, yn) = −xn−1.
ii) There exists a long exact sequence

· · · → Hn(Y•)
Hn(α)
−−−−→ Hn(c•( f ))

Hn(β)
−−−−→ Hn−1(X•)

Hn−1( f )
−−−−−−→ Hn−1(Y•)→ · · ·

Proof. i) The exactness of the exact sequence (4) is clear from definition.
ii) The long exact sequence in homology associated to the short exact sequence

(4) reads:

· · · → Hn(Y•)
Hn(α)
−−−−→ Hn(c•( f ))

Hn(β)
−−−−→ Hn(X•[−1])

δn
−→ Hn−1(Y•)→ · · ·

Note that Hn(X•[−1]) = Hn−1(X•). Let xn−1 ∈ Zn(X•[−1]) = Zn−1(X•). Take zn :=
(−xn−1, 0) ∈ cn( f ). Then β(zn) = xn−1. We have dn(zn) = (0, f (xn−1)) and therefore
α( f (xn−1)) = dn(zn). By the definition of the connecting map δ, we obtain:

δn(cl(xn−1)) = cl( f (xn−1)) = Hn−1( f )(cl(xn−1)).

Hence δn = Hn−1( f ) and the proposition is proved. �

Definition. A morphism of complexes f : X• → Y• is a quasi-isomorphism if
the induced morphisms Hn( f ) : Hn(X•)→ Hn(Y•) are isomorphisms for all n.

In particular, a homotopy equivalence is a quasi-isomorphism by Proposi-
tion 2.3.

Corollary 3.2. f : X• → Y• is a quasi-isomorphism if and only if c•( f ) is
acyclic.

4. Singular chain complexes

4.1. In this section, we discuss singular chain complexes and singular homol-
ogy of topological spaces.

Definition.
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1) For each n > 0, the set

∆n = {(t0, t1, . . . , tn) ∈ Rn+1 | 0 6 ti 6 1,
n∑

i=0

ti = 1}

is called the geometric n-simplex.
2) The point

e[n]
k = (0, . . . , 0, 1, 0, . . . , 0), 0 6 k 6 n

is called the k-vertice of ∆n.
3) The subset

{(t0, t1, . . . , tn) ∈ ∆n | tk = 0}
is called the k-face of ∆n.

For each integer 0 6 k 6 n, we have a map

∂k
n : ∆n−1 → ∆n ,

(t0, t1, . . . , tn−1) 7→ (t0, t1, . . . , tk−1, 0, tk, . . . , tn−1),

which identifies ∆n−1 with the k-face of ∆n.
Let X be a topological space. For each n > 0 define:

Cn(X) := free abelian group generated by all continuous ϕ : ∆n → X.

Set
dn : Cn(X)→ Cn−1(X),

dn(ϕ) :=
n∑

k=0

(−1)kϕ ◦ ∂k
n.

Proposition 4.2. One has dn−1 ◦ dn = 0 for all n > 1.

Proof. Routine computation. �

Therefore we have the complex of abelian groups

· · ·
dn+1
−−−→ Cn(X)

dn
−−→ Cn−1(X)

dn−1
−−−→ · · ·

d2
−−→ C1(X)

d1
−−→ C0(X)

d0
−−→ 0

called the singular chain complex of X.

Definition. The n-th homology group of C•(X) is called the n-th singular ho-
mology of X and is written Hn(X).

We summarize basic general properties of this construction.
1) (functoriality). For each n, the rule X → Hn(X) is a covariant functor

Hn : TSpaces→ Ab.

Namely for each continuous map f : X → Y, we have natural maps

Cn(X)→ Cn(Y), ϕ 7→ f ◦ ϕ

which define a morphism of complexes f∗ : C•(X) → C•(Y). Passing to
homology, we obtain canonical morphisms of groups Hn( f ) : Hn(X) →
Hn(Y), which satisfy the required properties.
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2) (dimension axiom or homology of a one-point set) One has:

Hn({•}) =

Z, if n = 0,
0, if n > 0.

3) (direct sum) If X = X1 t X2 is the disjoint union of X1 and X2, then

Hn(X) = Hn(X1) ⊕ Hn(X2).

Recall that to continuous maps f , g : X → Y are homotopic if there exists a
continuous map F : X × [0, 1] → Y such that F(x, 0) = f (x) and F(x, 1) = g(x).
We write f ' g if f and g are homotopic. A topological space X is contractible
if the maps idX : X → X and p : X → {x0} ⊆ X are homotopic for some (and
therefore any) x0 ∈ X.

4) (homotopy) If f ' g : X → Y, then the maps f∗, g∗ : C•(X) → C•(Y)
are homotopic and therefore Hn( f ) = Hn(g) : Hn(X) → Hn(Y) for all
n > 0.

We formulate two corollaries of this property:

Corollary 4.3. i) If X is contractible, then H0(X) = Z and Hn(X) = 0 for
n > 1.

ii) One has Hn(X × [0, 1]) = Hn(X) for all n > 0.

Proof. i) is clear.
ii) Consider the maps i : X → X × [0, 1], i(x) = (x, 0) and f : X × [0, 1]→ X,

f (x, t) = x. Then f ◦ i = idX and therefore the composition

Hn(X)
Hn(i)
−−−−→ Hn(X × [0, 1])

Hn( f )
−−−−→ Hn(X)

is the identity map. The composition
i ◦ f : X × [0, 1]→ X × [0, 1],
i ◦ f (x, t) = (x, 0)

is homotopic to idX×[0,1]. Namely the map

F : (X × [0, 1]) × [0, 1]→ X × [0, 1],
F((x, t), ξ) = (x, tξ)

gives a homotopy i ◦ f ' idX×[0,1]. Therefore by the homotopy property the com-
position

Hn(X × [0, 1])
Hn( f )
−−−−→ Hn(X)

Hn(i)
−−−−→ Hn(X × [0, 1])

is the identity map too. To sum up,

Hn( f ) ◦ Hn(i) = idX , Hn(i) ◦ Hn( f ) = idX×[0,1],

and therefore Hn(X × [0, 1]) = Hn(X). �

Assume now that X = U1∪U2. The following complexes can be naturally seen
as subcomplexes of C•(X):

C•(U1 ∩ U2), C•(U1), C•(U2), C•(U1) + C•(U2).
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We have a diagram of inclusions

U1
i1

  
U1 ∩ U2

j1
::

j2

$$

X

U2

i2
??

which induces a commutative diagram

C•(U1)
i1,∗

$$
C•(U1 ∩ U2)

j1,∗
88

j2,∗

&&

C•(X)

C•(U2)

i2,∗
::

The following sequence is exact:

0→ C•(U1 ∩ U2)
α
−→ C•(U1) ⊕C•(U2)

β
−→ C•(U1) + C•(U2)→ 0,

where α(x) = ( j1,∗(x),− j2,∗(x)) and β(x1, x2) = i1,∗(x1) + i2,∗(x2).

5) (Mayer–Vietoris exact sequence) Assume that X ⊆
◦

U1 ∪
◦

U2. Then the
inclusion C•(U1) + C•(U2) → C•(X) is a quasi-isomorphism, and we
have a long exact sequence

· · · → Hn+1(X)
δn+1
−−−→ Hn(U1 ∩ U2)

Hn(α)
−−−−→ Hn(U1) ⊕ Hn(U2)

Hn(β)
−−−−→ Hn(X)

δn
−→ · · ·

· · · → H0(U1 ∩ U2)
H0(α)
−−−−→ H0(U1) ⊕ H0(U2)

H0(β)
−−−−→ H0(X)→ 0.

For the general theory, it is important to attach homology to each pair of topo-
logical spaces (A, X), where A ⊆ X. Set

C•(X, A) := C•(X)/C•(A)

and define the homology groups Hn(X, A) as the homology of C•(X, A). Then:
6) (exactness) We have a long exact sequence

· · · → Hn+1(X, A)→ Hn(A)→ Hn(X)→ Hn(X, A)→ · · ·
· · · → H0(A)→ H0(X)→ H0(X, A)→ 0.

7) (excision) If (X, A) is a pair and U ⊂ A is such that the closure of U is
contained in A

◦
, then the inclusion map (X \ U, A \ U) → (X, A) induces

isomorphisms

Hn(X \ U, A \ U) ' Hn(X, A).
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We remark that property 6) follows directly frome definitions. Property 7) is more
delicate.

Remark 4.4. Properties 1-4), 6), 7) are known as Eilenberg–Steenrod axioms.
It can be shown that they formally imply 5).

4.5. In this section, we compute the homology of sphere and deduce from
this computation a short proof of Brouwer fixed point theorem.

The d-dimensional sphere can be defined as the topological space

S d := {(x0, x1, . . . , xd) |
d∑

i=0

x2
i = 1}.

Note that S d is the boundary of the d + 1-dimensional disk

Dd+1 := {(x0, x1, . . . , xd) |
d∑

i=0

x2
i 6 1}.

Theorem 4.6. One has

Hn(S d) :=

Z, if n = 0, d
0, otherwise.

Proof. We can write S d = U1 ∪ U2, where U1 and U2 are contractible and
U1 ∩ U2 is homeomorphic to S d−1 × [0, 1]. Namely, we can take:

U1 = {(x0, x1, . . . , xd) ∈ S d | xd > −ε},

U2 = {(x0, x1, . . . , xd) ∈ S d | xd < ε}

for some small ε > 0. Hence

(5) Hn(S d) ' Hn−1(U1 ∩ U2) ' Hn−1(S d−1), n > 2.

For n = 1 we have an exact sequence

0→ H1(S d)→ H0(U1 ∩ U2)→ H0(U1) ⊕ H0(U2)→ H0(S d)→ 0,

which can be written as

0→ H1(S d)→ H0(S d−1)→ Z ⊕ Z→ Z→ 0.

If d > 1, then H0(S d−1) ' Z and this exact sequence shows that H1(S d) = 0. If
d = 1, we have H0(S 0) = Z2, and we obtain that H1(S 1) ' Z. The theorem can be
eqsily deduce from this computation together with formula (5). �

As an application, we prove:

Theorem 4.7 (fixed point theorem). Each continuous map ϕ : Dd+1 → Dd+1
(d > 0) has a fixed point.

Proof. We prove this theorem by contradiction. We will consider S d as the
boundary of Dd+1. Assume that ϕ(x) , x for all x ∈ Dd+1. Consider the ray L with
the initial point ϕ(x) passing through x and consider the unique point f (x) ∈ L∩S d
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such that f (x) , ϕ(x). Then x 7→ f (x) defines a continuous map f : Dd+1 → S d.
We remark that f is a retraction of Dd+1 on S d, namely

f (x) = x, x ∈ S d.

The composition S d
i
−→ Dd+1

f
−→ S d is the identity map, and therefore the induced

map on homology

Hd(S d)
Hd(i)
−−−−→ Hd(Dd+1)

Hd( f )
−−−−→ Hd(S d)

is also the identity morphism. If d > 1, then Hd(Dd+1) = 0 and we obtain that
Hd(S d) = 0, which contradicts Theorem 4.6. If d = 0, then H0(D1) ' Z, H0(S 0) '
Z2, and we obtain a contradiction again. �

5. Cohomology of groups

5.1. Let G be a group. We denote by Z[G] the group algebra of G over Z.
The elements of Z[G] are formal sums∑

g∈G

agg, ag ∈ Z, almost all ag are zero.

The addition and multiplication are given by∑
g∈G

agg +
∑
g∈G

bgg =
∑
g∈G

(ag + bg)g,∑
s∈G

ass

 ∑
t∈G

btt

 =
∑
g∈G

cgg, where cg :=
∑
st=g

asbt.

Definition. A (left) G-module is an abelian group M equipped with a left ac-
tion G × M → M of the group G satisfying the following properties:

i) em = m, for all m ∈ M.
ii) (g1g2)m = g1(g2m) for all g1, g2 ∈ G and m ∈ M.
iii) g(m1 + m2) = gm1 + gm2 for all g ∈ G and m1,m2 ∈ M.

If M is a G-module, it is equipped with a natural structure of a left Z[G]-
module given by

(6)

∑
g∈G

agg

 m =
∑
g∈G

ag(gm).

Conversely, each Z[G]-module M can be considered as a G-module. Formula (6)
shows that these structures are equivalent.

Definition. We set

MG := {m ∈ M | ∀g ∈ G, gm = m}

and call it the invariant subgroup of M.
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Let M be a left G-module. For each n > 0, set Gn = G ×G × · · · ×G︸              ︷︷              ︸
n

and

define:
Cn(G,M) = {maps f : Gn → M}.

We remark that Cn(G,M) have natural structure of abelian group. Set:

dn : Cn(G,M)→ Cn+1(G,M),

dn( f )(g1, g2, . . . , gn+1) =g1 f (g2, . . . , gn+1)

+

n∑
i=1

(−1)i f (g1, . . . , gi−1, gigi+1, gi+2, . . . , gn+1)

(−1)n+1 f (g1, g2, . . . , gn).

Proposition 5.2. For each n > 0, one has dn+1 ◦ dn = 0.

Proof. The proof is omitted. �

From this proposition it follows that

0→ C0(G,M)
d0

−−→ C1(G,M)
d1

−−→ C2(G,M)
d2

−−→ · · ·

is a cochain complex.

Definition. The n-th cohomology of the complex C•(G,M) is called the n-th
cohomology of G with coefficients in M and is written Hn(G,M).

We can write:

Zn(G,M) := ker(dn), Bn(G,M) := Im(dn−1),

Hn(G,M) = Zn(G,M)/Bn(G,M).

Below, we summarize some properties of these groups.
1) H0(G,M) = MG.

Proof. One has C0(G,M) = M. For each m ∈ M, the map d0(m) ∈
C1(G,M) is given by

d0(m)(g) = gm − m.

Therefore ker(d0) = {m ∈ M | ∀g ∈ G, gm − m = 0} = MG. �

2) One has:

B1(G,M) = { f : G → M | f (g) = gm − m for some m ∈ M},

Z1(G,M) = { f : G → M | f (g1g2) = g1 f (g2) + f (g1)}.

The elements of Z1(G,M) are called crossed homomorphisms.

Proof. The first formula follows from the computation of d0(m). The
second formula follows directly from definitions. �
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3) For any trivial G-module M one has:

H1(G,M) = Hom(G,M).

This follows from 2).
4) Let

0→ M′ → M → M′′ → 0

be a short exact sequence of G-modules. Then it induces a long exact
sequence of cohomology:

0→ H0(G,M′)→ H0(G,M)→ H0(G,M′′)
δ
−→ H1(G,M′)→ H1(G,M)→ · · ·

→ Hn−1(G,M′′)
δ
−→ Hn(G,M′)→ Hn(G,M)→ Hn(G,M′′)

δ
−→ · · ·

Proof. It is easy to see that the short exact sequence of modules in-
duces a short exact sequence of complexes:

0→ C•(G,M′)→ C•(G,M)→ C•(G,M′′)→ 0.

Now we can apply Theorem 1.5. �

5.3. In this section, we give some interpretation of the second cohomology
group H2(G,−).

Definition. Let G be a group and A be an abelian group. An extension of G by
A is an exact sequence of groups

(7) 0→ A
i
−→ N

π
−→ G → 1.

In other words, A ican be identified with a normal subgroup of N and N/A ' G.
Two extensions of G by A are equivalent if there exists an isomorphism ϕ such

that the diagram
0 // A // N //

ϕ

��

G // 0

0 // A // N′ // G // 0
commutes.

We will write the group law on A additively and the group law on G multiplica-
tively.

Definition. Let f : X → Y be a surjective morphism in some category A. A
section of f is a morphism s : Y → X such that f ◦ s = idY .

Each extension equips A with the structure of a left G-module defined as fol-
lows. Choose a set theoretic section s : G → N of π (i.e. s is a map of sets such
that π ◦ s = idG). The action of G on A will be defined by the formula:

(8) ga := i−1
(
s(g) · i(a) · s(g)−1

)
.

It is easy to see that the definition does not depend on the choice of s.
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Definition. The extension (7) is split if π has a section in the category of
groups, i.e. if there exists a morphism of groups s : G → N such that π ◦ s = idG.

Proposition 5.4. The following conditions are equivalent:
i) The extension (7) is split.
ii) The extension (7) is equivalent to the extension

0→ A
α
−→ A oG

β
−→ G → 1

with α(a) = (a, 0) and β(a, g) = g.

Proof. ii)⇒ i). Recall that
N = A oG = {a, g) | a ∈ A, g ∈ G},
(a1, g1)(a2, g2) = (a1 + g1a2, g1g2).

It is clear that , the map s : G → AoG, s(g) = (0, g) is a morphism of groups such
that π ◦ β = idG.

i)⇒ ii). Conversely, assume that s : G → N is a morphism such that π ◦ s =

idG. Consider the maps
ϕ : N → A oG,

ϕ(n) = (a, g), where g := π(n) and a := i−1(n · (s ◦ π)(n)−1).

and
ψ : A oG → N
ψ(a, g) = i(a)s(g).

Then is is easy to see that ϕ and ψ are morphisms of groups, which are inverse to
each other. �

Let A be a left G-module. We want to classify the extensions of G by A (viewed
as an abelian group) in which the induced G-module structure (8) coincides with
the given G-module structure. Let Ext1(G, A) denote the set of equivalence classes
of such extensions.

For such extension (7), choose an arbitrary set-theoretic section s : G → N
of π. For all g1, g2 ∈ G, s(g1)s(g2)s(g1g2)−1 ∈ ker(π) and we define f (g1, g2) ∈ A
setting

i ◦ f (g1, g2) = s(g1)s(g2)s(g1g2)−1.

Theorem 5.5. The following statements hold true:
i) For each section s, one has f (g1, g2) ∈ Z2(G, A). The class cl( f ) ∈ H2(G, A) does
not depend on the choice of s.

ii) Conversely, for any f (g1, g2) ∈ Z2(G, A), we denote by N the cartesian product
A ×G equipped with the composition law

(a1, g1)(a2, g2) = (a1 + g1a2 + f (g1, g2), g1g2), ai ∈ A, gi ∈ G.

Then N is a group and the morphisms i : A → N, i(a) = (a, 1) and π : N → G,
π(a, g) = g define and extension which depends only on the class of f in H2(G, A).

iii) The previous constructions define a bijection

Ext1(G, A) ' H2(G, A).
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Proof. All statements of the theorem can be checked by straightforward com-
putations. The details are omitted. �

5.6. In this subsection, we make a first step toward the study of Galois coho-
mology. Let K be a field and let L/K be a finite Galois extension. Then Gal(L/K)
acts on the multiplicative group L∗ of L.

Theorem 5.7 (Hilbert’s theorem 90). One has

H1(Gal(L/K), L∗) = {1}.

Proof. Set G := Gal(L/K). Let f ∈ Z1(G, L∗). Take x ∈ L∗ and consider the
element

θ(x) :=
∑
τ∈G

f (τ) · τ(x).

An easy computation using the property f (gτ) = g f (τ) · f (g) shows that

g(θ(x)) =
∑
τ∈G

g f (τ) · gτ(x) =
1

f (g)

∑
τ∈G

f (gτ) · gτ(x) =
θ(x)
f (g)

.

Assume that θ(x) , 0. Then setting c := θ(x)−1 we obtain that f (g) = g(c)c−1 and
therefore f ∈ B1(G, L∗). This proves the theorem.

It remains to show that θ(x) , 0 for some x ∈ L. This can be easily proved
by contradiction. Namely, let {x1, . . . , xn} be a basis of L over K and let G =

{τ1, . . . , τn}. Assume that
n∑

j=1

f (τ j) · τ j(xi) = 0, ∀i = 1, 2, . . . , n.

Then ( f (τ1), . . . , f (τn)) is a solution of the system of linear equations
n∑

j=1

τ j(xi)X j = 0, ∀i = 1, 2, . . . , n.

Since the discriminant of a separable extension is nonzero, we have

det
(
τ j(xi)

)
, 0.

Therefore the above system has only the trivial solution and f (τi) = 0 for all 1 6
i 6 n. This contradiction shows that θ(x) , 0 for some x ∈ L. �





CHAPTER 3

Derived functors

1. Projective resolutions

LetA be an abelian category.

Definition. An object P ∈ Obj(A) is projective if it satisfies the following
property: given an epimorphism g : Y → Z and a morphism π : P → Z, there
exists a morphism π′ : P→ Y such that g ◦ π′ = π :

P
π′

��
π
��

Y
g // Z // 0

Proposition 1.1. The following assertions are equivalent:
i) P is projective.
ii) The functor hP := Hom(P,−) is exact.

Proof. i)⇒ ii).
Assume that P is projective. Let

0→ X
f
−→ Y

g
−→ Z → 0

be a short exact sequence. By theorem 6.5, the functor Hom(P,−) is left exact.
Hence

0→ Hom(P, X)
f∗
−→ Hom(P,Y)

g∗
−−→ Hom(P,Z)

is exact. We only need to prove that g∗ is surjective. For any π ∈ Hom(P,Z), there
exists π′ such that the diagram

P
π′

��
π
��

Y
g // Z // 0

commutes. Then g∗(π′) = π, and the surjectivity of g∗ is proved.
ii)⇒ i).
Assume that the functor hP is exact. Consider the diagram

P

π
��

Y
g // Z // 0

47
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Set X := ker(g) and consider the exact sequence

0→ X
f
−→ Y

g
−→ Z → 0.

From the exactness of hP, it follows that the map

Hom(P,Y)
g∗
−−→ Hom(P,Z)

is surjective. Therefore there exists π′ : P→ Y such that g ◦ π′ = g∗(π′) = π. This
shows that P is projective. �

Definition. An abelian category A has enough projectives if for any X ∈
Obj(A) there exists a projective P ∈ Obj(A) together with an epimorphism π :
P→ X.

Proposition 1.2. Let A be a ring.
i) Each free A-module is projective. An A-module is projective if and only if it is a
direct summand of a free module.

ii) The category A −Mod has enough projectives.

We will first prove an auxiliary lemma, which characterizes direct sums in
terms of split exact sequences.

Definition. A short exact sequence in an abelian category

0 // X α // Y
β // Z
s

oo // 0

splits if there exists a section s of the morphism β, i.e. a morphism s : Z → Y such
that β ◦ s = idZ .

Lemma 1.3. The following conditions are equivalent:
1) A short exact sequence

0 // X α // Y
β // Z // 0

splits.
2) There exists an isomorphism i : Y ' X ⊕ Z, such that the diagram

0 // X α // Y
β //

i
��

Z // 0

0 // X
qX // X ⊕ Z

pZ // Z // 0

commutes.

Proof of the lemma. 2)⇒ 1). By the definition of the direct sum, there there
exists qZ : Z → X ⊕ Z such that pZ ◦ qZ = idZ . Then s = i−1 ◦ qZ : Z → Y is a
section of β.

1) ⇒ 2). Assume that s is a section of β. We will show that Y equipped with
the morphisms qX := α : X → Y and qZ := s : Z → Y satisfies the universal
property of a direct sum.
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Consider the map
γ := idY − s ◦ β : Y → Y.

This map sits in the diagram

0 // X α // Y
β // Z
s

oo // 0

Y
p

__

γ

OO

Then
β ◦ γ = β ◦ (idY − s ◦ β) = β − (β ◦ s) ◦ β = 0.

Since (X, α) = ker(β), this implies that there exists a unique p : Y → X such that

α ◦ p = γ = idY − s ◦ β.

Assume that we have an object Y ′ with morphisms q′X : X → Y ′ and q′Z : Z → Y ′.
Consider the diagram

Y ′

X

q′X
33

α // Y

β
��

f

??

Z

s

OO q′Z

KK

Set f = q′X ◦ p + q′Z ◦ β. Then

(9) f ◦ α = (q′X ◦ p + q′Z ◦ β) ◦ α = q′X ◦ p ◦ α + q′Z ◦ β ◦ α = q′X ◦ p ◦ α = q′X .

Moreover,

α ◦ (p ◦ s) = (α ◦ p) ◦ s = (idY − s ◦ β) ◦ s = s − s ◦ (β ◦ s) = 0.

Since α in monic, this implies that p ◦ s = 0. Therefore

(10) f ◦ s = (q′X ◦ p + q′Z ◦ β) ◦ s = q′X ◦ p ◦ s + q′Z ◦ β ◦ s = q′Z .

Formulas (9) and (10) show that Y satisfies the universal property and therefore is
a direct sum of X and Z. �

Proof of Proposition 1.2. a) Let F be a free module. Fix a base {ei}i∈I of F.
Then F = ⊕

i∈I
Aei. Consider the diagram

F
π′

��
π
��

Y
g // Z // 0

For each i ∈ I, set zi = π(ei) and choose yi ∈ Y such that g(yi) = zi. Then the map
π′ : F → Y defined by

π′
(∑

aiei
)

=
∑

aiyi

satisfies the property g ◦ π′ = π.
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b) Let M be an A-module. By the universal property of free modules, there
exists a free module F together with an epimorphism π : F → M. Namely,
choose a system {mi}i∈I of generators of M and set F = ⊕

i∈I
Aei. Then the map

π : F → M defined by π (
∑

aiei) =
∑

aimi is a well defined epimorphism. Since
F is projective, part ii) is proved.

c) Assume that P is projective. Then there exists a free module F together with
a surjection π : F → P. Consider the diagram:

P
s

��
F π // P // 0

Since P is projective, there exists a morphism s : P → F such that π ◦ s = idP.
This implies that P is a direct summand of F.

d) Conversely, assume that P is a direct summand of a free module F. Then
F = P ⊕ P′ for some module P′. Assume that we have a diagram of the form

P

π
��

Y
g // Z // 0

Consider the diagram

F = P ⊕ P′

h

yy

πF

��
Y

g // Z // 0

where πF(x, x′) = π(x) for any (x, x′) ∈ P ⊕ P′. Since F is projective, there exists
h : F → Y such that πF = g ◦ h. Set π′ := h|P . Then it is easy to see that
π = g ◦ π′. �

Exercise 8. Show that the category of torsion abelian groups has no projective
nonzero objects.

Definition. i) A left resolution of M ∈ Obj(A) is a sequence

P• : . . .→ P3 → P2 → P1 → P0

together with a morphism ε : P0 → M such that the sequence

. . .→ P3 → P2 → P1 → P0
ε
−→ M → 0

is exact. The morphism ε is called an augmentation morphism.
ii) If all Pi are projective, P• is called a projective resolution of M.

This data can be represented by the diagram

P•
ε
−→ M → 0.

Proposition 1.4. Assume that A has enough projectives. Then each M ∈

Obj(A) has a projective resolution.
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Proof. Let M ∈ Obj(A). We construct a projective resolution of M induc-
tively. SinceA has enough projectives, there exists a projective object P0 together
with an epimorphism ε : P0 → M. Hence the sequence

P0
ε
−→ M → 0

is exact. Now assume that we have an exact sequence

Pn
dn
−−→ Pn−1

dn−1
−−−→ . . .→ P1

d1
−−→ P0

ε
−→ M → 0,

where all Pi are projective. Let X := ker(dn). Then there exists an epimorphism
Pn+1

π
−→ X, where Pn+1 is projective. Consider the composition

dn+1 : Pn+1
π // X // // Pn.

Then the upper row of the diagram

Pn+1

π
""

dn+1 // Pn
dn // Pn−1

dn−1 // . . .
d1 // P0

ε // M // 0,

X

OO

is exact. �

Corollary 1.5. In the category of left (respectively right) A-modules, each ob-
ject has a free resolution.

Proof. From the proof of Proposition 1.2, it follows that we can take Pi free in
the above construction. �

Proposition 1.6. Consider the diagram

. . . // P2
d2 //

f2
��

P1
d1 //

f1
��

P0

f0
��

ε // M //

f
��

0

. . . // Q2
d2 // Q1

d1 // Q0
ε // N // 0,

where P• is a projective resolution of M and Q• is a (not necessarily projective)
resolution of N. Then:

i) There exists a morphism f• = ( fn)n>0 : P• → Q• such that the resulting
diagram commutes.

ii) The morphism f• is unique up to a chain homotopy.

Proof. i) We construct the morphisms fn : Pn → Qn inductively. Consider
the diagram

P0
f0

~~
f◦ε
��

Q0
ε // // N
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Since P0 is projective, there exists f0 : P0 → Q0 which makes the diagram com-
mute. This gives us a commutative diagram

P0

f0
��

ε // M //

f
��

0

Q0
ε // N // 0.

Assume that the morphisms f0, . . . , fn are constructed. We have a diagram

// Pn+1

fn+1

��

g

""

dn+1 // Pn
dn //

fn
��

Pn−1

fn−1

��
// Qn+1

dn+1 // Qn
dn // Qn−1

Here g := fn◦dn+1. From the commutativity of the diagram it follows that dn◦g = 0,
and therefore g factorizes through ker(dn):

g : Pn+1
π // ker(dn) // // Qn.

Consider the diagram
Pn+1

fn+1

yy
π

��
Qn+1 // // Im(dn+1)

Since Pn+1 is projective, there exists fn+1 : Pn+1 → Qn+1 which makes the diagram
commute. This proves the existence of f•.

ii) Assume that we have another morphism g : P• → Q• such that the diagram

P•
g
��

ε // M

f
��

// 0

Q•
ε // N // 0

commutes. We will construct a homotopy f ' g inductively. Consider the diagram

P1 // P0

g0

��

s0

~~
f0
��

ε // M

f
��

// 0

Q1 d1

// Q0
ε // N // 0.

Since ε ◦ f0 = ε ◦ g0 = f ◦ ε, we have ε ◦ ( f0 − g0) = 0. Therefore we have a
commutative diagram

P0

s0

��

f0−g0 // ker(ε)

∼

��
Q1 d1

// // Im(d0),
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where the right vertical map is an isomorphism. Since P0 is projective, there exists
a map s0 : P0 → Q1 such that the diagram commutes, and we obtain that

f0 − g0 = d0 ◦ s0.

Assume that we have morphisms s0 : P0 → Q1, s1 : P1 → Q2, . . ., sn−1 :
Pn−1 → Qn such that

fi − gi = si−1 ◦ di + di+1 ◦ si, 0 6 i 6 n − 1.

We summarize these data in the diagram

Pn

gn

��

sn

||
fn
��

dn // Pn−1

gn−1

��

sn−1

||
fn−1

��

dn−1 // Pn−2

gn−2

��

sn−2

{{
fn−2

��
Qn+1 dn+1

// Qn dn

// Qn−1 dn−1

// Qn−2

From the commutativity of this diagram, we have

dn ◦ gn = gn−1 ◦ dn, dn ◦ fn = fn−1 ◦ dn,

and therefore
dn ◦ ( fn − gn) = ( fn−1 − gn−1) ◦ dn.

Using the identity fn−1 − gn−1 = sn−2 ◦ dn−1 + dn ◦ sn−1 we obtain that

dn ◦ ( fn − gn) = sn−2 ◦ dn−1 ◦ dn + +dn ◦ sn−1 ◦ dn = dn ◦ sn−1 ◦ dn.

Hence
dn ◦ ( fn − gn − sn−1 ◦ dn) = 0.

Therefore the map α := fn − gn − sn−1 ◦ dn factorizes through ker(dn) ' Im(dn+1),
and we have a diagram

Pn
sn

yy
α

��
Qn+1 // // Im(dn+1).

Since Pn is projective, there exists sn : Pn → Qn+1 such that

dn+1 ◦ sn = α = fn − gn − sn−1 ◦ dn

Writing this formula in the form fn − gn = dn+1 ◦ sn + sn−1 ◦ dn we see that sn
satisfies the required property. �

The following proposition can be proved by similar arguments, and we omit
the proof:

Proposition 1.7. Let

0→ M′ → M → M′′ → 0
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be a short exact sequence. Let P′• and P′′• be projective resolutions of M′ and
M′′ respectively. Then there exists a projective resolution P• of M such that the
diagram

0 // P′•
ε

��

// P•

ε

��

// P′′•
ε

��

// 0

0 // M′ // M // M′′ // 0
commutes.

Exercise 9. Let k be a field and A := Mn(k) the ring of n × n matrices with
coefficients in k. Assume that n > 2. Give an example of an A-module that is
projective but not free.

Exercise 10. Let (Pi)i∈I be a family of projective objects. Show that if the
coproduct

∐
i∈I

Pi exists, then it is projective.

2. Injective resolutions

LetA be an abelian category.

Definition. i) An object I ∈ Obj(A) is injective if it satisfies the following
property: given an morphism α : X → I and a monic morphism f : X → Y, there
exists a morphism α′ : Y → I such that α′ ◦ f = α:

I

0 // X
f //

α

??

Y.

α′

OO

ii) The categoryA has enough injectives if for any X ∈ Obj(A) there exists an
injective object I together with a monic morphism X → I.

We remark that I ∈ Obj(A) is injective if and only if I◦ ∈ Obj(A◦) is projec-
tive.

Proposition 2.1. The following assertions are equivalent:
i) I ∈ Obj(A) is injective;
ii) The contravariant functor hI := Hom(−, I) is exact.

Proof. Hom(−, I) is exact if and only if Hom◦(I◦,−) is exact. Using Proposi-
tion 1.1 and the above remark we obtain that Hom(−, I) is exact if and only if I is
injective. �

Definition. i) A right resolution of M ∈ Obj(A) is a sequence

I• : I0 → I1 → I2 → . . .

together with a morphism ε : M → I0 such that the sequence

0→ M
ε
−→ I0 → I1 → I2 → . . .

is exact.
ii) If all Ii are injective, I• is called an injective resolution of M.



2. INJECTIVE RESOLUTIONS 55

Proposition 2.2. i) Assume that A has enough injectives. Then each M ∈

Obj(A) has an injective resolution.
ii) Consider the diagram

0 // M

f
��

// J0

f 0

��

// J1

f 1

��

// . . .

0 // N // I0 // J1 // . . .

where I• is an injective resolution of N and J• is a right (not necessarily injective)
resolution of M. Then there exists a morphism f • : J• → I• such that the resulting
diagram commutes.

ii) The morphism f • is unique up to a chain homotopy.

Proof. Use the duality argument. �

In the remainder of this section we prove that the category of left (resp. right)
modules over a ring A has enough injectives. We will work with the category of
left modules (the case of right modules is completely analogous and can be treated
formally using duality).

Proposition 2.3 (Baer). Let I be an A-module. The following properties are
equivalent:

1) I is injective.
2) For any ideal a ⊂ A and any morphism β : a → I there exists a morphism
β′ : A→ I such that β′|a = β:

I

0 // a //

β
??

A.

β′

OO

Proof. 1)⇒ 2) is clear.
2)⇒ 1). Consider the diagram

I

0 // M
f //

α

>>

N,

α′

OO

where f : M → N is an injective morphism of modules. We want to prove that
α cn be extended to some morphism α′ : N → I. Consider the set S of the pairs
(X, h), where X is a submodule of N containing M and h : X → I is an extension
of α to X. It is clear that the relation

(X, h) 6 (X′, h′) ⇔ X ⊂ X′ and h′
∣∣∣
X = h

is an order on S . It is also clear that each chain in S has an upper bound and by
Kuratowski–Zorn lemma S has a maximal element (Z, h).We will show that Z = N
by contradiction. Assume that Z , N. Take m ∈ N \ Z and set

Z′ := Z + Am = (Z ⊕ Am)/R,
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where R = {(z, am) | z + am = 0}. Then

a := {a ∈ a | am ∈ Z}

is an ideal in A. Consider the map

β : a→ I, β(a) = h(am).

By our assumption, there exists β′ : A→ I such that β′|a = β. Then the map

h′ : Z′ → I,

h′(z + am) := h(z) + β′(a)

is well defined and extends h to Z′. This contradicts with the maximality of Z. �

Corollary 2.4. Assume that A is a principal ideal domain (i.e. an integral
domain in which every ideal is principal). For a A-module M, the following prop-
erties are equivalent

1) M is injective.
2) M is divisible, i.e. aM = M for any a ∈ A \ {0}.

Proof. 1)⇒ 2). Assume that M is injective. Let a ∈ A \ {0} and let (a) := Aa
denote the principal ideal generated by a. For any m ∈ M the assignment β(ax) =

xm is a well-defined morphism β : (a) → M. Since M is injective, there exists an
extension β′ : A→ M of β. Therefore β′(1) satisfies the equation aβ′(1) = m. This
shows that aM = M.

2)⇒ 1). Assume that M is divisible. Let a be an ideal of A and let β : a→ M
be a morphism of modules. Then a = (a) for some a. We can assume that a , 0.
Since M is divisible, there exists m ∈ M such that am = β(a). Set β′(x) = xm. Then
β′ : A→ M is an extension of β to A and M is injective by Proposition 2.3. �

Corollary 2.5. In the category of abelian groups, Q, Q/Z and Qp/Zp (p is a
prime number) are injective.

Exercise 11. Let (I j) j∈J be a family of injective objects. Show that if the prod-
uct

∏
j∈J

I j exists, then it is injective.

Proposition 2.6. The category of abelian groups has enough injectives.

Proof. Let M be an abelian group and let

I :=
∏

f∈Hom(M,Q/Z)

(Q/Z) f

be the direct product of copies of Q/Z indexed by homomorphisms f ∈ Hom(M,Q/Z).
By Exercise 11, I is injective. We construct a morphism

α : M → I

setting:
α(m) = ( f (m)) f∈Hom(M,Q/Z) .

It is clear that α is a morphism of abelian groups. We only need to prove that α is
monic i.e. that ker(α) = {0}. We will prove that α(m) , 0 if m , 0.
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Let m , 0. Set
Ann(m) = {w ∈ Z | xm = 0}.

Then Ann(m) is an ideal in Z and therefore Ann(m) = (a) := aZ for some a ∈ Z.
We remark that a , 1 because m , 0. We consider the following two cases:

a) If a = 0, then Zm ' Z and it is clear that there exists a nonzero morphism
h : Zm → Q/Z. Since Q/Z is injective, h extends to a morphism f : M → Q/Z
and f (m) = h(m) , 0. Therefore α(m) , 0.

b) If a , 0, we can assume that a > 2, and Zm ' Z/aZ. Since Z/aZ '
1
a Z/Z ⊂ Q/Z, it is clear that there exists a nonzero morphism h : Zm → Q/Z.
Mimiking the arguments used above, we extend h to a morphism f : M → Q/Z
and conclude that f (m) , 0. The proposition is proved. �

Now we can prove the main result of this section:

Theorem 2.7. Let A be a ring.
i) Let I be an abelian group. Consider

J := HomZ(A, I)

equipped with the following structure of a left A-module: if a ∈ A and f ∈ J, then

(a f )(x) := f (xa).

Then J is an injective A-module.
ii) The categories A −Mod and Mod − A have enough injectives.

Proof. i) We will use a particular case of the following version of Proposi-
tion 8.5. Let A and B be two rings and let N be a (B, A)-bimodule (i.e. a left
B-module and a right A-module with the property (bn)a = b(na)). Then for any
left A-module M and any left B-module L there exists a canonical isomorphism

HomB(N ⊗A M, L) ' HomA(M,HomB(N, L)).

Take B :=Z , N = A and L := I. Then

HomZ(M, I) ' HomA(M,HomZ(A, I)) = HomA(M, J).

We pass to the proof of the assertion i). Let

0→ M′ → M → M′′ → 0

be a short exact sequence of left A-modules. Then we have a commutative diagram,
where the vertical maps are isomorphisms:

0 // HomA(M′′, J) //

'

��

HomA(M, J) //

'

��

HomA(M′, J) //

'

��

0

0 // HomZ(M′′, I) // HomZ(M, I) // HomZ(M′, I) // 0.

Since I is injective in the category Ab, the bottow row is exact. Therefore the upper
row is exact, and J is injective by Proposition 2.1.
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ii) Let M be a left A-module. We consider M as an abelian group. By Propo-
sition 2.6, there exists a monomorphism of abelian groups i : M → I, where I is
injective in Ab. Take J := HomZ(A, I) and define

j : M → J

by
j(m)(x) = i(xm), x ∈ A,m ∈ M.

It is easy to check that j is a monomorphism of left A-modules. �

3. Derived functors

3.1. Let F : A → B be a covariant additive functor between abelian cate-
gories. We will assume that F is right exact and that A has enough projectives.
For any X ∈ Obj(A), choose a projective resolution P• → X of X and consider the
sequence

F (P•) : . . .→ F (P2)
d2
−−→ F (P1)

d1
−−→ F (P0)→ 0.

Generally, the sequence F (P•) is far from being exact, but it is clearly a chain
complex. Set

LnF (X) := Hn(F (P•)).

Below we establish basic properties of this construction.
1) L0F (X) ' F (X).

Proof. Since F is right exact, the exact sequence

P1 → P0 → X → 0

gives rise to an exact sequence

F (P1)
d1
−−→ F (P0)→ F (X)→ 0.

Therefore L0F (X) := coker(d1) ' F (X). �

2) LnF (X) are well defined up to canonical isomorphisms.

Proof. a) Assume that Q• is another projective resolution of X. We have a
diagram

P•

f ′•
��

f•
��

// X

id
��

Q• // X.

By Proposition 1.6, there exists a morphism f• which makes this diagram commute.
It induces a morphism of complexes

F ( f•) : F (P•)→ F (Q•)

and therefore resulting morphisms on homology groups Hn(F (P•))→ Hn(F (Q•)).
We will show that these morphisms do not depend on the choice of f•. Let f ′• :
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P• → Q• be another morphism making the diagram above commute. By Proposi-
tion 1.6, f ′• and f• are homotopic:

f ′• ' f•.

Therefore the morphisms F ( f•) and F ( f ′•) are homotopic. By Proposition 2.1,
they induce the same morphisms Hn(F (P•))→ Hn(F (Q•)). This shows that these
morphisms do not depend on the choice of f•.

b) Now we prove that the above morphisms Hn(F (P•)) → Hn(F (Q•)) are
isomorphisms.

Consider the diagram
P•

f•
��

id

��

// X

id
��

Q•
g•
��

// X

id
��

P• // X.

By Proposition 1.6, there exists a morphism g• which make this diagram commute.
Moreover g• ◦ f• and id are homotopic:

g• ◦ f• ' id.

Applying the functor F , we obtain a diagram

F (P•)

F ( f•)
��

id

��

// F (X)

id
��

F (Q•)

F (g•)
��

// F (X)

id
��

F (P•) // cF(X),

where F (g•) ◦F ( f•) ' id. Therefore, by Proposition 2.1, the composition map on
homology

Hn(F (P•))→ Hn(F (Q•))→ Hn(F (P•))
coincides with the identity map. Exchanging P• and Q• and mimiking the above
arguments wh obtain that the composition map

Hn(F (Q•))→ Hn(F (P•))→ Hn(F (Q•))

is the identity map. This shows that the morphisms Hn(F (P•))→ Hn(F (Q•)) are
canonical isomorphisms. �

3) If X is projective, then LnF (X) = 0 for all n > 1.

Proof. The complex
. . .→ 0→ 0→ P0

with P0 = X is a projective resolution of X. �
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4) Each morphism f : X → Y induces canonical morphisms

Ln( f ) : LnF (X)→ LnF (Y), n > 0.

Proof. We have a diagram

P•

f ′•
��

f•
��

// X

f
��

Q• // Y,

where P• and Q• are projective resolutions of X and Y respectively. By Proposi-
tion 1.6, there exists a morphism f• which makes this diagram commute. Applying
the functor F we obtain a diagram

F (P•)

F ( f ′•)
��

F ( f•)
��

// F (X)

F ( f )
��

F (Q•) // F (Y).

The morphism of complexes

F ( f•) : F (P•)→ F (Q•)

induces morphisms on homology groups

(11) LnF (X) := Hn(F (P•))→ Hn(F (Q•)) =: LnF (Y).

Assume that f ′• : P• → Q• is another morphism between resolutions such that the
above diagram commutes. Then f ′• ' f• and F ( f•) ' F ( f ′•). Therefore F ( f ′•)
induces the same map on homology. This shows that the morphisms (11) do not
depend on the choice of f•. �

5) For each n 6 0, the assignment

LnF :A → B,
X → LnF (X)

is an additive functor. Moreover L0F ' F .

Proof. The proof is left as an exercise. �

Definition. The functors LnF are called the left derived functors of F .

6) For each short exact sequence

0→ X′
f
−→ X

g
−→ X′′ → 0

there exists a long exact sequence

. . .→ LnF (X′)→ LnF (X)→ LnF (X′′)
δn
−→ Ln−1F (X′)→ Ln−1F (X)→ . . .

. . .→ L1F (X)→ L1F (X′′)
δ1
−→ L0F (X′)→ L0F (X)→ L0F (X′′)→ 0.
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Proof. By Proposition 1.7, we can choose projective resolutions P′•, P• P′′• of
X′, X and X′′ which sit in a commutative diagram

0 // P′•
ε

��

// P•

ε

��

// P′′•
ε

��

// 0

0 // X′ // X // X′′ // 0

For each n, we have a commutative diagram

P′′n

id
~~

0 // P′n // Pn // P′′n // 0,

which shows that this sequence splits i.e. Pn ' P′n ⊕ P′′n (here we use the projec-
tivity of P′′n ). Since the functor F preserves direct sums, we obtain that F (Pn) '
F (P′n) ⊕F (P′′n ), i.e. that the sequence

0 // F (P′n) // F (Pn) // F (P′′n ) // 0

is exact. Therefore we have an exact sequence of complexes

0 // F (P′•)
f• // F (P•)

g• // F (P′′• ) // 0.

Applying to this exact sequence Theorem 1.3 (long exact homology sequence), we
obtain our statement. �

7) F is exact if and only if for all X ∈ Obj(A) and n > 1, one has LnF (X) =

0.

Proof. a) Assume that F is exact. For any object X ∈ Obj(A) we have an
exact sequence P• → X → 0, where P• is a projective resolution of X. Then the
sequence

F (P•)→ F (X)→ 0

is exact, and from the definition of functors LnF we obtain that LnF (X) = 0 for
n > 1.

b) Assume that LnF = 0 for n > 1. For any short exact sequence

0→ X′
f
−→ X

g
−→ X′′ → 0

the associated long exact sequence reads:

· · · → L1F (X′′)→ F (X′)
f
−→ F (X)

g
−→ F (X′′)→ 0.

Since L1F (X′′) = 0, we obtain that the sequence

0→ F (X′)
f
−→ F (X)

g
−→ F (X′′)→ 0

is exact. �
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8) (Dimension shifting) Consider a short exact sequence of the form

0→ Y
f
−→ P

g
−→ X → 0,

where P is projective. Then

LnF (X) ' Ln−1F (Y), ∀n > 2

and

L1F (X) ' ker(F (Y)→ F (P)).

Proof. We have an exact sequence

LnF (P)→ LnF (X)→ Ln−1F (Y)→ Ln−1F (P)

Since P is projective, Li(P) = 0 if i > 1. This proves the assertion. �

Definition. i) An object Q ∈ Obj(A) is acyclic (or F -acyclic) if LnF (Q) = 0
for all n > 1.

ii) A resolution Q• of X is acyclic if all Qi are acyclic.

From property 3) it follows that each projective object is acyclic.

9) Let Q• be an acyclic left resolution of X. Then

LnF (X) ' Hn(F (Q•)), n > 0.

Proof. We will prove this assertion by induction on n. For n = 0, we mimick
the proof of property 1). Since cF is right exact, the exact sequence

Q1 → Q0 → X → 0

induces an exact sequence

F (Q1)→ F (Q0)→ F (X)→ 0.

This shows that L0F (X) = coker(F (Q1)→ F (Q0)) ' F (X).
Assume that the statement holds for n−1 for all objects. Set Y = ker(Q0 → X).

We have a short exact sequence

0→ Y → Q0 → X → 0

and an exact sequence

. . .→ Q2 → Q1 → Y → 0.

The complex . . . → Q2 → Q1 is an acyclic resolution of Y and by our induc-
tion assumption Ln−1F (Y) ' Hn(F (Q•)). From the short exact sequence and
the acyclicity of Q0 we obtain that Ln−1F (Y) ' LnF (X). Therefore LnF (X) '
Hn(F (Q•)). �
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3.2. Now we consider the case of a left exact functor. Assume that the cat-
egory A has enough injectives. Let F : A → B be covariant left exact functor.
For any X ∈ Obj(A) take an injective resolution X → I• of X. The sequence

F (I•) : 0→ F (I0)→ F (I1)→ · · ·

is a cochain complex, and we define:

RiF (X) := Hi(F (I•)).

LetA◦ and B◦ denote the dual categories. Then

F ◦◦ : A◦ → B◦,

F ◦◦(X◦) := F (X)◦

is a covariant right exact functor. If I• is an injective resolution of M ∈ Obj(A),
then I• ◦ is a projective resolution of M• inA•. Since

F (I•)◦ ' F ◦◦(I• ◦),

we obtain that
RiF (M)◦ ' LiF

◦◦(M◦).
This allows to deduce general properties of RiF (−) from general properties of
ŁiF ◦◦. In particular, we see that RiF (−) are well defined additive covariant func-
tors.

Definition. The functors RiF (−) are called the right derived functors of the
left exact functor F .

Below we summarize some basic properties of right derived functors.

Properties 3.3.
1) R0F (M) = M.
2) If X is injective, then RiF (I) = 0 for all i > 1.
3) For each exact sequence

0→ X′ → X → X′′ → 0

there exists a long exact sequence

0→ R0F (X′)→ R0F (X)→ R0F (X′′)
δ0

−→→ R1F (X′)

→ R1F (X)→ R1F (X′′)→ · · ·

4) (Dimension shifting) Consider a short exact sequence of the form

0→ X → I → Y → 0,

where I is injective. Then

RiF (X) ' Ri−1F (Y), i > 2

and R1F (X) ' coker(F (I)→ F (Y)).

Definition. i) An object J is acyclic (or F -acyclic) if RiF (J) = 0 for all i > 1.
ii) A right resolution J• is acyclic if all Ji are acyclic.
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5) Let J• be an acyclic right resolution of X. Then

RiF (X) ' Hi(F (J•)).

3.4. We define derived functors of contravariant functors. If F : A → B is
a contravariant functor which is right (respectively left) exact, then

F ◦ : A◦ → B,

F ◦(X◦) := F (X)

is a covariant functor which is right (respectively left) exact, and we define the
left (respectively right) exact functors of F by LiF (X) := LiF ◦(X◦) (respectively
RiF (X) := RiF ◦(X◦)). Explicitely

LiF (X) := Hi(F (I•)), if F is contravariant right exact,

RiF (X) := Hi(F (P•)), if F is contravariant left exact,

where I• (respectively P•) denotes the right injective (respectively left projective)
resolution of X.

4. The functors Exti

4.1. Let A be an abelian category having enough injectives. To simplify
notation, we will write Hom(−,−) instead HomA(−,−). Fix an object M ∈ Obj(A)
and consider the covariant left exact functor

hM : A → Ab,
hM(N) := Hom(M,N).

Definition. The right derived functors of hM are called the Ext-groups and are
denoted as

Exti(M,N) := RihM(N).

Below we summarize some basic properties of these functors.

Properties 4.2.
i) Ext0(M,N) = Hom(M,N).

Proof. It’s clear. �

ii) The assignment
Exti(−,−) : A×A → Ab,

(M,N)→ Exti(M,N)

is a functor which is contravariant in the first variable and covariant in the second
variable.

Proof. a) From general properties of derived functors it follows that Exti(−,−)
is covariant in the second variable.
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b) Let f : M′ → M be a morphism. Let I• be an injective resolution of N.
Then the morphism f induces a natural morphism of complexes

Hom(M, I•) // Hom(M′, I•)

hM(I•) hM′(I•)

This morphism of complexes induces morphisms between their groups of coho-
mology :

Exti(M,N)→ Exti(M′,N).

Now it is easy to check that the assignment Exti(−,N) is a contravariant functor.
�

iii) A short exact sequence

0→ N′ → N → N′′ → 0

induces a long exact sequence

(12) 0→ Hom(M,N′)→ Hom(M,N)→ Hom(M,N′′)→ Ext1(M,N′)

→ Ext1(M,N)→ Ext1(M,N′′)→ . . .

Proof. This is the long exact sequence of derived functors RihM. �

iv) A short exact sequence

0→ M′ → M → M′′ → 0

induces a long exact sequence

(13) 0→ Hom(M′′,N)→ Hom(M,N)→ Hom(M′,N)→ Ext1(M′′,N)

→ Ext1(M,N)→ Ext1(M′,N)→ . . .

Proof. Let I• be an injective resolution of N. Since the contravariant functor
hJ(−) = Hom(−, J) is exact if J is injective, we have an exact sequence of com-
plexes:

0→ Hom(M′′, I•)→ Hom(M, I•)→ Hom(M′, I•)→ 0.

Taking the long exact sequence of cohomology attached to this exact sequence, we
obtain the sequence (13). �

Proposition 4.3. The following properties are equivalent:
1) I is injective.
2) The functor hI(−) := Hom(−, I) is exact.
3) For all M ∈ Obj(A),

Exti(M, I) = 0, ∀i > 1.

4) For all M ∈ Obj(A),
Ext1(M, I) = 0.
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Proof. We already know that 1) ⇔ 2) and 1) ⇒ 3) (see Proposition 2.1 and
Section ). The implication 3) ⇒ 4) is trivial. We only need to show that 4) ⇒ 1).
Let

0→ M′ → M → M′′ → 0

be a short exact sequence. The long exact sequence (13) for N = I reads

0→ Hom(M′′, I)→ Hom(M, I)→ Hom(M′, I)→ Ext1(M′′, I)

Since Ext1(M′′, I) = 0, we obtain that the sequence

0→ Hom(M′′, I)→ Hom(M, I)→ Hom(M′, I)→ 0

is exact. Therefore the functor hI(−) is exact. �

Proposition 4.4. The following properties are equivalent:
1) P is projective.
2) The functor hP(−) := Hom(P,−) is exact.
3) For all N ∈ Obj(A),

Exti(P,N) = 0, ∀i > 1.

4) For all N ∈ Obj(A),
Ext1(P,N) = 0.

Proof. We already know that 1) ⇔ 2) and 2) ⇒ 3) (see Proposition 1.1 and
Section ). The implication 3) ⇒ 4) is trivial. We only need to show that 4) ⇒ 1).
Let

0→ N′ → N → N′′ → 0

be a short exact sequence. The long exact sequence (12) for M = P reads

0→ Hom(P,N′)→ Hom(P,N)→ Hom(P,N′′)→ Ext1(P,N′).

Since Ext1(P,N′) = 0, we obtain that the sequence

0→ Hom(P,N′)→ Hom(P,N)→ Hom(P,N′′)→ 0.

is exact. Hence the functor hP(−) is exact. �

4.5. Assume, in addition, that A has enough projectives. Fix N ∈ Obj(A)
and consider the contravariant functor

hN(−) : A → Ab,

hN(M) := Hom(M,N).

The functor hN(−) is left exact and we can consider its right derived functors:

RihN(M) := Hi(Hom(P•,N)), where P• is a projective resolution of M.

The following theorem will be proved in the next section:

Theorem 4.6. There exist canonical and functorial isomorphisms

RihN(M) ' Exti(M,N).
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Example. If A is a ring, we write ExtiA for the Ext-functors in the category of
left A-modules. Consider the category of Z-modules (or, equivalently, the category
of abelian groups). Choose a free Z-module P0 together with a surjective morphism
P0

ε
−→ M. Since every non-null subgroup of a free Z-module is free, P1 := ker(ε) is

free and
P• : 0→ P1 → P0 → 0

is a projective resolution of M. Therefore

ExtiZ(M,N) = 0, i > 2.

If M = Z/mZ, we can take

P• : 0→ Z
m
−→ Z→ 0.

The complex HomZ(P•,N) is isomorphic to the complex

0→ N
m
−→ N → 0.

Therefore Ext0Z(Z/mZ,N) ' mN, where mN = {x ∈ N | mx = 0} is the m-torsion
submodule of N (we remark that mN = Hom(Z/mZ,N)), and

Ext1Z(Z/mZ,N) ' N/mN.

5. Double complexes

5.1. Double complexes. LetA be an abelian category.

Definition. A double cochain complex concentrated in the first quadrant is a
diagram inA of the form

0 // X(0,2)

dv
02

OO

dh
02 // X(1,2)

dv
12

OO

dh
12 // X(2,2)

dv
22

OO

dh
22 //

0 // X(0,1)

dv
01

OO

dh
01 // X(1,1)

dv
11

OO

dh
11 // X(2,1)

dv
21

OO

dh
21 //

0 // X(0,0)

dv
00

OO

dh
00 // X(1,0)

dv
10

OO

dh
10 // X(2,0)

dv
20

OO

dh
20 //

0

OO

0

OO

0

OO

where the morphisms satisfy the following properties:

(14) dh ◦ dh = dv ◦ dv = 0, dv ◦ dh + dh ◦ dv = 0.

More explicitly, for all (i, j)

dh
i+1, j ◦ dh

i j = 0, dv
i, j+1 ◦ dv

i j = 0, dv
i+1, j ◦ dh

i j + dh
i, j+1 ◦ dv

i j = 0.
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We remark, that in general, the above diagram is not commutative.
To each double cochain complex X•• we associate:

Xn := ⊕
i+ j=n

X(i, j), n > 0,

d = dh + dv : Xn → Xn+1.

From the relations (14) we see that

d ◦ d = (dh + dv) ◦ (dh + dv) = dh ◦ dh + dv ◦ dh + dh ◦ dv + dv ◦ dv = 0,

and therefore X• is a chain complex.

Definition. The complex X• is called the total complex attached to X•• and is
denoted by Tot(X••).

The following proposition can be proved by a careful diagram chasing:

Proposition 5.2 (Acyclicity of the total complex). Assume that all rows (re-
spectively all columns) of of X•• are exact. Then Tot(X••) is acyclic.

5.3. Proof of Theorem 4.6. In this subsection, we return to our study of the
groups Exti(M,N). Assume that A has enough projectives and injectives. Choose
a projective resolution P•

ε
−→ M → 0 of M and an injective resolution 0→ N

ε
−→ I•

of N. Set
X(i, j) = Hom(Pi, I j). i, j > 0.

The morphisms Pi+1 → Pi and I j → I j+1 induce morphisms

X(i, j+1)

X(i, j)

f v
i j

OO

f h
i j // X(i+1, j),

and we obtain a diagram

0 // X(0,2)

f v
02

OO

f h
02 // X(1,2)

f v
12

OO

f h
12 // X(2,2)

f v
22

OO

f h
22 //

0 // X(0,1)

f v
01

OO

f h
01 // X(1,1)

f v
11

OO

dh
11 // X(2,1)

dv
21

OO

dh
21 //

0 // X(0,0)

f v
00

OO

f h
00 // X(1,0)

f v
10

OO

f h
10 // X(2,0)

f v
10

OO

f h
20 //

0

OO

0

OO

0

OO

This diagram is not a double complex because the horizontal and the vertical mor-
phisms commute, namely

f v ◦ f h = f h ◦ f v.
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To remedy this problem, we define the differentials dh and dv as follows:

dh
i j = f h

i j, dv
i j = (−1)i+ j+1 f v

i j.

It is easy to check that (X••, dh, dv) is a double complex. We will prove the follow-
ing strong version of Theorem 4.6 :

Theorem 5.4. There exist natural an functorial quasi-isomorphisms :

Hom(P•,N)
∼
−→ Tot(X••)

∼
←− Hom(M ⊗ I•).

Proof. Since Pi are projective, the complexes

0→ Hom(Pi,N)→ Hom(Pi, I0)→ Hom(Pi, I1)→ · · ·

are exact. To simplify notation, set

Zi := Hom(Pi,N).

Consider the double complex

0 // X(0,2)

dv
02

OO

dh
02 // X(1,2)

dv
12

OO

dh
12 // X(2,2)

dv
22

OO

dh
22 //

0 // X(0,1)

dv
01

OO

dh
01 // X(1,1)

dv
11

OO

dh
11 // X(2,1)

dv
21

OO

dh
21 //

0 // X(0,0)

dv
00

OO

dh
00 // X(1,0)

dv
10

OO

dh
10 // X(2,0)

dv
20

OO

dh
20 //

0 // Z0

ε

OO

// Z1

−ε

OO

// Z2

ε

OO

//

0

OO

0

OO

0

OO

Let Y• denote the total complex attached to this diagram. We make the following
remarks :

a) The columns of this diagram are exact, and therefore Y• is acyclic by Theo-
rem 4.6.

b) The vertical maps ±ε induce a morphism of complexes

g : Z• → Tot(X••).

We use the version of Proposition 3.1 for cochains, which can be easily obtained
by a renumbering of objects. There exists an exact sequence of complexes

0→ Z• → c(g)→ Tot(X••)[−1]→ 0,
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where c(g) is the cone of the morphism g. The complex c(g) is defined explicitly
as follows:

c(g)n = Zn ⊕ Xn−1, Xn = ⊕
i+ j=n

Xi, j,

d : c(g)n → c(g)n+1, d(zn, xn−1) = (d(zn), (−1)nε(zn) + d(xn−1)).

and we can easily check that c(g) = Y•. By the remark a), this complex is acyclic,
and from Corollary 3.2 it follows that the map

g : Hom(P•,N)→ Tot(X••)

is a quasi-isomorphism.
Mimiking the previous arguments, we construct a quasi-isomorphism Hom(M, I•)→

Tot(X••). The theorem is proved. �

6. Extensions

LetA be an abelian category. Let M and N be two objects ofA.

Definition. 1) An extension of M by N inA is an exact sequence of the form

E : 0→ N
α
−→ X

β
−→ M → 0.

2) If E′ : 0 → N
α′

−−→ X′
β′

−→ M → 0 is another extension of M by N, we
say that they are equivalent if there exists a commutative diagram

0 // N α // X

g
��

β // M // 0

0 // N α′ // X′
β′ // M // 0

By the five lemma, the morphism g is an isomorphism.

Recall that an exact sequence α splits if there exists a section s : M → X such
that g ◦ s = idM or, equivalently, if α is equivalent to the extension

0 // N
qN // N ⊕ M

pM // M // 0,

where qM and pM are the canonical morphisms (see Lemma 1.3).
Assume that A has enough injectives and therefore the functors Exti are de-

fined.

Lemma 6.1. Assume that Ext1(M,N) = 0. Then every extension of M by N
splits.

Proof. 1)⇒ 2). Consider an exact sequence

0→ N → X → M → 0.

It induces a long exact sequence

0→ Hom(M,N)→ Hom(M, X)→ Hom(M,M)
δ
−→ Ext1(M,N).
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Assume that Ext1(M,N). Then the sequence

0→ Hom(M,N)→ Hom(M, X)→ Hom(M,M)→ 0

is exact. Then the identity map id ∈ Hom(M,M) lifts to a map s ∈ Hom(M, X) and
we have a commutative diagram

0 // N // X // M // 0

M
s

``

which shows that our sequence splits. �

More generally, to each extension

E : 0→ N → X → M → 0

we can associate the connection map

Hom(M,M)
δ
−→ Ext1(M,N)

and define θ(E) := δ(idM).

Theorem 6.2. The map θ establishes a one-to-one correspondence:

{equivalence classes of extensions of M by N} oo θ // Ext1(M,N).

Sketch of the proof. We will only explain how to attach an extension to any
element x ∈ Ext1(M,N). Take an exact sequence of the form

0→ L
λ
−→ P

π
−→ M → 0,

where P is projective. This short exact sequence induces the exact sequence

Hom(P,N)→ Hom(L,N)→ Ext1(M,N)→ Ext1(P,N).

Since P is projective, the last term vanishes, and this sequence reads:

Hom(P,N)→ Hom(L,N)→ Ext1(M,N)→ 0.

Take any lift f ∈ Hom(L,N) of x ∈ Ext1(M,N). Using this morphism, we will
construct a diagram of the form

0 // L λ //

f
��

P π //

g
��

M // 0

0 // N α // X
β // M // 0.

Set

X := coker(L
(− f ,λ)
−−−−→ N ⊕ P).
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Define the morphisms α and g as the composition of the morphisms N
qN
−−→ N ⊕ P

and P
qP
−−→ N ⊕ P with the canonical map N ⊕ P→ X. Finally the diagram

L //

0

""

N ⊕ P

(0,π)
��

// X

β||
M

shows that there exists a unique morphism β making this diagram commute. It can
be checked that the sequence

E : 0→ N
α
−→ X

β
−→ M → 0

is exact and its equivalence class does not depend on the choice of f . To sum up,
this construction associates to each x ∈ Ext1(M,N) a well defined equivalence class
of extensions. Some additional work shows that this map is the inverse of θ. �

Remark 6.3. 1) The bijection proved in Theorem 6.2 equips the set of equiv-
alence classes of extensions with the structure of an abelian group. This structure
can be defined directly in terms of extensions.

2) The theory sketched in this section can be extended to higher groups Exti

(i > 2).

7. The functors Tori

In this section, we fix a ring A and denote by A−Mod (respectively Mod− A)
the abelian category of left (respectively right) A-modules.

Fix a right module M and consider the covariant right exact functor
FM := M ⊗A (−) : A −Mod→ Ab,
FM(N) = M ⊗A N.

Definition. The left derived functors of FM are called the Tor-groups and are
denoted as

TorA
i (M,N) := LiFM(N), i > 0.

We can also fix a left A-module N and consider the right exact functor

NF := (−) ⊗A N : Mod − A→ Ab,

NF (M) = M ⊗A N.

Mimiking the agruments of Section 5 it is not difficult to prove that for all projective
resolutions P• and Q• of M and N, there exist canonical and functorial quasi-
isomorphisms

(P• ⊗A N)
∼
−→ Tot(P• ⊗A Q•)

∼
←− (M ⊗A Q•).

In particular
Li NF (M) ' LiFM(N), ∀i > 0.

Proposition 7.1. For any projective right A-module P the functor FP := P⊗A
(−) is exact. In particular,

TorA
i (P,N) = 0, ∀i > 1.
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Proof. a) Since tensor product commutes with direct sums, the first assertion
holds for free modules (which are direct sums of copies of A). Let P be an arbitrary
projective module. By Proposition 1.2, there exists a free module F such that
F = P ⊕ P′ for some P′ ⊂ F. Let

0→ N′ → N → N′′ → 0

be an exact sequence. Then we have an exact sequence

0→ F ⊗A N′ → F ⊗A N → F ⊗A N′′ → 0

which can be also written in the form

0→ (P⊗A N′)⊕ (P′⊗A N′)→ (P⊗A N)⊕ (P′⊗A N)→ (P⊗A N′′)⊕ (P′⊗A N′′)→ 0.

Therefore the sequence

0→ P ⊗A N′ → P ⊗A N → P ⊗A N′′ → 0

is exact.
b) The vanishing of TorA

i (P,N) for i > 1 follows from a) and general properties
of derived functors. �

Remark 7.2. The same argument shows that for any projective right module Q
the functor (−) ⊗A Q is exact and the derived functors TorA

i (−,Q) vanish for i > 2.

Example. Take A = Z. The complex

P• : 0→ Z
m
−→ Z→ 0

is a projective resolution of Z/mZ. Therefore P•⊗Z N is isomorphic to the complex

0→ N
m
−→ N → 0.

We obtain that TorZ
0 (Z/mZ,N) = N/mN (' Z/mZ ⊗Z N) and

TorZ
1 (Z/mZ,N) = mN,

where mN := {x ∈ N | mx = 0} is the m-torsion subgroup of N.

It can be proved that the functors TorA
i commute with direct limits, namely

TorA
i (lim
−−→

j

M j,N) ' lim
−−→

j

TorA
i (M j,N).

Using this property, we obtain the following:

Proposition 7.3. For all Z-modules M and N one has:
i) TorZ

1 (M,N) is a torsion group;
ii)) TorZ

i (M,N) = 0 for i > 2.

Proof. Each module is a direct limit of the system of its finitely generated
submodules. This reduces the proof to Proposition 7.1 and the above example. �

Definition. A left (respectively right) A-module N is flat if the functor (−)⊗A N
(respectively N ⊗A (−)) is exact.

Proposition 7.4. Let N be a left A-module. The following properties are equiv-
alent:
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1) N is flat;
2) Tori

A(M,N) = 0 for all M and i > 1;
3) Tor1

A(M,N) = 0 for all M.

Proof. The proof is straightforward and is left as an exercise. �

Exercise 12. Give an example of a non-projective flat module over Z.



CHAPTER 4

Cohomology of finite groups

1. Cohomology of groups: derived functors

1.1. Basic constructions. In this section, we redefine cohomology of groups
using derived functiors and establish its basic properties.

Let G be a group. Each abelian group A can be considered as a trivial G-
module:

g · a = a, ∀g ∈ G, a ∈ A.

This applies, in particular, to the group Z. For any G-module M, we set

MG := {m ∈ M | gm = m, ∀g ∈ G}.

We will consider the assignment M → MG as a functor

(−)G : G −Mod→ Ab.

Lemma 1.2. There exists an isomorphism of functors:

(−)G ' HomZ[G](Z,−).

Proof. Let M be a G-module. It is easy to see that the map

HomZ[G](Z,M)→ MG,

f 7→ f (1)

establishes an isomorphism

HomZ[G](Z,M) ' MG.

Indeed, since g( f (1)) = f (g(1)) = f (1), one has f (1) ∈ MG, and the inverse map
MG → HomZ[G](Z,M) is given by

m 7→ f ∈ HomZ[G](Z,M) such that f (1) = m.

�

Corollary 1.3. The functor (−)G is left exact.

Of cause, this can be also easily checked directly.

Definition. Let M be a G-module. The cohomology groups of G with coeffi-
cents in M are defined as

Hi(G,M) := ExtiZ[G](Z,M).

Equivalently, Hi(G,−) are the right derived functors of (−)G.

75
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For each short exact sequence of G-modules

0→ M′ → M → M′′ → 0

we have a long exact sequence of cohomology:

(15) 0→ H0(G,M′)→ H0(G,M)→ H0(G,M′′)
δ
−→

H1(G,M′)→ H1(G,M)→ H1(G,M′′)
δ
−→ H2(G,M′)→ · · ·

1.4. The bar resolution. We now prove that our definition agrees with the
definition given in Section 5 of Chapter 2. Set:

Gi+1 = G ×G × · · · ×G︸              ︷︷              ︸
i+1

and
Pi = Z[Gi+1].

It is easy to see that Pi is a free Z[G]-module generated by the elements of the form

(16) (e, g1, g2, . . . , gi) ∈ Gi+1

(here e is the identity element of G). Define a map

∂i : Pi → Pi−1

setting

∂i(g0, g1, . . . , gi) =

i∑
j=0

(−1) j(g0, g1, . . . , g j−1, g j+1, g j+2, . . . , gi),

if (g0, g1, . . . , gi) ∈ Gi+1

and extending this formula to Z[Gi+1] by linearity. We also define the augmentation
map:

ε : P0 = Z[G]→ Z,

ε

∑
g∈G

ngg

 =
∑
g∈G

ng.

Proposition 1.5. The sequence

· · · → Pi+1
∂i+1
−−−→ Pi

∂i
−→ · · ·

∂1
−−→ P0

ε
−→ Z→ 0

is a projective resolution of Z.

Proof. The proof is routine and we omit it here. �

The complex P• is called the bar resolution of Z.
Using this resolution, we obtain the following

Theorem 1.6. For any G-module M the complexes HomZ[G](P•,M) and C•(G,M)
are isomorphic.
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Proof. Recall that

Ci(G,M) = { f : Gi → M}.

We see that the groups HomZ[G](Pi,M) and Ci(G,M) are isomorphic: each mor-
phism ϕ ∈ HomZ[G](Pi,M) is completely determined by its values

ϕ(e, g1, g2, . . . , gi).

Such a function is completely determined by its values on the elements of the form
(e, g1, g1g2, . . . , g1g2 · · · gi). Let ϕ 7→ fϕ be the map

HomZ[G](Pi,M)→ Ci(G,M)

which to each ϕ associates the function

fϕ(g1, g2, . . . , gi) := ϕ(e, g1, g1g2, . . . , g1g2 · · · gi).

This gives isomorphisms

HomZ[G](Pi,M) ' Ci(G,M), i > 0.

Writing the differentials explicitly, it is not difficult to check that HomZ[G](P•,M)
is isomorphic to the complex

C•(G,M) : C0(G,M)
d0

−−→ C1(G,M)
d1

−−→ C2(G,M)
d2

−−→ · · ·

where

(di( f ))(g1, g2, . . . , gi+1) = g1( f (g2, g3, . . . , g+1)+

+

i∑
j=1

(−1) j f (g1, g2, . . . , g jg j+1, g j+2, . . . , gi+1) + (−1)i+1 f (g1, g2, . . . , gi).

�

Recall that we set
Zi(G,M) = ker(di) (group of i-cocycles),

Bi(G,M) = Im(di−1) (group of i-coboundaries).

Then
Hi(G,M) ' Zi(G,M)/Bi(G,M).

1.7. Coinduced modules. Let A be an abelian group. Set

A∗ := HomZ(Z[G], A).

Then A∗ has a natural structure of a left G-module given by

λ( f )(µ) := f (µλ), f ∈ A∗, λ, µ ∈ Z[G].

For any f ∈ A∗, one has:

f
(∑

ngg
)

=
∑

ng f (g).

Therefore f is completely defined by the elements f (g) ∈ A, g ∈ G. Set

C1(G, A) := { f : G → A},
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and equip C1(G, A) with a left action of G given by

(g f ) (h) = f (hg), f ∈ C1(G, A), g, h ∈ G.

Then A∗ ' C1(G, A).

Definition. The G-module A∗ is called a coinduced module.

Proposition 1.8. One has:

Hi(G, A∗) =

A, if i = 0
0, otherwise.

Proof. Applying Proposition 8.5 to the rings B = Z and A = Z[G], we obtain
an isomorphism

HomZ[G](P,HomZ(Z[G], A))
∼
→ HomZ(P, A)

for any Z[G]-module P. Using the definition of A∗, we can write it in the form

HomZ[G](P, A∗)
∼
→ HomZ(P, A).

Let P• be a free résolution of Z. Then

Hn(G, A∗) = Hn(HomZ[G](P•, A∗)) ' Hn(HomZ(P•, A)).

Since Pn are free Z-modules, the sequence

0→ HomZ[G](Z, A∗)→ HomZ[G](P•, A∗)

is exact. Hence Hi(G, A∗) = 0 for i > 1, and for i = 0 one has:

H0(G, A∗) = (A∗)G = A

(see Exercise 14). �

Exercise 13. Let G be an infinite cyclic group. Fix a generator g of G.
1) Show that Z[G] is isomorphic to the ring Z[X, X−1].
2) Show that the sequence

0→ Z[X, X−1]
∂0
−−→ Z[X, X−1]

ε
−→ Z→ 0,

where d0( f (X)) = (X − 1) f (X) and ε( f ) = f (1), is a free resolution of Z.
3) Let M be a G-module. Show that H0(G,M) = MG, H1(G,M) ' M/(g−1)M

and Hi(G,M) = 0 for i ≥ 2.

Exercise 14. Let A be an abelian group and f ∈ A∗ = C1(G, A). Show that if
g f = f for all g ∈ G, then f is a constant map, i.e. there exists a ∈ A such that
f (g) = a for all g ∈ G. Therefore (A∗)G ' A.
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2. Homology of groups

2.1. Let G be a group. We consider Z as a trivial right G-module.

Definition. For any left G-module M, set

Hi(G,M) := Tori
Z[G](Z,M).

The groups Hi(G,M) are called the homology groups of G with coefficients in M.

Explicitly, let P• be a projective resolution of Z. Then P•⊗Z[G] M is a complex,
and

Hi(G,M) = Hi(P• ⊗Z[G] M).

We compute H0(G,M). Let
ε : Z[G]→ Z

be the augmentation map

ε

∑
g∈G

ngg

 =
∑
g∈G

ng.

Set IG = ker(ε). Explicitly,

IG = {
∑
g∈G

ngg |
∑
g∈G

ng = 0}.

Lemma 2.2. The ideal IG is generated by the elements

g − e, g ∈ G.

(here e is the identity element of G.)

Proof. It is clear that g− e ∈ IG. Conversely, any
∑

g∈G ngg ∈ IG can be written
in the form: ∑

g∈G

ngg =
∑
g∈G

ng(g − e) +
∑
g∈G

nge =
∑
g∈G

ng(g − e).

Hence the elements g − e generate IG. �

We have a tautological exact sequence

(17) 0→ IG → Z[G]
ε
−→ Z→ 0.

Let A be a ring. For any left A-module M and ideal I ⊂ A we will write IM for the
submodule of M generated by the elements am, a ∈ I, m ∈ M.

For a G-module M, we set

MG := M/IG M.

Proposition 2.3. One has:

H0(G,M) ' MG.
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Proof. Since the tensor product is right exact, we have an exact sequence

IG ⊗Z[G] M → Z[G] ⊗Z[G] M → Z ⊗Z[G] M → 0.

Here Z[G]⊗Z[G] M ' M. On the other hand, the image of IG ⊗Z[G] M in M is IG M.
Therefore

H0(G,M) = Z ⊗Z[G] M ' M/IG M.
�

For any short exact sequence of G-modules

0→ M′ → M → M′′ → 0

we have a long exact sequence of homology:

· · · → H2(G,M′)→ H2(G,M)→ H2(G,M′′)
δ2
−→ H1(G,M′)→

H1(G,M)→ H1(G,M′′)
δ1
−→ H0(G,M′)→ H0(G,M)→ H0(G,M′′)→ 0.

2.4. Induced modules. Let A be an abelian group. The tensor product A∗ =

Z[G] ⊗Z A is equipped with a natural structure of a left G-module:

g(h ⊗ a) = (gh) ⊗ a, g, h ∈ G, a ∈ A.

Definition. The G-module A∗ is called an induced module.

Proposition 2.5. One has

Hn(G, A∗) =

A, if n = 0
0, otherwise.

Proof. Let A∗ = Z[G] ⊗Z A and let P• → Z be a free resolution of Z. Then Pn
are free abelian groups, and

Hn(G, A) = Hn(P• ⊗Z[G] A∗) = Hn(P• ⊗Z[G] (Z[G] ⊗Z A)) = Hn(P• ⊗Z A).

Since Pn are free, the complex

P• ⊗Z A→ A→ 0

is exact. Hence Hn(G, A∗) = 0 for n > 1. On the other hand,

H0(G, A∗) ' Z ⊗Z[G] (Z[G] ⊗Z A) ' A.

�

Proposition 2.6. One has:

H−1(G,Z) ' G/[G,G].

Proof. The short exact sequence (17) induces a long exact sequence of homol-
ogy:

H−1(G,Z[G])→ H−1(G,Z)→ H0(G, IG)→ H0(G,Z[G]).
Since Z[G] is free, H−1(G,Z[G]) = 0, and we have an isomorphism:

H−1(G,Z) ' IG/I2
G.

Now the proposition follows from Exercise 15 below. �
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Exercise 15. Show that the map

G → IG/I2
G, g 7→ g − 1 (mod I2

G)

induces an isomorphism G/[G,G] ' IG/I2
G.

Exercise 16. Let G be an infinite cyclic group. Fix a generator g of G. Show
that H0(G,M) = M/(g − 1)M, H1(G,M) = MG and Hi(G,M) = 0 for i > 2.

3. Tate (co)homology

3.1. Let
0→ M′ → M → M′′ → 0

be a short exact sequence of G-modules. We have long exact sequences:

· · · → H1(G,M′)→ H1(G,M)→ H1(G,M′′)
δ1
−→

M′/IG M′ → M/IG M → M′′/IG M′′ → 0

and

0 → M′G → MG → M′′G
δ0
−→ H1(G,M′) → H1(G,M) → H1(G,M′′) → · · ·

If G is finite, we can glue these sequences.
Namely, assume that G is finite. For any G-module M, we define the norm

map:
N : M → M,

N(m) =
∑
g∈G

gm.

Set N M := ker(N) and N(M) := Im(N).

Lemma 3.2. One has:
N(M) ⊂ MG,

IG M ⊂ N M.

Proof. a) Since

g(N(m)) = g
∑
h∈G

hm =
∑
h∈G

(gh)m =
∑
h∈G

hm = N(m),

we have N(M) ⊂ MG.
b) Let x = (g − e)m. Then

N(x) =
∑
h∈G

h(g − e)x =
∑
h∈G

(hg)x −
∑
h∈G

h(x) = N(x) − N(x) = 0.

Hence x ∈ N M. Since IG is generated by the elements g − e, g ∈ G, the submodule
IG M ⊂ M is generated by x = (g − e)m, g ∈ G, m ∈ M. Therefore N(y) = 0 for all
y ∈ IG M. �
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Theorem 3.3. Let G be a finite group. Then for any exact sequence of G-
modules

0→ M′ → M → M′′ → 0

there exists a long exact sequence:

· · · → H1(G,M′)→ H1(G,M)→ H1(G,M′′)→ N M′/IG M′ →

→ N M/IG M → N M′′/IG M′′
δ0
−→ M′G/N(M′)→ MG/N(M)→

→ M′′G/N(M′′)
δ0
−→ H1(G,M′)→ H1(G,M)→ H1(G,M′′)→ · · ·

Comments on the proof. We only need to show that there exists an exact se-
quence

H1(G,M′′)→ N M′/IG M′ → N M/IG M → N M′′/IG M′′ → M′G/N(M′)

→ MG/N(M)→ M′′G/N(M′′)→ H1(G,M′).

Applying the snake lemma to the diagram

M′/IG M′ //

N
��

M/IG M //

N
��

M′′/IG M′′

��

// 0

0 // M′G // MG // M′′G

we obtain an exact sequence:

N M′/IG M′ → N M/IG M → N M′′/IG M′′
δ0
−→ M′G/N(M′)→ MG/N(M)→ M′′G/N(M′′)

So we only should prove that Im(δ1) ⊂ N M′ and N(M′′) ⊂ ker(δ0). �

Definition. The Tate cohomology of M is defined as

Ĥi(G,M) =


Hi(G,M), if i ≥ 1,
MG/N(M), if i = 0,

N M/IG M, if i = −1,
H−i−1(G,M), if i ≤ −2.

With this notation, the long exact sequence for Theorem 3.3 reads:

· · · → Ĥ−2(G,M)→ Ĥ−2(G,M′′)→ Ĥ−1(G,M′)→ Ĥ−1(G,M)→

→ Ĥ−1(G,M′′)→ Ĥ0(G,M′)→ Ĥ0(G,M)→ Ĥ0(G,M′′)→

→ Ĥ1(G,M′)→ H1(G,M)→ Ĥ1(G,M′′)→ · · ·

Example. We consider Z as a trivial G-module. Then:

Ĥ0(G,Z) = Z/nZ, where n = |G|;

Ĥ1(G,Z) = 0,

Ĥ−1(G,Z) = 0.
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Proof. We have N(x) = nx for all x ∈ Z. Hence N(Z) = nZ and NZ = 0. As a
result, Ĥ0(G,Z) = Z/nZ and Ĥ−1(G,Z) = 0. Moreover,

Ĥ1(G,Z) = H1(G,Z) = Hom(G,Z),

where Hom(G,Z) = 0 for finite groups. �

3.4. Recall that for an abelian group A we set A∗ = HomZ(Z[G], A) and
A∗ = Z[G] ⊗Z A). If G if finite, the map

(18)
α : A∗ → A∗,

α( f ) =
∑
g∈G

g−1 ⊗ f (g).

is a well defined isomorphism ( see Exercise 17 below).

Proposition 3.5. One has:

Ĥi(G, A∗) = Ĥi(G, A∗) = 0, ∀i ∈ Z.

Proof. In view of Propositions 1.8 and 2.5 and the isomorphism (18), we only
need to show that

Ĥ0(G, A∗) = Ĥ−1(G, A∗) = 0.
a) Let x ∈

∑
s∈G

s ⊗ as ∈ A∗. Then

g(x) =
∑
s∈G

gs ⊗ as =
∑
s∈G

s ⊗ ag−1 s.

If x ∈ (A∗)G, then g(x) = x for all g ∈ G, and therefore ag−1 s = as for all g ∈ G.
Hence all as are equal, and x is of the form

x = (
∑
s∈G

s ⊗ a), a ∈ A.

Then x = N(e ⊗ a), where e ∈ G is the identity element, and we proved that
x ∈ N(A∗). Therefore (A∗)G ⊂ N(A∗), and Ĥ0(G, A∗) = 0.

b) Now assume that

N(x) = N

∑
s∈G

s ⊗ as

 = 0.

Writing the action of N explicitly, it is easy to see that∑
s∈G

as = 0,

Therefore
x =

∑
s∈G

s ⊗ as −
∑
s∈G

e ⊗ as =
∑
s∈G

(s − 1) ⊗ as ∈ IGA∗.

Therefore N A∗ ⊂ IGA∗ and Ĥ0(G, A∗) = 0. The proposition is proved. �

Exercise 17. Assume that G is finite. Show that for any abelian group A, the
map (18) is an isomorphism of G-modules.
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4. Cyclic groups

4.1. Cohomology of cyclic groups. In this section, we compute Tate coho-
mology Ĥn(G,M) for a finite cyclic group G. Set n := |G| and fix a generator g of
G. Define:

s =
∑
h∈G

h =

n−1∑
i=0

gi ∈ Z[G],

t = g − e ∈ Z[G].
Let

N∗ : Z[G]→ Z[G],

N∗(x) = sx, x ∈ Z[G],
denote the multiplication by s map, and similarly

T ∗ : Z[G]→ Z[G],

T ∗(x) = tx, x ∈ Z[G],

denote the multiplication by t.
Let Z[X] denote the ring of polynomials over Z. Since gn = e, we have an

isomorphism:

Z[G]
∼
→ Z[X]/(Xn − 1), g↔ X (mod Xn − 1).

Under this isomorphism, the maps N∗ et T ∗ correspond to the multiplication by
1 + X + X2 + · · · Xn−1 and 1 + X in Z[X] respectively. From the formula

(X − 1)(Xn−1 + Xn−2 + · · · + X + 1) = Xn − 1

it follows that
ker(T ∗) = Im(N∗),

ker(N∗) = Im(T ∗).
Therefore the sequence

· · · → Z[G]
N∗
−−→ Z[G]

T ∗
−−→ Z[G]

N∗
−−→ Z[G]

T ∗
−−→ Z[G]

ε
−→ Z→ 0

is exact and gives us a projective resolution P• of Z.
Let M be a G-module. Then HomZ[G](Z[G],M) ' M, and the complex HomZ[G](P•,M)

reads:
0→ M

T
−→ M

N
−→ M

T
−→ M

N
−→ · · · ,

where N(x) =
∑

h∈G hx and T (x) = gx − x. The groups Hi(G,M) are isomorphic to
the cohomology of this complex? Namely:

Hi(G,M) =


MG, si i = 0

N M/T (M), if i is odd
MG/N(M), if i ≥ 2 is even.

Now we compute the homology groups Hi(G,M). Since Z[G] ⊗Z[G] M
∼
→ M, the

complex P• ⊗Gal M reads:

· · ·
N
−→ M

T
−→ M

N
−→ M

T
−→ M → 0.
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Therefore:

Hi(G,M) =


M/T (M), if i = 0
MG/N(M), if n is odd

N M/T (M), if i ≥ 2 is even.
For the Tate groups we obtain:

Ĥi(G,M) =

MG/N(M), if i is even

N M/T (M), if i is odd.

4.2. Herbrand quotient. We continue to assume that G is a cyclic group of
finite order n and M isa G-module. Assume that Ĥ0(G,M) and Ĥ1(G,M) are finite.
We define the Herbrand quotient of M as

h(M) =
|Ĥ0(G,M)|
|Ĥ1(G,M)|

=
(MG : N(M))
( N M : T (M))

.

Proposition 4.3. i) Let

0→ M′ → M → M′′ → 0

be an exact sequence. If two of three Herbrand quotients are defined, so is the third
and

h(M) = h(M′) h(M′′).
ii) If M is finite, then h(M) = 1.
iii) Assume that N is a submodule of M of finite index. Then

h(M) = h(N).

Proof. See the homework, exercise 4. �

5. Change of groups

5.1. Shapiro’s lemma. In this section, G is a finite group and H is a subgroup
of G. Let M be an H-module. Then Z[H] ⊂ Z[G], and we can consider Z[G] as an
Z[H]-module. We apply a construction from Section 8.4, Chapter 1. Set

IndG
H(M) = HomZ[H](Z[G],M).

The ring Z[G] has a natural structure of a right Z[G]-module, and this allows to
define a structure of a left Z[G]-module on IndG

H(M):

(g f )(σ) = f (σg), ∀ f ∈ HomZ[H](Z[G],M), σ, g ∈ G.

In particular, if H = {e} then

IndG
{e}(M) = M∗.

Mimiking the construction of the isomorphism (18), one can prove that

IndG
H(M) ' Z[G] ⊗Z[H] M.

Lemma 5.2 (Faddeev–Eckmann–Shapiro). There exist canonical and functo-
rial isomorphisms:

Ĥi(G, IndG
H(M))

∼
→ Ĥi(H,M), i ∈ Z.
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Proof. Take a free resolution P• of Z in the category of Z[G]-modules. Then
P• is also a free resolution of Z in the category of Z[H]-modules. Applying Exer-
cise 18 below to A = Z[H] and B = Z[G] we have an isomorphism:

HomZ[G](P•, IndG
H(M)) ' HomZ[G](P•,HomZ[H](Z[G],M)) ' HomZ[H](P•,M).

Therefore

Hi(G, IndG
H(M)) = Hi(HomZ[G](P•, IndG

H(M))) = Hi(HomZ[H](P•,M)) = Hn(H,M)

for all i ≥ 0.
On the other hand, since IndG

H(M) is isomorphic to Z[G] ⊗Z[H] M,, we have:

P• ⊗Z[G] IndG
H(M) ' P• ⊗Z[G] (Z[G] ⊗Z[H] M) ' P• ⊗Z[H] M.

Hence

Hi(G, IndG
H(M)) = Hi(P• ⊗Z[G] IndG

H(M)) ' Hi(P• ⊗Z[H] M) = Hi(H,M)

for all i ≥ 0. �

Exercise 18. Let α : A → B be a morphism of rings. Each B-module M can
be seen as an A-module: the action of A on M is given by ax = α(a)x. In particular,
B is an A-module. If N is an A-module,we equip HomA(B,N) with a B-module
structure setting:

(b f ) (x) = f (xb), f ∈ HomA(B,N), b, x ∈ B.

Show that for all B-module M there exists a natural isomorphism

HomB(M,HomA(B,N)) ' HomA(M,N).

5.3. Restriction, corestriction, inflation.
5.3.1. We first consider the general case. Let ϕ : H → G be a morphism

of (not necessarily finite) groups. Then each G-module M has a natural structure
of an H-module, which is induced by ϕ. Let PH

• and PG
• denote the projective

resolutions of Z in the categories of Z[H] and Z[G]-modules respectively. Then
PG
• can be also seen as a (not necessarily projective) resolution of Z in the categoy

of Z[H]-modules. Therefore we have a map ϕ∗ : PH
• → PG

• , which makes the
diagram

PH
•

ε //

ϕ∗

��

Z

PG
•

ε // Z

commute and is unique up to a chain homotopy. If induces a morphism

HomZ[G](PG
• ,M)→ HomZ[H](PH

• ,M)

and functorial morphisms on cohomology:

(19) ϕ∗ : Hi(G,M)→ Hi(H,M), i > 0.
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The maps ϕ∗ can be naturally described in terms of complexes C•(−,−). Namely,
ϕ gives rise to the morphism

C•(G,M)→ G•(H,M),
f 7→ f ◦ ϕ,

which induces the maps (19) on cohomology.
Dually, we have a morphism

PH
• ⊗Z[H] M → PG

• ⊗Z[G] M

which induces functorial morphisms on homology:

ϕ∗ : Hi(H,M)→ Hi(G,M) i > 0.

We are mainly interested in the case where H is a subgroup of G.

Definition. Let H be a subgroup of G and M a G-module. The canonical maps

res : Hi(G,M)→ Hi(H,M),(20)
cor : Hi(H,M)→ Hi(G,M)(21)

are called the restriction and the corestriction maps respectively.

5.3.2. We continue to assume that H is a subgroup of G and M is a G-
module. Then MH has a natural structure of G/H-module. The projection mor-
phism π : G → G/H induces a morphism PG

• → PG/H
• on projective resolutions.

The inclusion MH → M induces a morphism

HomZ[G/H](P
G/H
• ,MH)→ HomZ[G](PG

• ,M)

and the resulting morphisms on cohomology

(22) inf : Hi(G/H,MH)→ Hi(G,M)

called the inflation maps.
These maps can be naturally described in terms of complexes C•(−,−). Let

f ∈ Ci(G/H,MH). Composing f with pi : G → G/H we obtain the map f ◦ π ∈
Ci(G,M). This defines a morphism of complexes

C•(G/H,MH)→ C•(G,M),

which induces the morphisms (22) on cohomology.

Proposition 5.4. i) There exists an exact sequence

0→ H1(G/H,MH)
inf
−−→ H1(G,M)

res
−−→ H1(H,M).

ii) Assume that Hi(H,M) = 0 for all i = 1, 2, . . . , q − 1. Then there exists an
exact sequence:

0→ Hq(G/H,MH)
inf
−−→ Hq(G,M)

res
−−→ Hq(H,M).

Proof. Part i) can be proved by a direct computation using the description of
group cohomology in terms of cocycles and coboundaries. Part ii) can be deduced
from part i) using the dimension shifting. �
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5.5. The case of finite groups.
5.5.1. In this subsection, we assume that G is finite. Consider a free Z[G]-

resolution of Z:

(23) P• : · · · → P2 → P1 → P0
ε
−→ Z→ 0.

By Exercise 17, we have an isomorphism

HomZ(Z[G],Z) ' Z[G],

which shows that Pi
∗ = HomZ(Pi,Z) are free Z[G]-modules. Therefore P•∗ =

HomZ(P•,Z) is a right projective resolution of Z:

(24) 0→ Z
ε∗

−→ P∗0 → P∗1 → · · · .

We can glue the resolutions (23) and (24):

L• : · · · → P2 → P1 → P0
ε∗◦ε
−−−→ P∗0 → P∗1 → · · ·

Here we define:

Li =

Pi if i > 0,
P∗
−i−1 if i 6 −1.

The complex L• is called a complete resolution of Z.

Theorem 5.6. There exist functorial isomorphisms

Ĥi(G,M) = Hi(HomZ[G](L•,M)).

Proof. The proof is omitted. �

5.6.1. Let H be a subgroup of G. Each Li is free over Z[H], and L• is a full
resolution of Z in the category of Z[H]-modules. Therefore the natural map

HomZ[G](L•,M)→ HomZ[H](L•,M)

induces morphisms
res : Ĥi(G,M)→ Ĥi(H,M)

for all i ∈ Z. It is easy to see that this definition agrees with (20) for i > 0. Therefore
our construction extends the definition of the restriction map to the case i 6 −1.

5.6.2. Write G as the union of left cosets of H: G =
n
∪

k=1
gkH. Consider the

map
t : HomZ[H](Li,M)→ HomZ[G](Li,M)

defined as follows:

(t( f )) (x) =

n∑
k=1

gk f (g−1
k x), f ∈ HomZ[H](Li,M), x ∈ Li.

An easy computation shows that t is well defined and t( f ) does not depend on the
choice of representatives gi. Hence we have a morphism of complexes

t : HomZ[H](L•,M)→ HomZ[G](L•,M),

which induces morphisms on cohomology:

cor : Ĥi(H,M)→ Ĥi(G,M), i ∈ Z.
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It can be checked that this definition agrees with (21) if i 6 −1. Therefore our
construction extends the definition of the corestriction map to the case i > 0.

Proposition 5.7. The map

cor : Ĥ0(H,M)→ Ĥ0(G,M)

is induced by the map

NG/H : MH → MG, x 7→
r∑

k=1

gk(x).

Proof. We have Ĥ0(H,M) = MH/NH(M) and Ĥ0(G,M) = MG/NG(M). The
formula follows directly from the definition of the map t. �

Proposition 5.8. Let (G : H) = n. Then

cor ◦ res = n

i.e. for all i ∈ Z the composition

Ĥi(G,M)
res
−−→ Ĥi(H,M)

cor
−−→ Ĥi(G,M)

coicides with the multiplication by n map.

Proof. a) We first prove this formula for i = 0. The map res : Ĥ0(G,M) →
Ĥ0(H,M) is induced by the natural inclusion MG → MH . By Proposition 5.7, for
all x ∈ MG, we have:

cor ◦ res(x) = cor(x) =

n∑
i=1

gi(x) = nx,

because gi(x) = x for all i.
b)In the general case, we prove the proposition by induction using the dimen-

sion shifting. Assume that the statement holds for som i. We have an exact se-
quence

0→ M
α
−→ M∗ → X → 0,

where the map α : M → HomZ(Z[G],M) is

α(m)(g) := gm.

This exact sequence provides us with a diagram:

Hi(G, X)

��

res // Hi(H, X)

��

cor // Hi(G, X)

��
Hi+1(G,M) res // Hi+1(H,M) cor // Hi+1(G,M).

The vertical arrows of the diagram are isomorphisms because Hq(G,M∗) = 0 for all
q. By the induction hypothesis, the composition Hi(G, X)→ Hi(H, X)→ Hi(G, X)
is the multiplication by n map. Therefore this is also true for the bottom row. This
proves the proposition for i > 0. For i < 0, we consider the exact sequence

0→ Y → M∗
β
−→ M → 0,
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with β(g ⊗ x) = gx and use the dimension shifting argument. �

From this proposition, we deduce two important corollaries:

Corollary 5.9. If n = |G|, the groups Ĥi(G,M) are annihilated by the multipli-
cation by n.

Proof. We apply Proposition 5.8 to H = {e}. Since Ĥi({e},M) = 0, we have
n = cor ◦ res = 0 i.e. the multiplication by n annihilates Ĥi(G,M). �

Let p be a prime number and Gp ⊂ G be a p-Sylow subgroup of G. For each
abelian group A, we denote by A(p) the p-primary component of A, namely:

A(p) = {x ∈ A | ∃m > 1 such that pmx = 0}.

Corollary 5.10. The restriction map

res : Ĥi(G,M)→ Ĥi(Gp,M)

is injective on the p-primary component of Ĥi(G,M) i.e. the induced map

Ĥi(G,M) (p)→ Ĥi(Gp,M)

is injective.

Proof. The composition

Ĥi(G,M) (p)
res
−−→ Ĥi(Gp,M)

cor
−−→ Ĥi(G,M)

concides with the multiplication by m = (G : Gp). Since Gp is a p-Sylow subgroup,
we have (m, p) = 1. Therefore the multiplication by m is injective on the p-primary
component. �

Exercise 19. Let H be a subgroup of a finite index of a group G. Write G =⋃n
k=1 Hgk.

a) Show that Z[G] = ⊕n
k=1Z[H]gi and deduce that Z[G] is isomorphic to

Z[H](n) as a Z[H]-module.
b) Show that a free resolution of Z[G]-modules is also a free resolution of

Z[H]-modules.
c) Let A be an abelian group. Show that the induced G-module A∗ = Z[G]⊗Z A

is also an induced H-module.

Exercise 20. a) Let f : M → N be a morphism of G-modules. Show that it
commutes with the restriction and the corestriction maps, i.e. that the diagrams

Ĥi(G,M)
f ∗ //

res
��

Ĥi(G,N)

res
��

Ĥi(H,M)
f ∗ // Ĥi(H,N)
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and

Ĥi(H,M)
f ∗ //

cor
��

Ĥi(H,N)

cor
��

Ĥi(G,M)
f ∗ // Ĥi(G,N)

are commutative.
b) Let

0→ M′ → M → M′′ → 0
be a short exact sequence of G-modules and let H be a subgroup of G. Show that
the restriction and the corestriction commute with the coboundary maps, i.e. that
the diagrams

Ĥi(G,M′) δ //

res
��

Ĥi+1(G,M′′)

res
��

Ĥi(H,M′) δ // Ĥi+1(H,M′′)

Hi(H,M′) δ //

cor
��

Hi+1(H,M′′)

cor
��

Hi(G,M′) δ // Hi+1(G,M′′)

are commutative.
c) Assume that H is normal in G. Show that for any morphism of G-modules

f : M → N the diagram

Hn(G/H,MH)
f ∗ //

inf
��

Hn(G/H,NH)

inf
��

Hn(G,M)
f ∗ // Hn(G,N).

commutes (functoriality of inflation).

6. Cohomological triviality

Definition. Let G be a finite group. A G-module M is cohomologically trivial
if for all subgroups H ⊂ G one has:

Ĥi(H,M) = 0, ∀i ∈ Z.

Examples. i) For any abelian group A, the les modules A∗ et A∗ are cohomo-
logically trivial. In particular, Z[G] is cohomologically trivial.

ii) If two of the three modules in a short exact sequence

0→ M′ → M → M′′ → 0

are cohomologically trivial, so is the third. This follows from the long exact se-
quence for Tate groups.
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iii) A G-module M is uniquely (or strongly) divisible if for all nonzero n ∈ N
the multiplication by n is an isomorphism n : M ' M. Any uniquely divisible
G-module is cohomologically trivial. In particular,

Ĥi(G,Q) = 0, ∀i ∈ Z,

Proof. Let H be a subgroup of G of order m. Then the isomorphism n : M '
M induces the multiplication by m map on cohomology:

m : Ĥi(H,M)
∼
→ Ĥi(H,M).

On the other hand, Ĥi(H,M) are killed by the multiplication by m. Hence
Ĥi(H,M) = 0 for all i. �

Le but de ce paragraphe est d’établir un critère de trivialité cohomologique
(voir les théorèmes 8.3 et 8.4). On commence par quelques resultats auxiliaires.
Soit p un nombre premier. On dit que G est un p-groupe si G est d’ordre pk. Nous
allons utiliser la formule suivante qui est bien connue. Soit B un ensemble fini
muni d’une action de G. Alors

|B| =
∑

i

|Gxi| =
∑

i

(G : Gxi),

où Gxi désigne le stabilisateur de xi ∈ B. Ici xi parcourt un système de
représentants des orbites.

Lemma 6.1. Soit G un p-groupe et soit A un G-module vérifiant pA = 0. Alors
les assertions suivantes sont équivalentes:

i) A = 0;
ii) H0(G, A) = 0;
iii) H0(G, A) = 0.

Proof. (voir [?], lemme 9.1).
i)⇒ ii), iii) C’est clair.
ii) ⇒ i) Preuve par l’absurde. Supposons que A , 0. Soit x un élément non-

nul de A et soit B = Z[G]x le sous-module engendré par x. Comme G est fini et
pA = 0, B est fini. Le groupe G opère sur B et on peut utiliser la formule (**).
Posons pαi = (G : Gxi). Alors (**) s’écrit

pk =
∑

i

pαi .

Si xi < BG, alors Gxi , G et αi ≥ 1. Si x ∈ BG, alors αi = 0 et pαi = 1. Donc
p divise |BG |. Comme 0 ∈ BG on en déduit que BG , 0, d’où H0(G, A) = AG , 0.
Contradiction.

iii) ⇒ i) On a H0(G, A) = A/JA, donc iii) signifie que JA = A. Posons B =

Hom(A,Z/pZ). On définit une action de G sur B en posant

(g f ) (a) = f (g−1a), f ∈ Hom(A,Z/pZ), a ∈ A.
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Soit f ∈ BG. Alors f (a) = f (ga), d’où f ((g − e)a) = 0 pour tout g ∈ G. Comme
les éléments g − e engendrent J, on en déduit que f (JA) = 0. Alors l’hypothèse
JA = A implique f = 0 ce qui montre que BG = 0.

En appliquant ii) ⇒ i) à B on en déduit que B = 0. Donc Hom(A,Z/pZ) = 0,
d’où A = 0.

�

Le lemme suivant correspond au lemme 9.2 et au théorème 9.1 de [?], §9.

Lemma 6.2. Soit G un p-groupe et soit M un G-module vérifiant pM = 0.
Supposons qu’il existe q ∈ Z tel que Ĥq(G,M) = 0. Alors M est un Z/pZ[G]-
module libre.

Proof. a) On étudie d’abord le cas q = −2. Comme pM = 0 on peut considérer
M/JM comme un Z/pZ-espace vectoriel. Soit {ai}i∈I une famille d’éléments de M
telle que āi = ai + JM forment une base de M/JM sur Z/pZ. Soit N le Z[G]-sous-
module de M engendré par {ai}i∈I et soit A = M/N. On a une suite exacte

0→ N → M → A→ 0

qui induit une suite exacte

N/JN → M/JM → A/JA→ 0.

L’application N/JN → M/JM est surjective par construction, d’où A/JA = 0. En
utilisant le lemme 8.1 on en déduit que A = 0. Donc M est engendré par {ai}i∈I .
Nous allons montrer que {ai}i∈I est une base de M. Soit

L = (Z/pZ[G])(I) '
⊕

i∈I

Z/pZ[G] ei

un Z/pZ[G]-module libre de rang I (I peut être infini). On note {ei}i∈I une base de
L. Alors l’application

f : L→ M,

f (
∑

i

αiei) =
∑

i

αiai, αi ∈ Z/pZ[G]

est un homomorphisme surjectif. On note X le noyau de f et on considère la suite
exacte

0→ X → L→ M → 0.
On va montrer que X = 0.

La suite exacte longue de homologie s’écrit (voir 4.5.2)

· · · → H1(G,M)→ X/JX → L/JL→ M/JM → 0.

Par l’hypothèse, on a H1(G,M) = Ĥ−2(G,M) = 0. D’autre part, comme
Z[G]/J

∼
→ Z, on a

Z/pZ[G]/(JZ/pZ[G])
∼
→ Z/pZ,

d’où
L/JL

∼
→

⊕
i∈I

(Z/pZ) ei
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Comme
M/JM =

⊕
i∈I

(Z/pZ)āi

l’application L/JL→ M/JM est un isomorphisme et la suite exacte (*) s’écrit:

0→ X/JX → L/JL
∼
→ M/JM → 0.

Alors X/JX = 0 d’où X = 0 (lemme 8.1).
Donc M et L sont isomorphes ce qui montre le lemme dans le cas q = −2.
b) Cas général. Supposons que Ĥq(G,M) = 0. En utilisant le décalage (voir

7.1) on trouve un G-module N tel que

Ĥi(G,N)
∼
→ Ĥi+q+2(G,M), ∀i ∈ Z.

En posant i = −2 on obtient

Ĥ−2(G,N) = Ĥq(G,M) = 0.

Il résulte de la partie a) de la preuve que N est Z/pZ[G]-libre. Donc il est co-
homologiquement trivial. La relation (**) implique maintenant la trivialité coho-
mologique de M. En particulier, Ĥ−2(G,M) = 0 et on applique encore a). Le
lemme est démontré. �

Maintenant nous pouvons démontrer les résultats principaux de ce paragraphe.

Theorem 6.3 (critère de trivialité cohomologique pour les p-groupes). Soient
G un p-groupe et M un G-module. S’il existe q ∈ Z tel que

Ĥq(G,M) = Ĥq+1(G,M) = 0,

alors M est cohomologiquement trivial.

Proof. a) Supposons d’abord que M est sans p-torsion i.e. que px = 0 im-
plique x = 0. Alors la multiplication par p est injective et on a une suite exacte

0→ M
p
−→ M → M/pM → 0.

La suite exacte longue de cohomologie s’écrit:

· · · → Ĥq(G,M)→ Ĥq(G,M/pM)→ Ĥq+1(G,M)→ · · ·

Comme Ĥq(G,M) = Ĥq+1(G,M) = 0, on en déduit que Ĥq(G,M/pM) = 0.
Comme p(M/pM) = 0, le lemme 8.2 montre que M/pM est Z/pZ[G]-libre. En
particulier, pour tout sous groupe H ⊂ G on a

Ĥi(H,M/pM) = 0, ∀i ∈ Z.

En revenant à la suite exacte longue de cohomologie

→
=0

Ĥi−1(H,M/pM)→ Ĥi(H,M)
p
−→ Ĥi(H,M)→ Ĥi(H,M/pM) = 0

on obtient que la multiplication par p induit un isomorphisme

Ĥi(H,M)
p
−→ Ĥi(H,M).



6. COHOMOLOGICAL TRIVIALITY 95

Par récurrence, pour tout k ≥ 1 la multiplication par pk est un isomorphisme

Ĥi(H,M)
pk

−−→ Ĥi(H,M).

D’autre part, soit |H| = ps. On sait que Ĥi(H,M) est annulé par multiplication par
ps. En posant k = s on obtient que Ĥi(H,M) = 0.Donc, M est cohomologiquement
trivial.

b) Cas général. Tout G-module M est quotient d’un Z[G]-module libre L.
Donc, on a une suite exacte

0→ X → L→ M → 0.

Comme L est libre, X ⊂ L est sans p-torsion. D’autre part L est cohomologique-
ment trivial et la suite exacte longue de cohomologie

(25) →
=0

Ĥq(G,M)→ Ĥq+1(G, X)→→
=0

Ĥq+1(G, L)→

→
=0

Ĥq+1(G,M)→ Ĥq+2(G, X)→→
=0

Ĥq+2(G, L)

donne Ĥq+1(G, X) = Ĥq+2(G, X) = 0. Alors, par a) X est cohomologiquement
trivial, d’où la trivialité cohomologique de M. Le théorème est démontré. �

Nous considérons maintenant le cas d’un groupe fini quelconque.

Theorem 6.4 (criterion of cohomological triviality). Let Gbe a finite group
and M a G-module. Assume that there exists q ∈ Z such that for all subgroup
H ⊂ G,

Ĥq(H,M) = Ĥq+1(H,M) = 0.
Then M is cohomologically trivial.

Proof. Soit H un sous-groupe de G. On va montrer que Ĥi(H,M) = 0 pour
tout i. Il suffit de montrer que pour nombre premier p la composante p-primaire
Ĥi(H,M) (p) est = 0. Soit Hp un p-groupe de Sylow de H. Par hypothèse, on a

Ĥq(Hp,M) = Ĥq+1(Hp,M) = 0.

Le théorème 8.3 implique que M est cohomologiquement trivial en tant que Hp-
module. Donc Ĥi(Hp,M) = 0. Par le corollaire 7.6, Ĥi(H,M) (p) s’injecte dans
Ĥi(Hp,M), d’où Ĥi(H,M) (p) = 0. Le théorème est démontré.

�

Exercise 21. Let L/K be a finite Galois extension of fields and let G = Gal(L/K).
Show that the additive group of L is cohomologically trivial as G-module. Hint:
use the normal basis theorem.

Exercise 22. Let G be a finite group. Show that H1(G,Z) = 0 and H2(G,Z) '
Hom(G,Q/Z).

Exercise 23. Let G be a finite group.
1) Using the exact sequence

0→ IG → Z[G]
ε
−→ Z→ 0



96 4. COHOMOLOGY OF FINITE GROUPS

show that for each subgroup H ⊂ G there exists canonical and functorial isomor-
phisms

Ĥi(H,Z)
∼
→ Ĥi+1(H, IG).

2) Deduce that
Ĥ1(H, IG) = Z/mZ, m = |H|,

Ĥ2(H, IG) = 0.

7. Tate theorem

7.1. The fundamental class. We maintain previous notation and conventions.
Let G be a finite group of order n and let IG := ker(Z[G]

ε
−→ Z).

Lemma 7.2. i) IG is the free abelian group of rank n − 1 generated by the
elements yτ := τ − e, τ ∈ G \ {e}.

ii) The following formulas hold true:

σyτ = yστ − yσ, if σ , e, τ−1.

τ−1yτ = −yτ−1 ,

eyτ = yτ.

Proof. The proof is left as an exercise. �

Let M be a G-module and let α ∈ Z2(G,M) be a 2-cocycle with values in M.
Then:

g1α(g2, g3) − α(g1g2, g3) + α(g1, g2g3) − α(g1, g2) = 0.
Let

I =
⊕
σ∈G
σ,e

Zxσ = Zxσ1 + · · · + Zxσn−1

be a free abelian group of rank n − 1 with basis G \ {e}. un groupe abélien libre de
rang n − 1 = |G| − 1. Set

Mα = M ⊕ I
and define an action of G on Mα by the formulas:

σ(m ⊕ xτ) = (σm + α(σ, τ)) ⊕ (xστ − xσ), si σ , τ−1, e,

σ(m ⊕ xτ) = (σm + α(σ, τ)) ⊕ (−xτ−1), if σ = τ−1,

e(m ⊕ xτ) = m ⊕ xτ.

Proposition 7.3. i) The above formulas equip Mα with the structure of a G-
module.

ii) The sequence

(26) 0→ M
f1
−→ Mα

f2
−→ IG → 0,

where f1(m) = m ⊕ 0 and f2(m ⊕ xτ) = yτ, is exact.

Proof. The proof is left as an exercise. �
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The exact sequence (26) induces a map

δM : H1(G, IG)→ H2(G,M).

Taking the composition of this map with the isomorphism δI : Z/nZ ' H1(G, IG)
(see Exercise 23), we obtain a map

ϕ : Z/nZ→ H2(G,M).

Claim: ϕ(1̄) = cl(α).

Proof of the claim. From the definition of the coboundary map it follows that
the image of 1̄ under the map δI is the class of the cocycle

β : g 7→ g − e ∈ IG.

To compute the image of cl(β) under δM, take the lift β̂ of β in Mα given by β̂(g) =

0 ⊕ β(g). Then δM(cl(β)) is represented by the cocycle

(g1, g2) 7→ g1β̂(g2) − β̂(g2) = g1(0 ⊕ yg2) − 0 ⊕ yg2 = α(g1, g2).

This proves the claim. �

Definition. Let M be a G-module such that

H1(H,M) = 0, for all subgroups H ⊂ G.

We say that x = cl(α) ∈ H2(G,M) is a fundamental class if for each H ⊂ G the
following conditions hold:

a) H2(H,M) is cyclic of order |H|;
b) H2(H,M) is generated by res(x).

Proposition 7.4. Assume that H1(H,M) = 0 for all H ⊂ G. Let cl(α) ∈
H2(G,M). The following properties are equivalent:

a) cl(α) is a fundamental class;
b) For each H ⊂ G, the short exact sequence

0→ M → Mα → IG → 0

induces an isomorphism
H1(H, IG) ' H2(H,M).

c) Mα is cohomologically trivial.

Proof. The equivalence a)⇔ b) follows directly from definitions.
b)⇒c). We have a long exact cohomology sequence

H1(H,M)→ H1(H,Mα)→ H1(H, IG)
∼
−→ H2(H,M)→ H2(H,Mα)→ H2(H, IG).

Here H1(H,M) = 0 by assumptions and H2(H, IG) ' H1(H,Z) = 0 by Exercise 23.
Therefore H1(H,Mα) ' H2(H,Mα) = 0 and Mα is cohomologically trivial.

c)⇒ b). If Mα is cohomologically trivial, then in the exact sequence

H1(H,Mα)→ H1(H, IG)→ H2(H,M)→ H2(H,Mα)

H1(H,Mα) = H2(H,Mα) = 0. Hence the map H1(H, IG) → H2(H,M) is an iso-
morphism. �
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7.5. Tate theorem.

Theorem 7.6 (Tate). . Soit G un groupe fini et soit M un G-module. Supposons
que cl(α) ∈ H2(G,M) est une classe fondamentale. Alors, pour tout q ∈ Z la classe
cl(α) induit un isomorphisme canonique

Ĥi(G,M)
∼
→ Ĥi−2(G,Z).

Proof. La suite exacte courte

0→ M → Mα → IG → 0

induit une suite exacte

Ĥq−1(G,Mα)→ Ĥq−1(G, IG)→ Ĥq(G,M)→ Ĥq(GMα).

Par l’exercice I.8.9, le module Mα est cohomologiquement trivial. Donc on a

Ĥq−1(G,Mα) = Ĥq(G,Mα) = 0

est la suite (*) se réduit à un isomorphisme

Ĥq−1(G, IG)
∼
→ Ĥq(G,M).

Comme
Ĥq−1(G, IG)

∼
→ Ĥq−2(G,Z)

(voir exercice I.8.6) on en déduit le théorème. �



CHAPTER 5

Local class field theory

1. Local fields

1.1. Basic definitions. We recall basic facts about local fields. Let K be a
field. A discrete valuation on K is a surjective map vK : K → Z∪ {+∞} satisfying
the following properties:

1) vK(xy) = vK(x) + vK(y), ∀x, y ∈ K∗;
2) vK(x + y) > min{vK(x), vK(y)}, ∀x, y ∈ K∗;
3) vK(x) = +∞ ⇔ x = 0.

In other words, vK is a surjective morphism of groups K∗ → Z extended to K by
the condition vK(0) = +∞. To each discrete valuation one can associate:

The ring of integers OK := {x ∈ K | vK(x) > 0};
The maximal ideal mK := {x ∈ K | vK(x) > 0};
The residue field kK := OK/mK ;
The group of units UK := {x ∈ K | vK(x) = 0}.

A element πK ∈ OK is a uniformizer of K if vK(πK) = 1. Note that mK = (πK)
and

K∗ = UK × 〈πK〉 .

The valuation vK equips K with a topology characterized by the following
property:

lim
n→+∞

xn = x ⇔ vK(xn − x) →
n→+∞

+∞.

Definition. A discrete valuation field K is called a local field if the following
conditions hold:

1) K is complete;
2) The residue field kK is finite.

Recall the classification of local fields:

Theorem 1.2. i) Each local field of characteristic 0 is isomorphic to a finite
extension of Qp with p = char(kK).

ii) Each local field of characteristic p is isomorphic to Fq((t)) where Fq is a
finite field of q elements and the valuation on Fq((t)) is given by

vFq((t))

∑
k

aktk

 = min{k | ak , 0}.

99
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Let L/K be a finite extension of a local field K. Then L is a local field. Let kL
denote the residue field of L and let πL be a uniformizer of L. Set

f := [kL : kK] the inertia degree of L/K,
e := vL(πK) the ramification index of L/K.

We have the fundamental relation:

e f = [L : K].

An extension L/K is unramified (respectively totally ramified) if e = 1 (respec-
tively f = 1). If L/K is a finite extension of local fields, then there exists a unique
subextention K ⊂ L0 ⊂ L such that L0/K is unramified and L/K is totally ramified.

Let L/K be a finite Galois extension. We have a natural surjective map

Gal(L/K)→ Gal(kL/kK)

which is an isomorphism if and only in L/K is unfamified. In that case Gal(L/K) '
Gal(kL/kK) is cyclic of order f = f (L/K) and we denote by FrL/K ∈ Gal(L/K) the
inverse image of the Frobenius automorphism

frL/K : kL → kL,

x 7→ xq, q = |kK |.

1.3. The multiplicative group of a local field. Let K be a local field. Set

U0
K = UK ,

Un
K = {x ∈ UK | vK(x − 1) ≥ n},

or, equivalently,
Un

K = 1 + πn
KOK , n > 0.

Proposition 1.4. For each n > 1, one has:

(UK : Un
K) = qn−1(q − 1),

where q = |kK |.

Proof. The proof is omitted. �

In the rest of this section, we assume that char(K) = 0. Set eK = e(K/Qp).
Define:

exp(x) =

∞∑
k=0

xk

k!
,

log(1 + x) =

∞∑
k=0

(−1)k+1 xk

k
.

Proposition 1.5. i) For each x ∈ OK such that

vK(x) >
eK

p − 1
the series exp(x) converges to an element of OK and

exp(x + y) = exp(x) exp(y).
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ii) For each x ∈ mK , the series log(1 + x) converges to an element of K and

log(xy) = log(x) + log(y).

iii) For all m ≥
[

2eK
p−1

]
+ 1, the maps exp and log define isomorphisms :

exp : mm
K
∼
→ Um

K ,

log : Um
K
∼
→ mm

K ,

which are inverse to each other.

Proof. The proof is omitted.
�

2. Cohomology of the group of units

Let L/K be a finite Galois extension of local fields and let G = Gal(L/K). The
main result of this section is the following (see [?], §1.4, Proposition 1.3):

Proposition 2.1. The group of units UL contains a cohomologically trivial
G-submodule of finte index.

Proof. We will prove this proposition for local fields of characteristic 0. This
assumption allows to use the p-adic exponential. In the general case, the proof is
slightly different (see [?], Proposition 1.3).

By the normal basis theorem, there exists α ∈ L such that each x ∈ L can be
written in a unique way in the form

x =
∑
g∈G

agg(α), ag ∈ K.

In other words, L is the free K[G]-module generated by α. Multiplying, if neces-
sary, α by some c ∈ OK , one can assume that α ∈ OL. Then

M :=
∑
g∈G

OKg(α)

is a G-submodule of OL, which is isomorphic to OK[G]. Therefore M is induced,
hence cohomologically trivial. This implies that for all m > 0, the module πm

K M
is cohomologically trivial. Set e = e(L/K) and fix m such that vL(πm

K) = me >[
2eL
p−1

]
+ 1. Set:

N = exp(πm
K M).

By Proposition 1.5, N is a submodule of U(me)
L . Since exp defines an isomorphism

between mme
L and U(me)

K , N and M are isomorphic. In particular, N is cohomo-
logically trivial. It remains to prove that (UL : N) < +∞. Note that OL is a free
OK-module of rank n = [L : K]. Fix a base x1, . . . , xn of OL over OK . Then

xi = bi1g1(α) + bi2g2(α) + · · · + bingn(α), bi j ∈ K.
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Fix k such that πk
Kbi j ∈ OK for all 1 6 i, j 6 n. Then πk

K xi ∈ M, and therefore
πk

KOL ⊂ M. Hence
m

e(k+m)
L = πk+m

K OL ⊂ π
m
K M,

and
U(e(k+m))

L = exp(me(k+m)
L ) ⊂ exp(πm

K M) = N.

Since U(e(k+m))
L has finite index in UL, we obtain that (UL : N) < +∞. �

We will deduce from this proposition several important corollaries.

Definition. Let G be a cyclic group and M a G-module. If the groups Ĥ0(G,M)
and Ĥ1(G,M) are finite, we set

h(M) :=

∣∣∣Ĥ0(G,M)
∣∣∣∣∣∣Ĥ1(G,M)
∣∣∣

and call it the Herbrand index of M.

We recall the main properties of Herbrand index:

Proposition 2.2. i) If M is finite, then h(M) = 1.
ii) Let

0→ M′ → M → M′′ → 0
be a short exact sequence of G-modules. If two of the three terms of this sequence
have finite Herbrand indexes, so the third and

h(M) = h(M′) h(M′′).

Recall that an extension L/K is called cyclic if G is a cyclic group.

Corollary 2.3. Assume that L/K is a cyclic extension of local fields of degree
n. Then:

i) h(UL) = 1.
ii) h(L∗) = n;
iii)

∣∣∣Ĥ0(G, L∗)
∣∣∣ =

∣∣∣H2(G, L∗)
∣∣∣ = n.

Proof. i) Let N ⊂ UL be a cohomologically trivial G-submodule of finite in-
dex. Then I.6.3, on a

h(N) = 1,
h(UL/N) = 1,
h(UL) = h(UL/N) h(N) = 1.

ii) The valuation map vL : L∗ → Z gives rise to an exact sequence

0→ UL → L∗
vL
−−→ Z→ 0.

Since h(Z) = n, we get
h(L∗) = h(UL)h(Z) = n.

iii) Recall that Ĥ0(G, L∗) ' H2(G, L∗). By definition,

h(L∗) =
|Ĥ0(G, L∗)|
|H1(G, L∗)|

.
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On the other hand, by Hilbert theorem 90

H1(G, L∗) = 0.

hence

|Ĥ0(G, L∗)| = h(L∗) = n.

�

Corollary 2.4. Let L/K be an unramified extension of local fields. Then UL is
cohomologically trivial.

Proof. We use our criterion of cohomological triviality. Recall that
a) Each unramified extension is unramified;
b) If H ⊂ G is a subgroup, then H = Gal(L/F) with F = LH (Galois theory).
It is sufficient to show that

H1(G,UL) = Ĥ0(G,UL) = 0.

The short exact sequence

0→ UL → L∗ → Z→ 0

induces a long exact cohomology sequence

0→ H0(G,UL)→ H0(G, L∗)→ H0(G,Z)→ H1(G,UL)→ H1(G, L∗)→ . . .

One has H0(G, L∗) = K∗, H0(G,Z) = Z and H1(G, L∗) = 0. Hence our sequence
reads:

0→ UK → K∗
vL
−−→ Z→ H1(G,UL)→ 0.

Since L/K is unramified, vL(K∗) = vL(L∗) = Z. Hence H1(G,UL) = 0. By Corol-
lary 2.3, we have h(UL) = 1, and therefore Ĥ0(G,UL) = 0. �

Corollary 2.5. Let L/K be a finite unramified extension. Then:

Ĥi(G, L∗)
∼
→ Ĥi(G,Z), ∀i ∈ Z.

Proof. The short exact sequence

0→ UL → L∗ → Z→ 0

induces a long exact sequence

Ĥi(G,UL)→ Ĥi(G, L∗)→ Ĥi(G,Z)→ Ĥi+1(G,UL)

Since UL is cohomologically trivial, the middle map is an isomorphism. �

Exercise 24. Assume that L/K is unramified. Show that que

NL/K(UL) = UK .
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3. The Brauer group of a local field

3.1. The Brauer group. Let K be a field and let K ⊂ L ⊂ E be Galois ex-
tensions of K. Since H1(Gal(E/L), E∗) =, 0 the inflation-restriction exact sequence
reads:

0→ H2(Gal(L/K), L∗)→ H2(Gal(E/K), E∗)
res
−−→ H2(Gal(E/L), E∗).

Therefore the map inf is an injection.

Definition. The direct limit

Br(K) = lim
−−→
L/K

H2(Gal(L/K), E∗) =
⋃
L/K

H2(Gal(L/K), L∗).

where E/K runs all Galois extensions of K, is called the Brauer group of K.

Example. let K = R. Then

Br(R) = H2(Gal(C/R),C∗).

The group Gal(C/R) is cyclic of order 2 :

Gal(C/R) = {id, σ}.

Hence
Br(R) = (C∗)σ=1/N(C∗) = R∗/(R∗)+ ' {1,−1}.

3.2. The Brauer group of a local field. In this section, K is a local field. We
define the unramified part of the Brauer group of K as

Br(K)ur =
⋃

L/K unram.

H2(Gal(L/K), L∗).

Let L/K be a finite unramified extension. Then

H2(Gal(L/K), L∗) ' H2(Gal(L/K),Z) ' Hom(Gal(L/K),Q/Z).

The group Gal(L/K) is generated by the Frobenius automorphism FrL/K . The
map

Hom(Gal(L/K),Q/Z)→
1
n

Z/Z,

χ 7→ χ(FrL/K).

is an isomorphism.
The following lemma shows that these isomorphisms are compatible:

Lemma 3.3. Let K ⊂ L ⊂ E be a tower of Galois extensions. The following
diagram is commutative

H2(Gal(L/K), L∗)

inf
��

H2(Gal(L/K),Z)

inf
��

Hom(Gal(L/K),Q/Z)

inf
��

// Q/Z

H2(Gal(E/K), E∗) H2(Gal(E/K),Z) Hom(Gal(E/K),Q/Z) // Q/Z
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Proof. The commutativity of the left squares follows from the functoriality
of inflation. The commutativity of the third square follows from the fact that the
projection Gal(E/K)→ Gal(L/K) sends FrE/K to FrL/K . �

Passing to the direct limit, we obtain an isomorphism

invK : Br(K)ur =
⋃

L/K unram.

H2(Gal(L/K), L∗)
∼
→

⋃
n

1
n

Z/Z = Q/Z.

Let F/K be a finite extension of degree n. For any unramified extension L/K
set L′ = LF. Then L′/F is unramified. Set G = Gal(L/K) and H = Gal(L′/F). By
Galois theory, H ⊂ G, and we have a map

H2(G, L∗)
res
−−→ H2(H, L∗)→ H2(H, L′∗).

To simplify the notation, we denote it by res. Passing to the direct limit, we obtain
a map

res : Br(K)ur → Br(F)ur.

Proposition 3.4. Let F/K be a finite extension of degree n. Then the diagram

Br(K)ur
invK //

res
��

Q/Z

n
��

Br(F)ur
invF // Q/Z.

commutes.

Proof. On pose e = e(F/K) et f = f (F/K). Soit L/K une extension non-
ramifiée. Alors f = f (L′/F). Nous allons démontrer que le diagramme suivant est
commutatif:

H2(G, L∗)

res
��

H2(G,Z)

e res
��

Hom(G,Q/Z)

e res
��

// Q/Z

n=e f
��

H2(H, L′∗) H2(H,Z) Hom(H,Q/Z) // Q/Z

En effet, comme L/K est non-ramifiée, on a e(L′/L) = e(F/K) = e. Donc, on a un
diagramme commutatif

L

��

vL // Z

e
��

L′
vL′ // Z

qui donne la commutativité du premier carré de (*):

H2(G, L∗)

��

H2(G,Z)

��
H2(H, L′∗) // H2(H,Z)
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Comme l’application ”restriction” commute avec l’application ”cobord”
le deuxième carré est commutatif. Pour démontrer la commutativité du dernier
carré, posons qK = |kK |, qF = |kF |, qL = |kL| et qL′ = |kL′ |. Alors

f rkL′/kF (x) = xqF ,

f rkL/kK (x) = xqK .

Comme qF = q f
K , on voit que la restriction de f rkL′/kF sur kL coı̈ncide avec f r f

kL/kK
.

Donc la restriction de FrL′/F à L coı̈ncide avec Fr f
L/K . Ceci donne la commutativité

du diagramme:
H1(G,Q/Z) //

res
��

Q/Z

f
��

H1(H,Q/Z) // Q/Z.
Comme n = e f , on obtient la commutativité du troisième carré de (*). La proposi-
tion s’en déduit. �

Corollary 3.5. Let F/K be a Galois extension of degree n and G = Gal(F/K).
Set

H2(G, F∗)ur = H2(G, F∗) ∩ Br(K)ur.

Then H2(G, F∗)ur is cyclic of order n. In particular,∣∣∣H2(G, F∗)
∣∣∣ > n.

Proof. Consider the exact sequence

0→ H2(G, F∗)
inf
−−→ Br(K)

res
−−→ Br(F).

Therefore, we have an exact sequence

0→ H2(G, F∗)ur → Br(K)ur
res
−−→ Br(F)ur.

and a commutative diagram

0 // H2(G, F∗)ur //

��

Br(K)ur
res //

invK

��

Br(F)ur

invF

��
0 // 1

n
Z/Z // Q/Z n // Q/Z.

Hence, H2(G, F∗)ur '
1
n Z/Z. �

We need the following technical result:

Lemma 3.6 (the ”ugly” lemma). Let G be a finite group and M a G-module.
Let q and ρ be two integers ≥ 0. Assume that the following conditions hold:

a) Hi(H,M) = 0 for each subgroup H ⊂ G and all i = 1, 2, . . . , q − 1.
b) For each chain of subgroups H ⊂ K ⊂ G such that H is normal in K and

(K : H) is a prime number, one has:

|Hq(K/H,MH)| divise (K : H)ρ.
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Then |Hq(G,M)| divides |G|ρ.

Proof. a) First assume that |G| = pk, where p is a prime number. We show the
lemma by induction on k. For k = 1, the statement is clearly true. Now assume that
k ≥ 2. Since the center Z(G) of G is no trivial, G has a normal subgroup N such
that 1 < |N | < |G|. We have the inflation-restriction exact sequence

0→ Hq(G/N,MN)
inf
−−→ Hq(G,M)

res
−−→ Hq(N,M).

By the induction hypothesis, |Hq(G/N,MN)| divides (G : N)ρ = |G/N|ρ and |Hq(N,M)|
divides |N |ρ. Hence |Hq(G,M)| divides

(G : N)ρ|N |ρ = |G|ρ.

b) We prove the lemma for an arbitrary group G. For each p, let Gp denote the
Sylow p-subgroup of G. Then

|G| =
∏

p

|Gp|.

Applying part a) to the groups Gp, we obtain that |Hq(Gp,M)| divides |Gp|
ρ for

each p. On the other hand, the maps

res : Hq(G,M) (p)→ Hq(Gp,M)

are injective. Hence |Hq(G,M) (p)| divides |Gp|
ρ. Since

Hq(G,M) =
⊕

p

Hq(G,M) (p),

we obtain that |Hq(G,M)| divides |G|ρ. �

We prove the main result of this section:

Theorem 3.7. i) Let L/K be a finite Galois extension with the Galois group
G = Gal(L/K). Then

a) H2(G, L∗)nr = H2(G, L∗) i.e. H2(G, L∗) ⊂ Br(K)nr.
b) H2(G, L∗) is a cyclic group of order n = [L : K].
ii) Br(K) = Br(K)ur and the map invK induces an isomorphism

invK : Br(K) ' Q/Z.

Proof. i)We apply Lemma 3.6 to the group. H2(G, L∗). For all H ⊂ G, we
have H1(H, L∗) = 0 by Hilbert theorem 90. Let K ⊂ G tbe a subgroup such that
H is normal in K. Set M = LK . Then Gal(F/M) = K/H. If (K : H) is a prime
number, then, by Corollary 2.3, the group H2(K/H, (L∗)H) = H2(Gal(F/M), F∗) is
of order (K : H). By Lemma 3.6, this implies that

|H2(G, L∗)| divides |G| = [L : K].

On the other hand, by Corollary 3.5, we have:

|H2(G, L∗)| ≥ |H2(G, L∗)ur| = [L : K].

Hence |H2(G, L∗)| = [L : K] and H2(G, L∗)ur = H2(G, L∗). This proves a) and b).
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ii) One has

Br(K) = ∪L/K H2(Gal(L/K), L∗) = ∪L/K H2(Gal(L/K), L∗)ur = Br(K)ur,

This proves ii). �

Corollary 3.8. Let L/K be a finite extension of degree n. Then the diagram

Br(K)
invK //

res
��

Q/Z

n
��

Br(L)
invL // Q/Z

commutes.

Proof. This follows from Proposition 3.4. �

4. The reciprocity map

4.1. The fundamental class. We apply Tate’s theorem. Let L/K be a finite
extension of degree n and let G = Gal(L/K). The restriction of invK on H2(G, L∗)
gives an isomorphism:

invL/K , : H2(G, L∗) '
1
n

Z/Z.

Let uL/K ∈ H2(G, L∗) be such that

invL/K(uL/K) =
1
n
.

Then uL/K is a canonical generator of H2(G, L∗). For any subextension K ⊂ F ⊂ L,
we have:

invL/F(res(uL/K)) = [F : K] invL/K(uL/K) =
[F : K]
[L : K]

=
1

[L : F]
.

Hence uF/K = res(uL/K). Since H1(Gal(L/F), L∗) = 0 for each intermediate exten-
sion, uL/K is a fundamental class. By Tate’s theorem, we have canonical isomor-
phisms

Ĥi(G, L∗) ' Ĥi−2(G,Z), i ∈ Z.

4.2. The reciprocity map. Take i = 0 in the above isomorphism:

Ĥ0(G, L∗) ' Ĥ−2(G,Z), i ∈ Z.
Since Ĥ0(G, L∗) ' K∗/NL/K(L∗) and Ĥ−2(G,Z) ' G/[G,G], we obtain an isomor-
phism:

θL/K : K∗/NL/K(L∗)
∼
→ G/[G,G].

If L/K is abelian, [G,G] = 1 and we obtain an isomorphism

θL/K : K∗/NL/K(L∗) ' Gal(L/K).

called the reciprocity map.
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