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CHAPTER 1

Categories

1. Categories

1.1. Basic ideas:
o Study classes of objects (as sets, modules, topological spaces,...);
o Avoid the set-theoretic language (do not suppose that our objects are sets).

Definition. A category A consists of

— a class Obj(A) of objects;

— forall X, Y € Obj(A), a set Morg(X, Y) called the set of morphisms from
X toY. Wewrite f : X = Y to say that f € Morg(X,Y).

— For each X € Obj(A), an identity morphism idy € Morg(X, X) :

— For every ordered triple of objects X, Y, Z € Obj(A), a map of sets

Mor#(X,Y) X Morg(Y,Z) —» Morx(X, Z),

called a composition function. This map associates to each f € Morg(X,Y)
and g € Morg(X, Y) a morphism go f : X — Z (or just simply gf) called
the composition of f and g.

These data should satisfy the following axioms:

Catl) (Associativity axiom) For all f € Morg(X,Y), g € Morg(Y,Z) and h €
Mor#(Z, U),

ho(gof)=(hog)of.
Cat2) (Unit axiom) For all X,Y € Obj(A) and f € Morg(X, Y),
idyo f=f=foidx.

Examples. 1) The category Sets of sets. The objects are sets and the mor-
phisms are set functions (maps):

Obj(Sets) = {sets}, Morgets(X, Y) := {maps f : X — Y}.

2) The category A — Mod of left modules over a fixed ring A. The morphisms
are homomorphisms of modules:

Mors-moa(X, Y) := Homu(X, Y).

3) The category Groups of groups. The morphisms are morphisms of groups.
4) The category Rings of rings. The morphisms are morphisms of rings.
5) The category TSpaces. The objects are topological spaces and

Mortspaces(X, ¥) := {continuous f : X — Y}.
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Definition. Let A be a category. We define the dual (or opposite) category A°
of A setting:

a) Obj(A°) := Obj(A). For each X € Obj(A), we write X° for X viewed as
an object of A°.

b) Mor#-(X°,Y°) := Mor#(Y, X).

In general, Obj(A) is not a set.
Definition. A category A is small if Obj(A) is a set.

1.2. 'We want to define the notions of isomorphism, monomorphism and epi-
morphism in a completely general setting.
Definition. Let f : X — Y.

i) f is an isomorphism if there exists g : Y — X such that g o f = idx and
fog=idy.
ii) f is monic (or a monomorphism) if for all Z € Obj(A), the map

Mor#(Z, X) — Mor#(Z,Y),
g fog

is injective.

iii) f is epi (or an epimorphism) if for all Z € Obj(A), the map

Mor (Y, Z) — Morx(X, Z),
g gof

is injective.

Exercise 1. 1) f is an isomorphism = f is monic and epi.

2) Show that in the category Rings, the natural inclusion f : Z — Q is monic,
epi, but not an isomorphism.

2. Functors

2.1. Let A and B be two categories.

Definition. A covariant functor from A to B is a rule F : A — B that
associates to each X € Obj(A) an object ¥ (X) € Obj(B) and to each morphism
f: X > Yin Aamorphism F(f) : F(X) - FX)in B and such that:

Funl) Forall f € Morg(X,Y) and g € Morg(Y, Z),
F(go f)=F (g o F(f).
Fun2) .7 (idy) = id z(x) for all X € Obj(A).
Therefore, we have a map
Morg(X, Y) —» Morg(Z#(X), #(Y)), f e Z().

Definition. A contravariant functor from A to B is a rule F : A — B that
associates to each X € Obj(A) an object F(X) € Obj(B) and to each morphism
[ X > Yin Aamorphism F(f) : F(Y) - F(X)in B and such that:
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Fun®1) Forall f € Morg(X, Y) and g € Morg(Y, Z),
F(goH=F (o F(@  (sich.

Fun°2) #(idy) = id g, for all X € Obj(A).

Therefore, we have a map

Mora(X, Y) = Morg(Z (Y), # (X)), fe F0.
A contravariant functor .% defines a covariant functor on the dual category:
F° LA - B, F°(X°) = F(X).
If7 : A—> Band¥ : B — C are two functors, then
GoF : A-C, Y o F(X)=9(F (X))

is a functor.

Exercise 2. If .% and & are both covariant or contravariant, then 4 o . is

covariant. If one of functors is covariant and the other is contravariant, then ¢ o #
1s contravariant.

2.2.  We define functors in several variables. If A; and A, are two categories,
we define the product category A; X A, by:
Obj(A; x Ap) = {ordered pairs (X1, X7), where X| € Aj, and X; € Ay},
Morq, xa,((X1, X2), (Y1, Y2)) = Morg, (X1, Y1) X Morg, (X3, 12).

Let
F ﬂ]XﬂzﬁB

be a rule which assignes to each (X1, X3) € A; X A an object .Z(X1,X,) € B.
Fixing X, € A,, we can consider the assignement

F(=,X3) : A — B, Z v F(Z,Xy).
Analogously, fixing X; € A;, we can consider the assignment
F(X1,-) 1 Fp > B, Z - F(X2,2).

Definition. .% : A, x A, — B is a functor in two variables if the rules
F(X1,-) and F (-, X,) are functors for all X; € Ay and X, € A,. The functor
F is covariant (resp. contravariant) in the first variable if % (-, X») is covariant
(resp. contravariant) for all X,. The functor ¥ is covariant (resp. contravariant)
in the second variable if % (X, —) is covariant (resp. contravariant) for all X;.

Examples. 1) Let A be an arbitrary category. Fix A € A. Then

a) hy : A — Sets defined by h14(X) = Mor#(A, X) is a covariant functor.

b)a) * : A — Sets defined by W (X) = Morz(X,A) is a contravariant
functor.

¢) Morg(—,-) : AX A — Sets given by

(X,Y) > Morg(X, Y)
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is a functor which is contravariant in the first variable and covariant in the second
variable.

2) In particular, if A = A — Mod is the category of modules over A, when
Mor#(X, Y) = Homy(X, Y) is an abelian group. Therefore

Homyu(—,-) : AX A — Ab,

where Ab denotes the category of abelian groups.

3) Let A be a ring. We already introduced the category A — Mod of left A-
modules. We can also consider the category Mod — A of right A-modules. For any
X € Mod—A and Y € A—Mod the tensor product X®j4 Y is well defined. This gives
us a two-variable functor (X, Y) — X ®, Y. It is covariant in the both variables.

2.3.  We define the notion of natural transformation of functors.

Definition. Let % : A — Band F : 4 — B be two covariant functors. A
natural transformation « . % — 9 is a rule that to each X € Obj(A) associates
a morphism in B

ay . F(X) - 9(X),

such that for any f : X — Y the following diagram is commutative:
F(X) —G(X)
Ly (0)) lg(f )
FY) L= 4(Y).
A natural transformation of contrvariant functors can be defined similarly.

Examples. 1) For each category (A, the identity functor is the functor id# :
A — A defined by id#(X) = X and id#(f) = f.
2)LetA,Be Aand g : A — B. For each X € A we have the map

ay : hg(X) := Morg(B,X) — hs(X) := Morg(A4, X),
ax(f) = fog.

Then « is a natural transformation a : hg — hy of covariant functors (exercise).
Similarly, the maps

Bx = KA(X) := Morx(X,A) — hB(X) := Mora(X, B),
Bx(f):=gof
define a natural transformation 8 : 4 — h® of contravariant functors.

Definition. A natural transformation @ : % — 4 is a natural isomorphism
of functors if ax is an isomorphism in B for all X € A. Equivalently, « is a natural
isomorphism if there exists a natural transformation 8 : 4 — % such that foa =
idg and a o B = idg.

The usual notation for a naturally isomorphic functors is .# ~ ¢.
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2.4. We can define the notion of isomorphism for categories:

Definition. An isomorphism of categories is a functor F : A — B which
is bijection both on objects and morphisms. Equivalently, # : A — B is an
isomorphism if there exists a functor 9 . B — A such that

407 =idg, F o¥9 =idg.

This notion is not very useful (too restrictive!). In particular, if A and B are iso-
morphic, there exists a one-to-one correspondence between Obj(A) and Obj(B).
The following notion is more natural:

Definition. An equivalence between two categories A and B is a pair of func-
tors F : A— Band¥ : B — A such that

goﬁ:idy{, 90g2id3.
2.5. We define some important classes of functors:

Definition. A functor & : A — Bis
1) faithful, if for all X, Y € A the map
Mor4(X, Y) — Morg(Z (X), % (Y))
is injective;
i) full, if for all X, Y € A the map
Mor#(X, Y) = Morg(% (X), Z(Y))

is surjective.
iii) fully faithful, if it is full and faithful.

Example. A forgetful functor is a functor that forgets some structures. For
example, the functor % : A — Mod — Ab which associates to each A-module X
the same set X equipped only with its abelian group structure, is a forgetful functor.
It is fully faithful. In general, it is not full because for a general ring Hom4 (X, Y)
is smaller that Homap (X, Y).

Theorem 2.6. A functor % : A — B is an equivalence of categories if and
only if it is fully faithful and for any Y € Obj(B), there exists X € Obj(A) such
that Y ~ F(X) (Y is isomorphic to F (X)).

3. Products

In ths section, we define the notions of direct product and direct sum (or direct
coproduct) in general categories.
Let I be a set and let (X;);c; a family of objects X; € Obj(A) indexed by 1.

Definition. i) An object X € Obj(A) is a product of (X;)ier if it is equipped
with morphisms p; : X — X; (i € I) such that the following universal property
holds:

For any X’ € Obj(A) equipped with morphisms p; : X' — X; (i € I) there
exists a unique morphism f : X' — X such that

pi=piof, Viel:
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Pi
x 2 x.

ii) An object Y € Obj(A) is a coproduct of (X;)ies if it is equipped with mor-
phisms q; : X; — Y (i € I) such that the following universal property holds:

For any Y’ € Obj(A) equipped with morphisms q; : X; — Y (i € I) there
exists a unique morphism f : Y — Y’ such that

q. = fogqi, Viel:

Y/
r 7
Y;TX,-.

From the universal property it follows that the direct product and the direct
coproduct (if exist!) are unique up to an isomorphism. The usual notations for the

product and coproduct are
l_IXi, UXi
i€l i€l
Examples. 1) In the category A—Mod, the products and coproducts exist. The
product of modules X; is the usual cartesian (direct) product

l_[Xi = {(xier | xi € Xi}
i€l
equipped with the componentwise addition and scalar multiplication:
(xi)ier + Oidier = (Xi + Yidier, a- (xjier = (axi)ier-
The coproduct of X; can be constructed as follows:
UXi = {(x;)ier | x; € X; and x; = 0 for almost all i}.
i€l
2) In Sets, the product is the cartesian product of sets. The coproduct [ [X; is
i€l
the disjoint union of X;.
3) In Groups, the product is the cartesian (direct) product of groups with the

componentwise multiplication. One can show that coproducts exist (free product
of groups).

Exercise 3. X is a direct product of (X;);e; in A if and only if X° is a direct
sum of (X7);e; in A°.
4. Additive categories
4.1. Initial, final and zero objects. Let A be a category.
Definition. An object X € Obj(A) is
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— initial, if for any Y € Obj(A) there exists exactly one morphism f : X —
Y.

— final (or terminal) , if for any Y € Obj(A) there exists exactly one mor-
phism f 1 Y — X.

— zero if it is initial and final.

Properties 4.2. 1) Initial, terminal and zero objects (if exist) are unique up to
isomorphism.

Proor. We will prove only the uniqueness of the initial object. Assume that
X1 and X, be two initial objects. Then we have unique morphisms f; : X; — X»
and f, : X, — X;. The composition f; o fi : X; — X coincides with the unique
morphism X; — Xj. Therefore f, o fi = idy,. The same argument shows that
f1 0 f» =idy,. Therefore X| =~ Xj,. O

2) X is initial (resp. final) in A & X is final (resp. initial ) in A°.

3) In A — Mod, the module {0} is a zero object.

4) In Sets, the 0 is an initial object. Any one-point set is a final object.
Proposition 4.3. Assume that A has a zero object 0. Then:

i) For each X € Obj(A), the sets Mor4(X, O#) and Mor (04, X) consist
of one element, which we denote by 0.
ii) For all X,Y € Obj(A), let Oxy denote the composition

X—>031—>Y.

Then the morphism Oxy does not depend on the choice of 0#. For any
morphism [ 1 Y — Z one has f o Oxy = Oxz:

X2y Loz
Oxz
For any morphism f : Z — X one has Oxy o f = 0zx:
f Ox,y

Z——=X—>=VY

Ozy

ProoOF. 1) is clear.
iia) Assume that 07; is another zero element. Then there exist unique mor-
phisms 0z — 07, and 07; — 0#. We have a commutative diagram

X Y

NN

07

|

O

which shows that the compositions X — 0 — ¥ and X — 07, — Y coincide.



12 1. CATEGORIES
iib) We have a commutative diagram

0 I

X—sY——7

WA

07

which shows that foOy y = Ox z. The proof of the second formula is analogous. O

4.4. Assume that A satisfies the following axioms:

Ad1) A has a zero object.
Ad2) A has finite products and coproducts:

for all X, Y € Obj(A), there exist X MY and X Ul Y in A.

Consider the diagrams

X X

idy 0 T
px px

dy qy

X G XNy Y i - XnNY

\ idy j
Py Py

Y Y.

By the universal property of products, there exist unique morphisms ¢}, : X —
XnYandg), : Y — XY such that

pxoqy=1dx, pyoqy =idy

progy =0xy, pxoqy=0yx.

Dually, consider the diagrams

X X

e

XUy x xuy-o.y
N S

Y Y.

By the universal property of coproducts, there exist unique morphisms p} : X LI
Y — X and p}, : XUY — Y such that

Py oqx =idx, pyogqy=idy

p;( °qy = OY,X, p;/ o¢gx = OX,y.
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Therefore we can consider the diagram

By the universal property of direct products, there exists a unique morphism s :
X 'Y — X MY which makes this diagram commute.

4.5. Diagonal and codiagonal. Consider the diagram

X
idy T
p1
X o Ax. XnX
~
P2
X,

where p; (resp. pz) denotes the projection on the first (resp. second) copy of
X. By the universal property of direct products, there exists a unique morphism
Ax : X — X 1 X which makes this diagram commute. Dually the diagram

defines a morphismoy : XU X — X.

Definition. The morphism Ay is called the diagonal morphism. The morphism
Xx is called the codiagonal morphism or the sum.

Example. In A — Mod, we have X 1Y ~ XY ~ X X Y. It is easy to see that

Ax(x) = (x, x),
Xx(x1,x2) = x1 + x2.

Remark 4.6. The concepts of the diagonal and codiagonal morphisms are
dual to each other. Namely in the dual category, A5, = Xx- and 5, = Axe.
4.7. Additive categories. Assume that, in addition, A satisfies the following
axiom:
Ad3) For all objects X, Y € Obj(A), the morphism s is an isomorphism:

s:XUY S XnY.
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We set
XoeY: =XuY=XnY

and call it the direct sum of X and Y.
We define a law of composition on Mor#(X, Y). For any f,y € Morg(X, Y),

consider the commutative diagram
N
q1

Here the map o exists by the universal property of coproducts. Set:
f+gi=Aoo.

Proposition 4.8. i) Forall X,Y € Obj(A), Morg(X, Y), +) is an abelian
semigroup. Namely:
a) The law of composition + is associative;
b) Oxy + f=f+ 0x7y = f forall f € Morg(X,Y);
¢) The law of composition + is commutative;
ii) The composition of morphisms is bilinear with respect to +. Namely,

(f+g)oh, Vf,geMorg(X,Y)andh € Morg(Z, X),
ho(f+g), Yf,g€Morg(X,Y)andh € Morz(Y,Z).
ProoF. Admitted. O
Definition. A category A is additive if, in addition to axioms Ad1-3), it satis-
fies the following axiom:

Ad4) Forall X,Y € Morg(X,Y), the semigroup (Mor#(X, Y), +) is an abelian
group, i.e. each element has an inverse:

VfeMora(X,Y), - f € Mora(X,Y) such that f + (—f) = Oxy.
Example. The categories A — Mod and Mod — A are additive.

Definition. Let A and B be two additive categories. A covariant functor F
A — B is additive if for all X, Y € Obj(A), the map

Mor#(X, Y) —» Morg(F#(X), #(Y))

is a morphism of groups.
A contravariant functor % : A — B is additive if for all X, Y € Obj(A), the
map
Mor#(X, Y) = Morg(Z (Y), % (X))

is a morphism of groups.
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5. Abelian categories

5.1. Kernels and cokernels. In this section, we assume that (A is a category
which has a zero object. To simplify notation, we will often write 0 instead Oy y.

Definition. Ler f : X — Y. A morphism a« : A — X represents the kernel of
fif
i) foa=0;
ii) The following universal property holds: for any o’ : A’ — X such that
foa’ =0, there exists a unique g : A’ — A such that @’ = @ o g:

A—SsX—>y

A ’
a
A
Properties 5.2. 1) If it exists, the kernel (A, @) is unique up to isomorphism.
Proor. This follows immediately from the universal property. O
2) If (A, @) represents the kernel of a morphism f : X — Y, then « is monic.

Proor. Consider the diagram

B2

Z7T A2 X—>vY
S~—}——F
Bi

Assume that @ o 81 = @ o 8,. Then

folaopBi)=folaop).
By the universal property of (A, @), for any y : Z — X such that f oy = 0, there
exists aunique 8 : Z — A such thaty = @ o 8. Take y = @ o 81 = @ o 3. Then the

above property implies that 8| = 5. O
Definition. Let f : X — Y. A morphism 3 : Y — B represents the cokernel
of fif
) Bof=0;

it) The following universal property holds: for any B : Y — B’ such that
B’ o f =0, there exists a unique g : B — B’ such that’ = gof:

f B

‘;
: 8
1

B

The universal property shows that if it exists, the cokernel is unique up to
isomorphism. We adopt the following notation:

(ker(f) — X) := kernel of f,

Y £> coker(f)) := cokernel of f.
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We will often write ker(f) and coker(f) instead ker(f) S XandY i coker(f).

It is easy to see that the notions of kerner and cokernel are dual to each other.
If f € Morg(X,Y) and f° € Morg(X°,Y°) is the corresponding morphism in
the dual category, then ker(f)° =~ coker(f°) and coker(f)° =~ ker(f°). Dualizing

property 5.2, 2) above, we obtain that the morphism (Y i coker(f) is epi.

Definition. Let f : X — Y. We define the image Im(f) and the coimage
Coim(f) of f as:
Im(f) := ker(Y 2> coker(f)),

Coim(f) := coker(ker(f) N X).
Remark 5.3. The notions of image and coimage are dual to each other:
Coim(f) =~ Im(f°).

5.4. Definition of abelian categories. To say that f : X — Y is a monic
(resp. epi) we will often write f : X > Y (resp. f : X » Y).

Let f : X — Y be an arbitrary morphism. Assume that f has kernel, cokernel,
image and coimage. These data can be represented by the diagram

ker(f) ——— X - Ly L coker(f)

n L

Coim(f) = Inilf)

where «, j are monic and 8, & are epi.

We analyze this diagram. Since S o f = 0, by the definition of the kernel,
there exists a unique map s : X — Im(f) such that f = j o 5. We remark that
josoa = foa=0.Since j is monic, this implies that s o @ = 0. By the universal
property of the cokernel, we deduce that there exists a unique morphism

i : Coim(f) — Im(f)
such that s = i o 7.
Definition. A category A is abelian if it is additive and, in addition, satisfies
the following axioms:

Ab1) Each morphism has a kernel and a cokernel.
Ab2) For any morphism f, the morphism i : Coim(f) — Im(f) is an isomor-
phism.

Example. The categories A — Mod and Mod — A are abelian. The following
exercise gives an example of an additive category which satisfies Ab1), but is not
abelian:

Exercise 4. Let K be a field. A filtered finite-dimensional vector space X =
(V, (V)iez) over K is a finite dimensional K-vector space K equipped with an in-
creasing filtration by K-subspaces:

LSV CViCVi Cll.
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Let Y = (W,(W))iez)- A morphism f : X — Yisalinearmap f : V - W
such that f(V;) € W, for all i € Z. Let FVectg denote the category of filtered
finite-dimensional vector spaces over K.
1) Show that FVecty is additive.
2) Show that each morphism in FVectg has a kernel and a cokernel.
3) Let V be anonzero vector space and let X = (V, (Vi)iez) and Y = (V, (V))icz)
be the objects defined as:

V= 0, %fz:<0, V- 0, %fz:é—l,
Vv, ifi>1, >
Show that the identity map on V induces a morphism f : X — Y which is monic
and epi, but is not an isomorphism. Deduce that FVect is not abelian.

5.5. Basic properties of abelian categories. Let A be an abelian category.

Conventions. 1) Wewrite X®Y := XY ~ XY and call it the direct
sum or biproduct of X and Y.
i) If @ : X — Y is monic, we will write Y/X for coker(a) :

Y/X := coker(a).
iii) We will write Hom#(X, Y) instead Mor#(X, Y).
Properties 5.6. 1) A is abelian if and only if A° is abelian.

Proor. This follows from the observation that the dual of i : Coim(f) —
Im(f)isi® : Coim(f°) — Im(f°). O

2) f : X — Y is monic if and only if ker(f) = 04.

Proor. a) Assume that ker(f) = 0. Let Z € Obj(A). We want to show that

the map
f7 : Homz(Z, X) - Homx(Z,Y), g fog

is injective. Since A is additive, this map is a morphism of abelian groups, and
it is sufficient to show that ker(f;;) = 0. Let g € ker(f;). Then f o g = 0. By the
universal property of kernels, there exists a map Z — ker(f) such that g coincides
with the composition Z — ker(f) — X. But ker(f) = 04, and therefore g = 0. This
shows that ker(f;) = 0 and f is monic.

b) Conversely, assume that f is monic. Let @ : A — X be such that f o @ = 0.
Then foa = f o004 x and therefore @ = 04 x. This shows that « is the composition

of morphisms A — 0 — X. Therefore 04 satisfies the universal property of
ker(f). O

3) f : X — Yisepiifand only if coker(f) = 04.
Proor. Apply property 2) to the morphism f° : Y° — X°. O

4)If f : X — Y is monic, then X ~ Im(f).
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Proor. We have ker(f) = 04. It is not difficult to see that coker(0g — X) =~ X
(exercise). Therefore Coimf ~ coker(0g — X) ~ X, and the isomorphism 7 reads
X = Im(f). O

S)Iff : X = Yisepi then Y ~ Im(f) and Y ~ X/ ker(f).
Proor. a) One has:
fisepi = f°is mono = coker(f) =~ ker(f°) = 0.

Therefore Y ~ Im(f).
b) By property 3), we have Y° =~ Im(f°). Therefore

Y =~ Coim(f) ~ X/ ker(f).

6) If f is monic and epi, then f is an isomorphism.
Proor. By properties 3) and 5), we have X ~ Im(f) ~ Y. O

Exercise 5. Show that in an additive category the following statements hold
true:

a) ker(X — 0) = X;
b) coker(0 — X) = X;
¢) Im(0 - X) =0;
d) Coim(X — 0) =0;

Exercise 6. Let X L Y <5 Z Show that if f and g are monic (resp. epi) then
g o f is monic (resp. epi).

0
Exercise 7. In a an additive category, the zero map X — Y is monic (resp. epi)
ifand only if X = 0 (resp. Y = 0).
5.7. Exact sequences.

Definition.
1) A sequence of morphisms

is exact if Im(f) =~ ker(g).
2) A sequence
i Lox Boxy B ox I x,
is exact if it is exact in each term:
ker(fi+1) = Im(f;), foralll <i<n-2.

3) A short exact sequence is an exact sequence of the form

0o-xLrizoo
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Consider a short exact sequence

0o-xLvyizoo

Then:

e ker(f) = Im(0 — X) = 0 and therefore f is monic;
e Im(g) = ker(Z — 0) = Z. The composition map

Im(g) ~ Z — coker(g)

is zero and epi. Therefore coker(g) = O (cf. Exercise 7). and g is epi.
o Z=~Y/X.

Proor. We have:
Z =Im(g) ~ Coim(g) =~ coker(ker(g) = Y) =
=~ coker(Im(f) — Y) ~ coker(X — Y) =: Y/X.

6. Exact functors
6.1. Exact functors.

Definition. i) Let A and B be two additive categories. A covariant functor
F A —> Bis additive if for all X,Y € Obj(A), the map

Mor#(X, Y) — Morg(%#(X), % (Y))

is a morphism of groups.

ii) A contravariant functor % : A — B is additive if the covariant functor
F . A° — Bis additive. Explicitly, F : A — B is additive if for all X,Y €
Obj(A), the map

Mor#(X, Y) —» Morg(F(Y), (X))

is a morphism of groups.

In this section, we will always assume that the categories A and B are abelian
and write Hom# instead Mor 4.

Definition. An additive functor % : A — B is exact if for each exact se-

quence X i) Y S Z the induced sequence

F(f) F(9)
700 22 20v) 29, 22)

is exact.
Proposition 6.2. i) .7 is exact if and only if for each short exact sequence
0-xLr&zoo

the induced sequence

F F
0o 7x) 22 20 2% 22) > 0

is exact.
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ii) Assume that % is exact. Then f respects kernels, cokernels, images and
coimages. Namely, for any morphism X L Y, one has:
ker(F (f)) = 7 (ker(f)), Im(Z (f)) = Z (Im(f)),
coker(F (f)) =~ .% (coker(f)), Coim(Z (f)) =~ .% (Coim()).

Proor. a) Assume that .7 is exact. Then for any exact sequence
X1 —)Xz—)—)Xn
the induced sequence

FX) > F(X) > > F(Xy)

is exact. Applying this remark to a short exact sequence 0 — X i> Y575 0we
. o TH F@ .
see that the induced sequence 0 —» #(X) —> F#(Y) — #(Z) — 0 is exact.

b) We prove ii). Let X L Y. Applying .# to the exact sequence

0 — ker(f) —» Xi) Y — coker(f) — 0,

we obtain that the sequence

0 > F(ker(f)) —» F(X) L F(Y) - F(coker(f)) —» 0

is exact. Comparing this sequence with the tautological exact sequence

0 - ker(Z(f)) —» F(X) L F(Y) - coker(Z(f)) — 0

we obtain that ker(.Z (f)) =~ .% (ker(f)) and coker(.% (f)) ~ .% (coker(f)).
Applying .Z to the tautological exact sequence

0 — Im(f) —» Y — coker(f) —» 0
we obtain an exact sequence
0 - Z(Im(f)) » Z ) - F(coker(f)) — 0.
Since .% (coker(f)) =~ coker(# (f)), we obtain that
F(Am(f)) = ker(F(Y) - coker(F(f))) =: In(.F ().

An analogous argument shows that Coim(.% (f)) ~ .# (Coim(f)).
c) It remains to prove that if .# preserves short exact sequences, then it is exact.

. f 8 .
Consider an exact sequence of the form X — Y — Z and the induced sequence

F(f) F(g)
72 20 22, 7).

Since .# respects kernels and images, we have
ImZ (f) = Z(m(f)) = F (ker(g)) = ker(F(g)).

Therefore . is exact, and the proposition is proved. O
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6.3. Left and right exact functors. In some sense, the most interesting func-
tors are not exact, but satisfy some weaker properties, which we introduce in this
section.

Definition. i) Let # : A — B be a covariant additive functor. Then F is
said to be left exact if for any exact sequence
0-xLbréz
the induced sequence

0- 7 2% 20 29 22

is exact. It is said to be right exact if for any exact sequence

xLy&zoo
the induced sequence

Z() Z(©)
700 2L 700 29 7z) - 0
is exact.
ii) A contravariant additive functor F : A — B is left (respectively right)
exact if the covariant functor #° : A° — Y is left (respectively right) exact.
Namely, % is left exact if for any exact sequence

xLy&zso
the sequence
Z(g) z
0 .22 2% 70 22 7x)

is exact. It is right exact if for any exact sequence

(g

0sxLyrsz

the sequence

72 2% 2000 22 720 5 0

is exact.

Proposition 6.4. Let .% : A — B be a covariant additive functor. Then the
following assertions hold true:

i) F is left exact if and only if for any short exact sequence 0 — X L y S
Z — 0 the sequence

7(

F
0 — .Z(X) @

) F(g)
D 7 2 72
is exact.

ii) It is right exact if and only if for any short exact sequence 0 — X L y 5
Z — 0 the induced sequence

7 29 701 2% 22 > 0

is exact.
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Proor. The proof is purely technical and is omitted here. O

Consider the rule
Homg(—,—) : AX A — Ab,
(X,Y) » Hom#(X, Y).

For any X, i) X,, we have a natural map

Hom(Xa, ¥) 1> Homa(X,, Y),
g gof.
Since A is abelian (and therefore additive), one has:
ffler+g)=(@ +g)of=giof+gof=f(g)+[f(g)

Hence f* is a morphism of groups. Similarly, for any Y; L Y5, the map

Homa(X, Y1) 5 Homa(X, Ya),
g fog
is a morphism of abelian groups. From this observation it follows easily that
Homg#(—, —) is an additive functor in two variables, which is contravariant with
respect to the first argument and contravariant with respect to the second one. For
each A € Obj(A), we consider the functors of one variable iy : A — Ab and
W : A — Ab defined as follows:
ha(X) := Homg(A, X), W (X) := Homz(X, A).
We remark that /14 is covariant and A is contravariant.

Theorem 6.5. The functors hy and h* are left exact.

Proor. Asuume that 0 — X L Y LR Z is exact. We should check that the
induced sequence

0 — Homu(A, X) 2o Homa(A, ¥) 5> Homa(A. Z)

is exact.

a) Injectivity of f*. Assume that a1, @y € Hom#(A, X) are such that f*(a;) =
f*(a2). Then

f oay = f oaj.

Since f is monic, this implies that a; = ;.

b) Since g o f = 0, we have g* o f* = (g o f)* = 0. Hence Im(f™) C ker(g").

c) Assume that 8 € ker(g*). Then 8 : A — Y is such that g o 8 = 0. Since
X L Y) represents ker(g), from the universal property of the kernel it follows that
there exists @ : A — X such that 8 = f o @. The last formula can be written as

B = f*(a) € Imf").
Hence ker(g*) C Im(f*). Together with b), this proves that ker(g*) = Im(f*). To
sum up, we have proved that 4 is left exact.
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d) To prove the left exactness of KA itis enough to remark that KAX) = hyo(XO).
The left exactness of hygo : A° — Ab is already proved. O

7. Yoneda lemma

In this section, we consider an arbitrary category A. For any A € Obj(A), we
consider the covariant functor

hy 1 A — Sets,
X — Homgz(A, X)
and the contravariant functor
W A > Sets,
X — Homgz(X, A).
Let &% : A — Sets be a covariant functor. We denote by Mor(/4, %) the natural

transformations « : hy — %.

Lemma 7.1 (Yoneda lemma). There exists a natural one-to-one correspon-
dence

Mor(hy, F) ~ F(A).
Proor. a) We construct a correspondence
@ : Mor(hy, F) — F(A).

Let @« € Mor(hy,.%#). Then for each X € Obj(A), we have a morphism ay :
ha(X) — F(X). In particular, id4 € ha(A), and we set

D(a) 1= aa(ids) € F(A).
b) We construct a correspondence
Y . F(A) — Mor(ha, F).

Let a € #(A). Consider the composition

7 a
ax : ha(X) = Mora(A, X) <> Morsets(:Z (A), F (X)) —> F(X),

where the map ev,, is defined as ev,(f) = f(a). The collection of maps (ax)xconjA)
defines a natural transformation @ € Mor(hy, %#). Set P(a) = a.

c) It can be easily checked that ® and ¥ are inverse to each other. Moreover,
from the above constructions it follows that they are functorial with respect to the
both arguments. Namely, if f : A — A’ is a morphism and .#¥ — .%’ a natural
transformation of functors, then the following diagrams commute:

Mor(hy, F) — F(A) , Mor(hy, ) — F(A)
Mor(hy:, ) — F(A") Mor(hy, F') — F'(A).

The lemma is proved. O
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We formulate the contravariant version of Yoneda lemma. Let ¥ : A — Sets
be a contravariant functor. Let Mor(h*,%) denote the natural transformations of
contravariant functors @ : 4 — ¢.

Lemma 7.2 (Yoneda lemma). There exists a natural one-to-one correspon-
dence
Mor(h*, %) ~ G(A).

Proor. The proof is analogous to the previous one and is omitted here. O
Corollary 7.3. Let A, B € Obj(A). Then

Mor(ha, hg) ~ Morz(B,A),

Mor(h*, hB) ~ Mor (A, B).
Corollary 7.4. Let ¥ unc(A, Sets) denote the category of covariant functors

A — Sets. The morphisms in this category are natural transformations of functors.
Then the correspondence A — hy defines a contravariant functor:

A — Func(A, Sets).
Corollary[7.3|shows that it is fully faithful.

8. Adjoint functors

8.1. Adjoint functors. In this section, we consider two categories A and B
and a pair of functors:
9
A=—=8
F
Definition. We say that 4 is a right adjoint to F and .F is a left adjoint to G
if the functors
AX B — Sets, J A X B — Sets,
(X, Y) > Morg(Z(X),Y) " (X, ¥) > Mora(X, 4(Y))
are isomorphic.

This condition means that we have a system of bijections
¢ : Morg(F(X),Y) =~ Mora(X, ¥4 (Y)),
which are functorial in X and Y.

Example. Consider the functors
%
Sets =—— Groups
F

defined as follows :
Z(X) := free group generated by X.

4(Y) := Y viewed as a set (forgetful functor).
It is easy to see that these functors are adjoint, namely
Hom(Z (X), Y) =~ Maps(X, (V)
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Properties 8.2. Assume that (%,9) is a pair of adjoint functors. Then the
following holds true:
1) F respects initial objects, zero objects, cokernels and coproducts. 4

respects final objects, zero objects, kernels and products.
2) If A and B are additive, then F and 4 are additive.

Proor. a) We prove that .# respects initial objects. Let X be an initial object
in A. For any Y € Obj(8), we have a bijection
Morg(F (X),Y) ~ Mora(X,9(Y)).

Since X is initial, there exactly one morphism X — ¥(Y). Therefore there exists
exactly one morphism .% (X) — Y, and we proved that .% (X) is initial.
b) We prove that .% respect cokernels. Consider the diagram

X i> Y i coker(f).
It induces a diagram

70 29 700y 2%, Z(coker(f)).

We want to prove that (% (coker(f)), . #(B)) is a cokernel of .% (f). Since .#(B) o
F(f) = F(Bo f) =0, we only need to check the universal property. Consider the
diagram

®

F(f) 7 (B

Z(B)
F(Y) F(coker(f))

¥
VA

F(X)

Leto* = (@) : Y — ¥(Z). We have a diagram
S B
X —— Y —— coker(f)
a*
£8

;
9(2).

By the universal property of cokernels, there exists a unique g* : coker(f) — ¥(Z)
such that o* = g* o B. Let g : ZF(coker(f)) — Z be the unique morphism such
that ¢(g) = g*. From the functoriality of morphisms ¢ it follows easily that @ =
go.Z(B). This shows that .% (coker(f)) satisfies the universal property of cokernels.

c) The proof that .# respects coproducts is analogous and is omitted here.
Using dual categories A° and B°, we see that ¢° is the left adjoint of .#° and
therefore respects initial objects, cokernels and coproducts. This implies that .7
respects final objects, kernels and products.

d) Assume that A and B are additive. The addition of morphisms in additive
categories is defined using products, coproducts and the diagonal map. The addi-
tivity of .% and ¢ can be proved using properties 1). We omit the details here. O

Theorem 8.3. Assume that (F,9) is a pair of adjoint functors between abelian
categories A and B. Then F is right exact and 9 is left exact.
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Proor. We prove that ¢ is left exact. (The proof of the right exactness of .#
can be proved using duality). Consider an exact sequence

o-vLysy
We will prove that the sequence

a0 22 g 22 g,

is exact. Since ¥ respects kernels, the morphism ¥(f) is monic. Moreover from
go f = 0it follows that 4(g) o 4(f) = 0. Therefore we have a unique (monic) map
i : 9(Y)) — ker(¢4(g)) such that

(1 aoi=9(f).

These data can be represented by the diagram

o-»%m kil GY)——9X")

4/

ker@(g))

To prove that i is an isomorphism we will construct a section s of i. Consider the
commutative diagram

0 — = Homa(X.9(Y")) —L> HomA(X. 9(Y)) —°% Homa(X. 9 (¥"))

0 ——= Homg(#(X),Y’) —— Homg(# (X),Y) —— Homg(#(X),Y"")

The vertical morphisms are isomorphisms by the definition of adjoint functors.
Moreover, the bottom row is exact by the left exactness of hy with A = Z(X).
Therefore the upper row is exact. Take X = ker(¥4(g)). The map a : ker(4(g)) —
Y satisfies

Y@ (@)=%9%oa=0.
Then there exists s : ker(¥4(g)) — ¢ (Y’) such that

G(os=9(f)(s)=a

Together with (I)) and the fact that @ and ¢(f) are monic, it is easy to see thati o s
and s o i are the identity morphisms. O

8.4. Tensor product. Let A be a ring (not necessarily commutative). For any
right A-module M and left A-module N the tensor product M ®4 N is the abelian
group generated by the symbols m ® n (m € M,n € N) with relations:

1) (m +my)@®n=m ®n+mp n,
2y m@(ny +ny) =mOn; + mQ ny;
3) ma®n=m®an, a € A.
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The assignment (M, N) — M ®4 N define a functor
®4 : (Mod — A) X (A —Mod) — Ab,
which is covariant in both arguments.

Definition. Let A and B be two rings. Assume that N is an abelian group
equipped with structures of a left A-module and a right B-module. We say that N
is a (A, B)-bimodule if

(an)b = a(nb), YaeA,be B,neN.

Assume that N is an (A, B)-bimodule. Then for any right A-module M, the
tensor product M ®4 N has a natural structure of a right B-module:

(m®n)b = m® (nb).

Similarly, for any right B-module L, the group Homp(, L) has a natural structure
of a right A-module:

(fa)(x) = f(ax), f € Homg(N,L), x€ N, a € A.
Proposition 8.5. There exists a canonical and functorial isomorphism
¢ : Homp(M ®4 N, L) ~ Homs(M, Homp(N, L)).

Proor. Let f € Homg(M®y N, L). We set o(f) := F € Homy (M, Homg(N, L)),
where F is defined by the formula

(F(m)](n) = f(m@n).
The same formula can be used to construct the converse map ¢~! setting ¢~ (F) :=
S
Fix a bimodule N and consider the functors
— @aN : Mod - A — Mod - B
Homp(N,-) : Mod — B —» Mod — A.

Corollary 8.6. For any bimodule N, the functor — ®4 N is a left adjoint of
Homp(N, —) (and therefore Hompg(N, —) is a right adjoint of — ®4 N).

Corollary 8.7. The functor — ®4 N is right exact.
9. Some diagram lemmas
Let A be an abelian category.

Lemma 9.1 (five lemma). Assume that

h f &l Ja

X, X5 X5 —> X4 X5
ld] Laz j(lg laq la’s
Y, 81 Y, & Ys 8 Y4 84 Ys

is a commutative diagram with exact rows. Then:

1) If ay is epi and ay and a4 are monic, then a3 is monic.
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ii) If as is monic and ay and ay are epi, then a3 is epi.
i) If ay, @z, aq and as are isomorphisms, then as is an isomorphism.

Proor. We will prove this lemma for the category of modules.
1) (A diagram chase). Assume that @3(x3) = 0. Then

4(f3(x3)) = ga(az(x3)) = 0.
Since @4 is monic, f3(@3) = 0. By the exactness of the upper row, there exists
x7 € X3 such that f5(xz) = x3. We have
g2(a2(x2)) = az(f2(x2)) = a3(x3) = 0.
The exactness of the bottom row shows that there exists y; € Y7 such that g;(y;) =
an(xp). Since a is epi, there exists x; € X; such that @(x;) = y;. Hence
az(f1(x1)) = gi(a1(y1)) = aa(x2).

Since @, is monic, this implies that fi(x;) = xp. Therefore x3 = fo(xp) = fo o
f1(x1) = 0. To sum up, we proved that ker(a3) = 0. Hence @3 is monic.

ii) This statement can be deduced from i) using duality.

iii) It is clear that i) and ii) imply iii). O

Lemma 9.2 (snake lemma). Assume that we have a commutative diagram with
exact rows

x,Lex—t.ox, 0
l(}’] LQ’ LQ’Z
0 v, oyt y,

Then there exists an exact sequence

ker(ap) Il—> ker(a) L ker(ay) i coker(ay) —fl—> coker(a) L coker(a»).
Proor. We prove this lemma for modules. It is not difficult to see that the
morphisms f; and f induce morphisms ker(a;) L ker(a), ker(a) i> ker(ay),

coker(ay) i) coker(a), coker(a) i> coker(a;), which we denote by the same
letters f1 and f. A routine diagram chase shows that our exact sequence is exact at
ker(f) and coker(a).

We construct the map 6. Let xo € ker(ay). Since f is epi, there exists x € X
such that f(x) = x,. We have

gla(x)) = aa(f(x)) = 0.

Frome the exactness of the bottm row it follows that there exists a unique y; € Y}
such that g{(y;) = a(x). Set

o(x1) :=y; € Y1/Im(ay) =~ coker(ay).
We omit the proof of the exactness at ker(a;) and coker(a). O

We also have the following version of the snake lemma:
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Lemma 9.3. Assume that we have a commutative diagram with exact rows

fi f

0 X, X X, 0
lm LQ’ LQ’Z
0 v,y _f.y, 0

Then the sequence

. | ) .
0 - ker(ay) 2> ker(e) > ker(an) > coker(ay) 25 coker(@) - coker(as) — 0
s exact.

The following deep theorem can be used to reduce the proof of the previous
lemmas for general abelian categories to the case of categories of modules:

Theorem 9.4 (Freyd-Mitchell embedding theorem). Let A be a small abelian
category. Then there exists a ring A and a fully faithful exact functor

A — A —Mod.






CHAPTER 2

Complexes

1. Complexes

Let A be an abelian category.

Definition. A chain complex X, in A is a family (X,)nez of objects X, €

ODbj(A) together with morphisms d,, : X,, — X,—1 such that
dy_10d, =0, Vn eZ.

A chain complex can be represented by the diagram

dp+1 d, dy-1 dy—»
S X, D X — Xyp — -

The morphisms d, are called differentials. We will often write d instead d,,. To

each complex we attach the following objects:
Z, := ker(d,) called n-cycles.
B,, := Im(d,41) called n-boundaries.
H,(X) := Z,/B, called n-homology of X.

We define the category K(A) of complexes in A. The objects of this category
are complexes. A morphism of complexes f : X, — Y, is a family of morphisms

fn @ X = Y, such that the diagram

dpy1 dy dn-1 dn—
Xy — X1 Xn-2
fn l.ﬁl—l lfn-z
d, d dy- dy—
n+1 Yn n Yn_l n—1 Yn_2 n-2

commutes. In other words
fo—10dy, =d, o f, Vn € Z.
The proof of the following theorem is straightforward:

Theorem 1.1. K(A) is an abelian category. In particular,

1) ker(f) = (ker(fu))nez;
i) coker(f) = (coker(fu)nez;
iii) A short sequence of complexes

0-Xe>Ye—>Z,—0
is exact if and only if the sequence
0-X,-Y,—-7Z,—-0

31
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is exact for all n € Z.
We will also work with the dual notion of a cochain complex.

Definition. A cochain complex X* in A is a family (X")nez of objects X" €
Obj(A) together with morphisms d" : X" — X" such that
d"*'od, =0, VnelZ.

A cochain complex can be represented by the diagram

an- 1 an am 1 dn+2
...___)Xn_>Xn+l ___)Xn+2 _— e,

To each cochain complex we attach:
Z" .= ker(d") called n-cocycles.
B" := Im(d" ") called n-coboundaries.
H"(X) := Z"/B" called n-cohomology of X.

Morphisms of cochain complexes are defined analogously to the case of chain com-
plexes. We denote by CK(A) the the abelian category of cochain complexes in A.

1.2. Letf : X, — Y, be amorphism of complexes. Considering the diagram

drHl dn
Xpy1 — X — X1

o o e
A
we see that the morphism f;, induces morphisms
Zy(Xe) = Zn(Yo);
B (Xe) = Bn(Ye);
Therefore in each degree n, we have a morphism
Hy(f) + Ho(Xe) — Hy(Ys).
It is easy to see that this defines covariant additive functors
H, :KA) - A,
Xo = Hp(Xo).
These functors are not exact, but they are related by the following property:

Theorem 1.3 (long exact sequence in homology). Let

0oM LN 5150

be a short exact sequence in K(A). Then there exists a long exact sequence of
homology:

) Hy(f) Hy(g) )
.. = Hy (L) — Hy (M) — Hy(N,) — Hy(Le) = H,—1(M,)
H,_1(f) H,_1(g)
2D (N 2 (L) >
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Proor. We will apply repeatedly the snake lemma.
a) Consider the commutative diagram

0 M, N, L, 0
ldl'l jd" jdn
0—— M, Nu1 L, 0.

The rows of this diagram are exact and the snake lemma implies that for all n € Z,

the following sequences are exact:
@) 0— Z,(M.) = Z,(Ne) — Zy(Ls),
Mn—l/Bn—l(MO) - Nn—l/Bn—l(NO) - Ln—l/Bn—l(LO) - 0.

Consider the commutative diagram
M1/ Bpi1(Me) — Nyi1/Bpy1(No) — Ly 1/ Bpy1(Le) —= 0

o o P

0 Z,(M,) Zy(Ns) Zy(Ls).

From the exactness of sequences (2) it follows that the rows of this diagram are
exact. Applying the snake lemma we obtain an exact sequence
ker(d) — ker(d") — ker(d“) > coker(d) — coker(d") — coker(d").

Il is easy to see that ker(d™) =~ Z,1(M4)/B,+1(Ms) =: H,1(M,) and coker(d™) ~
Z,(My)/B,(M,) =: H,(M,). Therefore this exact sequence reads:

Hn+l(f) H)H—l(g) Hn(f) Hn(g)

Hor (M) =55 B (Vo) 2 Hy (L) S Hy (M) = BN~ Hy(Ly).

Gluing together these sequences for different n, we obtain the long exact sequence
in homology. O

The following results shows the functoriality of the long exact sequence in
homology.

Theorem 1.4. Assume that we have a commutative diagram with exact rows:

0 M, N, L, 0
N
0 M, N, L, 0.

Then the diagram
o
<+ —— H,(My) — H,(Ns) — H,(Ls) — H,_(My) —— -~
LHn(a’) lHn(ﬁ) lHn(y) LHnl(a)
4 ’ ’ 6
o —— Hy(My) — Hy(N,) — Hy(L,) — Hp—1(Ng) —— -+

is commutative.
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Proor. The theorem can be proved by diagram chasing and we omit the details.
O

We record the analogous results for cochain complexes.

Theorem 1.5 (long exact sequence in cohomology). Let
. f o 8 .
0->M" >N —->L*—>0

be a short exact sequence of cochain complexes. Then there exists a long exact
sequence of cohomology:

HVL Hll
o HTN S B 1, H"(N*) 7o), HY (L) S H™ (M*)
n+1 n+l1
H (f) H}’H-I(NO) H (g) Hn+l(L0) — ..

Theorem 1.6. Assume that we have a commutative diagram with exact rows:

0 M N L 0
k)
0 M N? L 0.

Then the diagram

. —>Hn(M.)—>Hn(N.)—>Hn(L.)—6>Hn+1(M.)—>

LHn(a,) lHn('B) jH”()’) jH)Hl(a)

..ﬁ-H”(MI)ﬁH”(N;)ﬁHn(LI)ﬁ&_HH-FI(N.)ﬁ“. ‘

is commutative.

2. Homotopy

Definition. i) Let f,g : Xo — Y, be two morphisms of complexes. A chain
homotopy from f to g is a collection of morphisms s, : X, — Y,+1 such that

Jn— 8&n = Sn—1dp + dys15n, VYnelZ.

We will write this property in the form f — g = sd + dss.

ii) We say that f and g are homotopic and write f ~ g if there exists a homotopy
from f to g.

iii) A morphism f : X — Y is null homotopic if f ~ 0. In this case there exists
a homotopy s, called a contraction of f, such that f = sd + ds.
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This data can be summarized by the following diagram:

dn+2 dp+1 dy dp-1 dn—2

Xn41 . Xn-1 Xn—2

Sn
8n+l [ | far

dn+2 dn+|

n+2
Proposition 2.1. If f ~ g, then
H,(f)=H,(g) : Hy,(X,) » Hy(Y,), Vn e Z.
Proor. Let x, € Z,(X,). Then
Jn(Xn) = 8n(Xn) = dps15n(Xn) + Sp-1dn(Xn) = dps150(xn) € Bu(Ye).
Hence cl(f(x,)) = cl(g(xy)). O

Proposition 2.2. The following properties hold true:

i) = is an equivalence relation on the set Homgay(Xe, Ys).

ii) Let fi,fo : Xe > Yoand g : Y — Z. Assume that f| ~ f> and g, ~ g».
Then gy o fi =~ g2 0 fo.

Proor. We leave the proof as an exercise. The proof of ii) can be divided into

two parts:

a)Let fi,fp : Xe = Yoand g : Y. — Z,. Assume that fj ~ f,. Then
gefi=gofo

b)Let f : X¢ — Yo and g1,82 : Yo — Z.. Assume that g; ~ g,. Then
grof=golf. O

Definition. A morphism f : X. — Y. is a homotopy equivalence if there exists
g : Yo — X, such that

go f ~idy, fog=idy.

Proposition 2.3. If X, and Y. are homotopically equivalent, then H,(X,) =~
H,(Y,) foralln e Z.

Proor. From Proposition 2.1} it follows that H,,(g) o H,(f) = H,(idx) = idg,x)
and H,(f) o Hy(g) = Hy(idy) = idp,(v). O
3. The mapping cone

In this section, we explain some important construction in the category of chain
complexes. Let f : Xo — Y, be a morphism of complexes. Set

cn(f) = Xp—1 @ Yy, neZ.
We define the morphisms
dp i cn(f) = cn-1(f)s
dn(xp-1,yn) = —(dn-1(Xn=1), [ (Xn-1) = dp(yn)).
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It is easy to check that co(f) := (¢, (f), dn)nez) is a cochain complex:

(3) dod(x,y) = —d(dx, f(x) - dy) = (d"x, f o dx — d(f(x) - dy))
= (0, fod(x)—do f(x)+d’y) = (0, f o d(x) —d o f(x)) = (0,0).
Definition. The complex c(f) is called the mapping cone of f.

We will use the following notation: if X, is a chain complex, we denote by
X[m]e and call the transition of X, the complex defined as follows:

X[mly := Xintns diml, = (=1)"dypsn.
It is clear that H,,(X[m]s) = Hy;0(Xo).
Proposition 3.1. Let f : X, — Yo be a morphism of complexes.
i) There is a short exact sequence
) 0¥ 5 e S Xl-11,

where a(y,) = (0,y,) and B(Xp—1,Yn) = —Xn—1.
ii) There exists a long exact sequence

Hn(a) Hn(ﬁ) anl (f)
<= Hy(Ye) — Hy(co(f)) — Hyo1(Xe) —— Hy 1 (Ye) — -+

Proor. i) The exactness of the exact sequence () is clear from definition.
ii) The long exact sequence in homology associated to the short exact sequence

(@) reads:
Hy(a) Hn(ﬁ) On
> Hy(Y,) —— Hn(co(f)) — H,(X[-1]) = Hm1(Ye) — -+

Note that H,(X.[-1]) = H,—1(X.). Let x,_1 € Z,(X.[-1]) = Z,_1(X,). Take z,, :=
(=X4-1,0) € ¢c,,(f). Then B(z,) = x,—1. We have d,,(z,) = (0, f(x,-1)) and therefore
a(f(xy-1)) = du(z,). By the definition of the connecting map ¢, we obtain:

On(Cl(xn-1)) = cl(f (xn-1)) = Hu-1(f)(cl(xy-1)).
Hence 6,, = H,,—1(f) and the proposition is proved. O

Definition. A morphism of complexes f : Xo — Y, is a quasi-isomorphism if
the induced morphisms H,(f) : Hy,(Xs) = H,(Y,) are isomorphisms for all n.

In particular, a homotopy equivalence is a quasi-isomorphism by Proposi-

tion 2.3
Corollary 3.2. f : X. — Y. is a quasi-isomorphism if and only if ce(f) is
acyclic.
4. Singular chain complexes

4.1. Inthis section, we discuss singular chain complexes and singular homol-
ogy of topological spaces.

Definition.
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1) For eachn > 0, the set
n
A ={(to,t1,...,1y) € R™! |0< <1, Zti =1}
i=0
is called the geometric n-simplex.
2) The point
A" =(0,...,0,1,0,...,0, 0<k<n
is called the k-vertice of A".
3) The subset
{(to, 11, ..., ta) € A" | 1 = O}

is called the k-face of A".
For each integer 0 < k < n, we have a map
O AT AT
(to,t1y .o s ty—1) P (o5 t1s v s =1, 0, By o o B—1),

which identifies A"~! with the k-face of A”.
Let X be a topological space. For each n > 0 define:

C,(X) := free abelian group generated by all continuous ¢ : A" — X.
Set
dn : Cn(X) - Cn—l(X)a
di(p) = ) (=D o df.
k=0

Proposition 4.2. One has d,—1 od, =0 foralln > 1.
Proor. Routine computation. O

Therefore we have the complex of abelian groups

dn+1 dy dp-1 da d do
= C(X) > 1 (X) — - — C1(X) — Co(X) — 0

called the singular chain complex of X.

Definition. The n-th homology group of Co(X) is called the n-th singular ho-
mology of X and is written H,(X).

We summarize basic general properties of this construction.
1) (functoriality). For each n, the rule X — H,(X) is a covariant functor
H, : TSpaces — Ab.
Namely for each continuous map f : X — ¥, we have natural maps
Cu(X) = Cu(Y), g fogp

which define a morphism of complexes f. : Co(X) — Co(Y). Passing to
homology, we obtain canonical morphisms of groups H,(f) : H,(X) —
H,(Y), which satisfy the required properties.
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2) (dimension axiom or homology of a one-point set) One has:

Z. ifn=0
Hi(ep) = {0 ifn>0

3) (direct sum) If X = X; LI X, is the disjoint union of X; and X, then
Hn(X) = Hn(Xl) ® Hn(XZ)-

Recall that to continuous maps f,g : X — Y are homotopic if there exists a
continuous map F : X X [0,1] — Y such that F(x,0) = f(x) and F(x,1) = g(x).
We write f ~ g if f and g are homotopic. A topological space X is contractible
if the mapsidy : X —» X and p : X — {xo} C X are homotopic for some (and
therefore any) xg € X.

4) (homotopy) If f ~ g : X — Y, then the maps fi, g« : Co(X) = Co(Y)
are homotopic and therefore H,(f) = H,(g) : H,(X) — H,(Y) for all
n>0.

We formulate two corollaries of this property:
Corollary 4.3. i) If X is contractible, then Hy(X) = Z and H,(X) = O for

nzl.
ii) One has H,(X x [0,1]) = H,(X) foralln > 0.

Proor. 1) is clear.
ii) Consider the maps i : X — X X [0,1],i(x) = (x,0)and f : X X[0,1] — X,
f(x,t) =x. Then foi= idX and therefore the composition

H,(0 295 b x x 10,17 22 |, 0

is the identity map. The composition
iof : Xx[0,1] - Xx][0,1],
iof(x,t)=(x,0)
is homotopic to idyxo,17- Namely the map
F : (Xx[0,1)x[0,1] - X x[0,1],
F((x,1),¢) = (x,18)
gives a homotopy i o f = idxxo,1]. Therefore by the homotopy property the com-
position
H,x x[0.1]) 22 5 ooy 29 15.(x x [0, 1])
is the identity map too. To sum up,
Hy(f) o Hy(i) = 1dx, Hy(i) o Hy(f) = idxx(o,11,
and therefore H,,(X X [0, 1]) = H,(X). O

Assume now that X = U, U U,. The following complexes can be naturally seen
as subcomplexes of Co(X):

Co(UiNU2), Co(Uy), Co(Uz), Co(Uy)+Coe(U2).



4. SINGULAR CHAIN COMPLEXES 39

We have a diagram of inclusions

1
N
U nU, X

%
2

X
U

which induces a commutative diagram

C.(Uy)

Co(UiNU2) Co(X)

C.(U>)

U

The following sequence is exact:

0 — Co(U1 N Us) = Co(Uy) & Co(Us) LA Co(U1) + Co(Uz) = 0,
where a(x) = (j1,+(x), —j2.«(x)) and B(x1, x2) = i1+(x1) + iz (x2).

5) (Mayer—Vietoris exact sequence) Assume that X € U; U U;. Then the
inclusion Co(Up) + Co(Uz) — Co(X) is a quasi-isomorphism, and we
have a long exact sequence

On+1 Hn(a) Hn(ﬁ) On
- = Hpn(X) — H,(Uir N Uz) — Hy(U1) ® Hy(Uz) — Hy(X) — -+
Ho(a) Ho(B)

- > Hoy(Uy NUpy) — Hy(Uy)® Hy(Up) — Hp(X) — 0.

For the general theory, it is important to attach homology to each pair of topo-
logical spaces (A, X), where A C X. Set

Co(X,A) 1= Ca(X)/Co(A)
and define the homology groups H,(X, A) as the homology of C.(X, A). Then:
6) (exactness) We have a long exact sequence
= Hyp 1 (X, A) = Hy(A) = Hy(X) = Hy(X,A) — -
-+ = Hy(A) » Hy(X) » Hy(X,A) — 0.

7) (excision) If (X, A) is a pair and U C A is such that the closure of U is
contained in A, then the inclusion map (X \ U,A \ U) — (X, A) induces

isomorphisms

H,(X\UA\U) = Hy(X,A).
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We remark that property 6) follows directly frome definitions. Property 7) is more
delicate.

Remark 4.4. Properties 1-4), 6), 7) are known as Eilenberg—Steenrod axioms.
It can be shown that they formally imply 5).

4.5. In this section, we compute the homology of sphere and deduce from
this computation a short proof of Brouwer fixed point theorem.
The d-dimensional sphere can be defined as the topological space

d
Sa = 10x0, %1, xa) | ) 4 =1},
i=0

Note that S is the boundary of the d + 1-dimensional disk
d
Dyt = ((x0, %1, ) | Y o7 < 1).
i=0

Theorem 4.6. One has

Z, ifn=0,d
0, otherwise.

Hy(Sq) = {

Proor. We can write S; = U; U U,, where Uy and U, are contractible and
U N U, is homeomorphic to S ;_; X [0, 1]. Namely, we can take:

Ui ={(x0, xX1,...,x3) €Sq | xqg > —¢€},

Uy = {(x0, X1,-..,Xq) €Sq | xq < €}
for some small £ > 0. Hence
(5) Hy(S q) = Hy—1 (U1 N Uz) = Hp—1(S a-1), nz?2.
For n = 1 we have an exact sequence

0 — Hi(Sq) » Ho(U1 N Uz) = Ho(Uy) @ Ho(Uz) = Ho(Sa) — 0,
which can be written as
0> H{(Sy) > Hy(S4-1) > ZdZ —>Z — 0.

If d > 1, then H%(S4_1) =~ Z and this exact sequence shows that H 1Sy =0.If
d =1, we have H(S ) = Z?, and we obtain that H'(S ;) =~ Z. The theorem can be
eqsily deduce from this computation together with formula (). O

As an application, we prove:

Theorem 4.7 (fixed point theorem). Each continuous map ¢ : Dgy1 — Dgyi
(d > 0) has a fixed point.

Proor. We prove this theorem by contradiction. We will consider S, as the
boundary of Dgy1. Assume that ¢(x) # x for all x € Dy, . Consider the ray L with
the initial point ¢(x) passing through x and consider the unique point f(x) € LNS4
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such that f(x) # ¢(x). Then x — f(x) defines a continuous map f : Dgyi1 — Sg.
We remark that f is a retraction of Dy on S 4, namely

f(x) =x, x €S,
The composition S 4 4 Dy L S 4 is the identity map, and therefore the induced
map on homology

Hy(i) Hu(f)
Hy(S g) = Hy(Dgy1) —= Hy(S )

is also the identity morphism. If d > 1, then H;(Dy.1) = 0 and we obtain that
Hy(S 7) = 0, which contradicts Theoremd.6] If d = 0, then Ho(D) =~ Z, Ho(S¢) =
72, and we obtain a contradiction again. O

5. Cohomology of groups

5.1. Let G be a group. We denote by Z[G] the group algebra of G over Z.
The elements of Z[G] are formal sums

Zagg, ag € Z, almost all a, are zero.
geG

The addition and multiplication are given by

Dlagg+ Y beg = (ag + by,

geG geG geG
(Zass] [tht] = chg, where ¢, := Zasb,.
seG teG geG st=g

Definition. A (left) G-module is an abelian group M equipped with a left ac-
tion G X M — M of the group G satisfying the following properties:
i) em =m, forallm e M.
i) (g182)m = g1(gom) for all g1,8> € G and m € M.
iii) g(m; + myp) = gmy + gmy for all g € G and my,my € M.

If M is a G-module, it is equipped with a natural structure of a left Z[G]-
module given by

(©) [Zagg] m=) ag(gm).

g€G geG

Conversely, each Z[G]-module M can be considered as a G-module. Formula (6))
shows that these structures are equivalent.

Definition. We set
MC ={meM|VgeG,gm=m}

and call it the invariant subgroup of M.
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Let M be a left G-module. For eachn > 0, set G" = GXG X---X G and

n

define:
C"(G,M) = {maps [ : G" - M}.
We remark that C"*(G, M) have natural structure of abelian group. Set:
da" . C"(G,M) — C"\(G, M),
d"(f)(81,82, -, 8n+1) =811(82, - - &n+1)
n
(—1)Yf(81, - 8in1> §i8ix1, 8is2s - - - » 8nt1)
i=1

1" fg1, 825 80)-

Proposition 5.2. For eachn > 0, one has d"*' o d" = 0.

+

Proor. The proof is omitted. O

From this proposition it follows that

0 & d &
0—-C(G M —CG,M—C(GM—---
is a cochain complex.

Definition. The n-th cohomology of the complex C*(G, M) is called the n-th
cohomology of G with coefficients in M and is written H (G, M).

We can write:
ZM(G, M) := ker(d"), B"(G, M) := Im(d" ™),
H"(G,M) =Z"(G,M)/B"(G, M).

Below, we summarize some properties of these groups.

1) HY(G, M) = MC.

Proor. One has C(G, M) = M. For each m € M, the map d°(m) €
C'(G, M) is given by

d’(m)(g) = gm —m.
Therefore ker(d®) = {m e M | Vg € G, gm —m = 0} = MC. O
2) One has:
BYG,M)={f : G — M| f(g) = gm — m for some m € M},
ZNG,M) = {f : G — M| f(g182) = &1f(g2) + f(g1).

The elements of Z' (G, M) are called crossed homomorphisms.

Proor. The first formula follows from the computation of d°(m). The
second formula follows directly from definitions. O
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3) For any trivial G-module M one has:
H'(G, M) = Hom(G, M).

This follows from 2).
4) Let
0O-M-M->M' -0

be a short exact sequence of G-modules. Then it induces a long exact
sequence of cohomology:
0 — HYG, M") — H(G, M) — HG, M"Y > H\(G, M’) — H'(G, M) — - --
= H"1(G, M") S H'(G, M) = H'(G, M) = H"(G,M") 5> -

Proor. It is easy to see that the short exact sequence of modules in-
duces a short exact sequence of complexes:

0—-C*(G,M)—- C*(G,M) - C*(G,M") — 0.
Now we can apply Theorem [I.5] O

5.3. In this section, we give some interpretation of the second cohomology
group H*(G, -).

Definition. Let G be a group and A be an abelian group. An extension of G by
A is an exact sequence of groups

7 05ASNSG o1

In other words, A ican be identified with a normal subgroup of N and N/A =~ G.
Two extensions of G by A are equivalent if there exists an isomorphism ¢ such
that the diagram

0 A N G 0
s
0 N’ 0

commutes.

We will write the group law on A additively and the group law on G multiplica-
tively.

Definition. Let f : X — Y be a surjective morphism in some category A. A
section of f is a morphism s : Y — X such that f o s = idy.

Each extension equips A with the structure of a left G-module defined as fol-
lows. Choose a set theoretic section s : G — N of & (i.e. s is a map of sets such
that 7 o s = idg). The action of G on A will be defined by the formula:

®) ga:=i"(s(g)-ia)- s(2)™").

It is easy to see that the definition does not depend on the choice of s.
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Definition. The extension is split if m has a section in the category of
groups, i.e. if there exists a morphism of groups s : G — N such that o s = idg.

Proposition 5.4. The following conditions are equivalent:
i) The extension (1) is split.
ii) The extension (7)) is equivalent to the extension

05A5AxGE 651
with a(a) = (a,0) and B(a, g) = g.

Proor. ii) = 1). Recall that
N=AxG={a,g)|lacA geG},
(a1,81)(a2,82) = (a1 + g1a2,8182).
Itis clear that, themap s : G — AxG, s(g) = (0, g) is a morphism of groups such
that 7 o 8 = idg.
1) = ii). Conversely, assume that s : G — N is a morphism such that o s =
idg. Consider the maps

¢ : N> AxG,
w(n) = (a, g), where g := m(n) and a := i_l(n -(so n)(n)_l).

and

Y AxG—> N

Y(a,g) = i(a)s(g).
Then is is easy to see that ¢ and ¢ are morphisms of groups, which are inverse to
each other. O

Let A be a left G-module. We want to classify the extensions of G by A (viewed
as an abelian group) in which the induced G-module structure (§) coincides with
the given G-module structure. Let Ext!(G, A) denote the set of equivalence classes
of such extensions.

For such extension ({7), choose an arbitrary set-theoretic section s : G — N
of n. For all g1, g2 € G, s(gl)s(gg)s(ghgz)‘1 € ker(m) and we define f(gi,g2) € A
setting

io f(g1,8) = s(g1)s(g2)s(g182) "

Theorem 5.5. The following statements hold true:
i) For each section s, one has f(g1, g2) € Z%(G, A). The class cl(f) e H*(G, A) does
not depend on the choice of s.
ii) Conversely, for any f(gi1,g2) € Z*(G,A), we denote by N the cartesian product
A X G equipped with the composition law

(a1,81)(az,g2) = (a1 + g1a2 + f(g1,82),8182); a €A, g €aG.

Then N is a group and the morphismsi : A — N, i(a) = (a,1)andnm : N — G,
n(a, g) = g define and extension which depends only on the class of f in H*(G, A).
iii) The previous constructions define a bijection

Ext!(G,A) =~ H*(G, A).
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Proor. All statements of the theorem can be checked by straightforward com-
putations. The details are omitted. O

5.6. In this subsection, we make a first step toward the study of Galois coho-
mology. Let K be a field and let L/K be a finite Galois extension. Then Gal(L/K)
acts on the multiplicative group L* of L.

Theorem 5.7 (Hilbert’s theorem 90). One has
H'(Gal(L/K), L") = {1}.

Proor. Set G := Gal(L/K). Let f € Z!(G,L*). Take x € L* and consider the
element
0(x) := ) f(@) - 7(0).
1eG
An easy computation using the property f(g7) = gf(7) - f(g) shows that

1 6(x)
2(6(x)) ;gf(r) g0 = 70 ;;f(gr) g7 = 5
Assume that (x) # 0. Then setting ¢ := 6(x)~! we obtain that flg = g(c)c‘1 and
therefore f € B'(G, L*). This proves the theorem.
It remains to show that 8(x) # O for some x € L. This can be easily proved
by contradiction. Namely, let {xi,...,x,} be a basis of L over K and let G =
{r1,...,7,}. Assume that

n
M) T =0, Vi=12...n
=

Then (f(71), ..., f(1,)) is a solution of the system of linear equations

n

Dlrix)X; =0, Vi=12....n
j=1
Since the discriminant of a separable extension is nonzero, we have
det (Tj(xi)) # 0.
Therefore the above system has only the trivial solution and f(7;) = 0 for all 1 <
i < n. This contradiction shows that 8(x) # O for some x € L. O






CHAPTER 3

Derived functors

1. Projective resolutions

Let A be an abelian category.

Definition. An object P € Obj(A) is projective if it satisfies the following
property: given an epimorphism g . Y — Z and a morphism n . P — Z, there
exists a morphismn’ : P — Y suchthatgon’ =mn:

ﬂ"
n
s

Y—Z7Z——0

Proposition 1.1. The following assertions are equivalent:
i) P is projective.
ii) The functor hp := Hom(P, —) is exact.

Proor. 1) = ii).
Assume that P is projective. Let
0oxLvszoo

be a short exact sequence. By theorem [6.5] the functor Hom(P, -) is left exact.
Hence

0 —» Hom(P, X) L Hom(P,Y) £, Hom(P, Z)

is exact. We only need to prove that g, is surjective. For any 7 € Hom(P, Z), there
exists 7" such that the diagram
g j
T

Y—Z7Z——0

commutes. Then g.(n") = &, and the surjectivity of g, is proved.
i) = 1).
Assume that the functor /p is exact. Consider the diagram

P

|-
Y—Z7Z—0

47
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Set X := ker(g) and consider the exact sequence

ooxLvrzoo
From the exactness of /p, it follows that the map
Hom(P,Y) <5 Hom(P, Z)

is surjective. Therefore there exists 77 : P — Y such that g o’ = g.(n") = 7. This
shows that P is projective. O

Definition. An abelian category A has enough projectives if for any X €
ODbj(A) there exists a projective P € Obj(A) together with an epimorphism nt :
P—-X.

Proposition 1.2. Let A be a ring.
1) Each free A-module is projective. An A-module is projective if and only if it is a
direct summand of a free module.
ii) The category A — Mod has enough projectives.

We will first prove an auxiliary lemma, which characterizes direct sums in
terms of split exact sequences.

Definition. A short exact sequence in an abelian category

0 X Y Zz 0

splits if there exists a section s of the morphism 3, i.e. a morphism s : Z — Y such
that Bo s = idy.

Lemma 1.3. The following conditions are equivalent:
1) A short exact sequence

0 X

splits.
2) There exists an isomorphismi : Y ~ X ® Z, such that the diagram

0

x—* .y * .7 0
|
0—>X—qX>X69ZpZ—>Z—>O

commutes.

PRrROOF OF THE LEMMA. 2) = 1). By the definition of the direct sum, there there
exists gz : Z — X @& Z such that pz o gz = idz. Then s = i oqz : Z—>Yisa
section of .

1) = 2). Assume that s is a section of 5. We will show that ¥ equipped with
the morphisms gy := @ : X — Y and gz := s : Z — Y satisfies the universal
property of a direct sum.
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Consider the map
y:=idy—sofB :Y—>Y

This map sits in the diagram

0 X

Then
Boy=pBo(idy—sof)=B-(Bos)of=0.
Since (X, @) = ker(B), this implies that there exists a unique p : ¥ — X such that
aop=y=idy —sop.
Assume that we have an object Y’ with morphisms ¢}, : X —» Y"andgq, : Z - Y’.
Consider the diagram

xZeoy

ST,;
Z
Set f =g o p+q, o B. Then
9 foa=(dyop+gzoBfloa=gyopoa+qzofoa=gyopoa=dy.
Moreover,
ao(pos)y=(dop)os=(idy—sof)os=s—so(Bos)=0.

Since @ in monic, this implies that p o s = 0. Therefore

(10) fos=(qgxop+qzof)os=qyopos+qzofos=qy.
Formulas (9) and (I0) show that Y satisfies the universal property and therefore is
a direct sum of X and Z. O

Proor oF ProposiTion[I.2] a) Let F be a free module. Fix a base {e;};c; of F.
Then F = 'E%Aei. Consider the diagram
1€

b
T
5

Y.z .0

For each i € I, set z; = n(e;) and choose y; € Y such that g(y;) = z;. Then the map

n’ . F — Y defined by
o (Z aiez‘) = Z ayi
satisfies the property g o 1’ = 7.
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b) Let M be an A-module. By the universal property of free modules, there
exists a free module F together with an epimorphism = : F — M. Namely,
choose a system {m;};c; of generators of M and set F' = ©Ae;. Then the map

el
n . F — M defined by 7 (3 a;e;) = 3, a;m; is a well deﬁne(i epimorphism. Since
F is projective, part ii) is proved.
c) Assume that P is projective. Then there exists a free module F' together with
a surjection 7 : F — P. Consider the diagram:

P
Y on

F——P——0

Since P is projective, there exists a morphism s : P — F such that 7 o s = idp.
This implies that P is a direct summand of F.

d) Conversely, assume that P is a direct summand of a free module F. Then
F = P& P’ for some module P’. Assume that we have a diagram of the form

P
j,,
Yo7 >0

Consider the diagram

F=PaP
b
y2_% .7 0

where 7p(x, x") = n(x) for any (x,x") € P& P’. Since F is projective, there exists
h : F — Y such that 7 = go h. Set 7/ := h|p. Then it is easy to see that
n=gon. O

Exercise 8. Show that the category of torsion abelian groups has no projective
nonzero objects.

Definition. i) A left resolution of M € Obj(A) is a sequence
P, : ... > P3y—> P, > P> Py
together with a morphism & : Py — M such that the sequence
.. Py—> Py > P> Py>M—0

is exact. The morphism ¢ is called an augmentation morphism.
ii) If all P; are projective, P, is called a projective resolution of M.

This data can be represented by the diagram
Pe5 M 0.

Proposition 1.4. Assume that A has enough projectives. Then each M €
ODbj(A) has a projective resolution.
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Proor. Let M € Obj(A). We construct a projective resolution of M induc-
tively. Since A has enough projectives, there exists a projective object Py together
with an epimorphism € : Po — M. Hence the sequence

P()iM—)O

is exact. Now assume that we have an exact sequence

dn dn—l d| &
P,—P,_1—...> P > Py—> M-,

where all P; are projective. Let X := ker(d,). Then there exists an epimorphism
P KN X, where P, is projective. Consider the composition

dp1 : Pyt ——> X=— Py,
Then the upper row of the diagram

d,1+1 dn dn—l dl &

P, P, Py M 0,
x T
X

18 exact. O

Pn+1

Corollary 1.5. In the category of left (respectively right) A-modules, each ob-
Jject has a free resolution.

Proor. From the proof of Proposition|1.2} it follows that we can take P; free in
the above construction. O

Proposition 1.6. Consider the diagram

d d
Py —2sp —spy—2

fz fl éfo lf
Y d Y d Y

) 01 Q) ——=N 0,

where P, is a projective resolution of M and Q. is a (not necessarily projective)
resolution of N. Then:

1) There exists a morphism fo = (f)us0 : Pe — Qe such that the resulting
diagram commutes.
ii) The morphism f, is unique up to a chain homotopy.

Proor. i) We construct the morphisms f, : P, — Q, inductively. Consider
the diagram

Py

fO jfos
&

QO—»-N
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Since Py is projective, there exists fy : Pg — Qo which makes the diagram com-
mute. This gives us a commutative diagram

Py—>M—=0
lfo Lf
Qy ——= N ——=0.
Assume that the morphisms fy, ..., f,; are constructed. We have a diagram

dn+1 dn
Pn+1 Pn Pn—l

fn& lfn Lfﬁl
L/ d

n+1

v n
Qn+1 Qn Qn—l

Here g := f,0d,+1. From the commutativity of the diagram it follows that d,,og = 0,
and therefore g factorizes through ker(d,,):

g 1 Py —— ker(d,)—— O,.

Consider the diagram
Pn+l

o

On+1 —> Im(dp41)

Since P, is projective, there exists f,+1 : Pn+1 — QOn+1 Which makes the diagram
commute. This proves the existence of f,.
ii) Assume that we have another morphism g : P, — Q, such that the diagram

Po—5>M—=0

)
Qo ——=N—>0

commutes. We will construct a homotopy f =~ g inductively. Consider the diagram

&

Py Py M 0
SOfO u 80 L f
£ .
01 m Qo N 0.

Since g o fy = €0 g9 = f oeg, we have € o (fy — g9g) = 0. Therefore we have a
commutative diagram

Po —7% ker(e)

Y

01 —— Im(do),
1
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where the right vertical map is an isomorphism. Since Py is projective, there exists
amap so : Pp — Q; such that the diagram commutes, and we obtain that

fo— 8o = dp o so.

Assume that we have morphisms s : Py — Q1, s1 : P1 = Oa, ..., Sp-1
P,_1 — O, such that

fi—gi=sic1odi+diosi,  0<i<n-1
We summarize these data in the diagram

d, dy—1
Pnﬁn'Pn—lnﬁ'Pn—2

Shjn u g%l u g%z u &n-2

Ons1 ﬁ On 7 On-1 ?1' Ono
n+ n n—

From the commutativity of this diagram, we have
dy o 8n = 8n-1° dy, dy o Jn = fuo-1 0 dy,
and therefore

dy o (fn — 8n) = (fu-1 — gn-1) 0 d.
Using the identity f,,—; — gn—1 = Sp—2 © d,—1 + d,, © 5,—1 We obtain that

dyo(fn—8n) = Sn-20dn-10dy++dyo sy-1 0dy =dy0 sp-1 0dy.

Hence
dy o (fn —8n — Sn-1 od,) =0.

Therefore the map « := f;, — g, — s,—1 o d, factorizes through ker(d,) ~ Im(d,+1),
and we have a diagram

Qn+1 - Im(dn+1)-
Since P, is projective, there exists s, : P, — Q41 such that
dps10Sp =@ = fr— 8n— Sp—10dy

Writing this formula in the form f, — g, = d,+1 © s, + s,—1 o d,, we see that s,
satisfies the required property. O

The following proposition can be proved by similar arguments, and we omit
the proof:

Proposition 1.7. Let
0O-M ->M->M' -0
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be a short exact sequence. Let P, and P be projective resolutions of M’ and
M respectively. Then there exists a projective resolution P, of M such that the
diagram

0 P, P. Py 0
O
0 M’ M M 0

commutes.

Exercise 9. Let k be a field and A := M, (k) the ring of n X n matrices with
coefficients in k. Assume that n > 2. Give an example of an A-module that is
projective but not free.

Exercise 10. Let (P;)ic; be a family of projective objects. Show that if the

coproduct | | P; exists, then it is projective.
i€l

2. Injective resolutions
Let A be an abelian category.

Definition. i) An object I € Obj(A) is injective if it satisfies the following
property: given an morphism a : X — I and a monic morphism f : X — Y, there
exists a morphism @' : Y — I such that o’ o f = a:

A

a :
Lo

0—=X—>VY
ii) The category ‘A has enough injectives if for any X € Obj(A) there exists an
injective object I together with a monic morphism X — 1.

We remark that I € Obj(A) is injective if and only if I° € Obj(A°) is projec-
tive.

Proposition 2.1. The following assertions are equivalent:
i) 1 € Obj(A) is injective;
ii) The contravariant functor k' := Hom(-, I) is exact.

Proor. Hom(—, ) is exact if and only if Hom°(/°, —) is exact. Using Proposi-
tion[I.I)and the above remark we obtain that Hom(—, /) is exact if and only if 7 is
injective. O

Definition. i) A right resolution of M € Obj(A) is a sequence
I° P-1'sP-...
together with a morphism & : M — I° such that the sequence
0->MSP 51" 5P ..

is exact.
ii) If all I are injective, I° is called an injective resolution of M.
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Proposition 2.2. i) Assume that A has enough injectives. Then each M €
Obj(A) has an injective resolution.
ii) Consider the diagram

0 M ‘IO J]
A

Y Y

0 N I° J!

where I® is an injective resolution of N and J*® is a right (not necessarily injective)
resolution of M. Then there exists a morphism f* : J* — I® such that the resulting
diagram commutes.

ii) The morphism f* is unique up to a chain homotopy.

Proor. Use the duality argument. O

In the remainder of this section we prove that the category of left (resp. right)
modules over a ring A has enough injectives. We will work with the category of
left modules (the case of right modules is completely analogous and can be treated
formally using duality).

Proposition 2.3 (Baer). Let I be an A-module. The following properties are
equivalent:
1) I is injective.
2) For any ideal a C A and any morphism B : a — [ there exists a morphism
B : A — Isuchthat §'|, = p:
1
A
B 5

0—a—=A

Proor. 1)= 2)is clear.
2)= 1). Consider the diagram

a :
/ o

0—>M—>N,

where f : M — N is an injective morphism of modules. We want to prove that
a cn be extended to some morphism @’ : N — [. Consider the set S of the pairs
(X, h), where X is a submodule of N containing M and 4 : X — [ is an extension
of a to X. It is clear that the relation

X <X ,W) & XcX and |, =h

is an order on S. It is also clear that each chain in S has an upper bound and by
Kuratowski—Zorn lemma S has a maximal element (Z, ). We will show that Z = N
by contradiction. Assume that Z # N. Take m € N \ Z and set

Z' :=7Z+Am = (Z®Am)/R,
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where R = {(z,am) | z + am = 0}. Then
a:={a€alameZ}
is an ideal in A. Consider the map
B:ia—l, B(a) = h(am).

By our assumption, there exists 8/ : A — I such that 8’|, = 8. Then the map

Wz =1,

W (z+am) := h(z) + B'(a)
is well defined and extends 4 to Z’. This contradicts with the maximality of Z. O

Corollary 2.4. Assume that A is a principal ideal domain (i.e. an integral
domain in which every ideal is principal). For a A-module M, the following prop-
erties are equivalent

1) M is injective.
2) M is divisible, i.e. aM = M for any a € A \ {0}.

Proor. 1)= 2). Assume that M is injective. Let a € A \ {0} and let (a) := Aa
denote the principal ideal generated by a. For any m € M the assignment S(ax) =
xm is a well-defined morphism 8 : (@) — M. Since M is injective, there exists an
extension 8’ : A — M of 8. Therefore 8’(1) satisfies the equation a’(1) = m. This
shows that aM = M.

2)= 1). Assume that M is divisible. Let a be an ideal of Aand let8 : a - M
be a morphism of modules. Then a = (a) for some a. We can assume that a # 0.
Since M is divisible, there exists m € M such that am = B(a). Set 8'(x) = xm. Then
B’ : A — M is an extension of B to A and M is injective by Proposition[2.3] O

Corollary 2.5. In the category of abelian groups, Q, Q/Z and Q,/Z, (p is a
prime number) are injective.

Exercise 11. Let (I}) je; be a family of injective objects. Show that if the prod-

uct HJI | exists, then it is injective.
JE

Proposition 2.6. The category of abelian groups has enough injectives.

Proor. Let M be an abelian group and let
1= || @2y
feHom(M,Q/Z)
be the direct product of copies of Q/Z indexed by homomorphisms f € Hom(M, Q/Z).
By Exercise|11] 7 is injective. We construct a morphism
a: M-I
setting:
a(m) = (f(m)) feHom(M,Q/Z) -

It is clear that @ is a morphism of abelian groups. We only need to prove that « is
monic i.e. that ker(a) = {0}. We will prove that a(m) # 0 if m # 0.



2. INJECTIVE RESOLUTIONS 57

Let m # 0. Set
Ann(m) ={w e Z | xm = 0}.

Then Ann(m) is an ideal in Z and therefore Ann(m) = (a) := aZ for some a € Z.
We remark that a # 1 because m # 0. We consider the following two cases:

a) If a = 0, then Zm ~ Z and it is clear that there exists a nonzero morphism
h : Zm — Q/Z. Since Q/Z is injective, h extends to a morphism f : M — Q/Z
and f(m) = h(m) # 0. Therefore a(m) # 0.

b) If a # 0, we can assume that a > 2, and Zm =~ Z/aZ. Since Z/aZ =~
%Z/Z C Q/Z, it is clear that there exists a nonzero morphism & : Zm — Q/Z.
Mimiking the arguments used above, we extend / to a morphism f : M — Q/Z
and conclude that f(m) # 0. The proposition is proved. O

Now we can prove the main result of this section:

Theorem 2.7. Let A be a ring.
i) Let I be an abelian group. Consider

J := Homgz(A,I)
equipped with the following structure of a left A-module: if a € A and f € J, then
(af)(x) := f(xa).

Then J is an injective A-module.
ii) The categories A — Mod and Mod — A have enough injectives.

Proor. i) We will use a particular case of the following version of Proposi-
tion 8.5] Let A and B be two rings and let N be a (B, A)-bimodule (i.e. a left
B-module and a right A-module with the property (bn)a = b(na)). Then for any
left A-module M and any left B-module L there exists a canonical isomorphism

Hompg(N ®4 M, L) ~ Homs(M, Homg(N, L)).
Take B :=z, N =A and L := . Then
Homgz(M, I) ~ Homa(M,Homg(A, I)) = Homs(M, J).
We pass to the proof of the assertion i). Let
0O->-M ->M->M' -0

be a short exact sequence of left A-modules. Then we have a commutative diagram,
where the vertical maps are isomorphisms:

0 —— Homuy(M"”,J) —— Homy (M, J) —— Homus(M’,J) ——=0
0 —— Homgz(M"”,I) —— Homyg(M, ) —— Homgz(M’,1) —— 0.

Since [ is injective in the category Ab, the bottow row is exact. Therefore the upper
row is exact, and J is injective by Proposition |2.1
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ii) Let M be a left A-module. We consider M as an abelian group. By Propo-
sition [2.6] there exists a monomorphism of abelian groups i : M — I, where [ is
injective in Ab. Take J := Homz(A, I) and define

jiM—-J
by
jm)(x) = i(xm), xe€A,meM.
It is easy to check that j is a monomorphism of left A-modules. O

3. Derived functors

3.1. Let.# : A — Bbe acovariant additive functor between abelian cate-
gories. We will assume that .7 is right exact and that A has enough projectives.
For any X € Obj(A), choose a projective resolution P, — X of X and consider the
sequence

d d
FPD:  ..— F(P2) = F(P)) — F(Py) — 0.

Generally, the sequence .# (P,) is far from being exact, but it is clearly a chain
complex. Set

L, (X) := Hy(F(P.)).
Below we establish basic properties of this construction.
1) L7 (X) ~ F(X).
Proor. Since .7 is right exact, the exact sequence
P> Py—>X—-0

gives rise to an exact sequence

d
F(P)) = F(Py) —» F(X) — 0.
Therefore Ly.% (X) := coker(d;) =~ F (X). O
2) L, (X) are well defined up to canonical isomorphisms.

Proor. a) Assume that Q, is another projective resolution of X. We have a
diagram

Po——X
f f jid

YV

0, —X.

By Proposition[I.6 there exists a morphism f, which makes this diagram commute.
It induces a morphism of complexes

F(fo) © F(Pe) > F(Qs)

and therefore resulting morphisms on homology groups H,(-# (P.)) — H,(-#(Q.)).
We will show that these morphisms do not depend on the choice of f,. Let f] :
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P, — Q, be another morphism making the diagram above commute. By Proposi-
tion[I.6] f{ and f, are homotopic:
fo= 1

Therefore the morphisms .#(f,) and .#(f,) are homotopic. By Proposition
they induce the same morphisms H,(.% (P.)) — H, (% (Q.)). This shows that these
morphisms do not depend on the choice of f,.

b) Now we prove that the above morphisms H, (% (P.)) — H,(F(Q.)) are
isomorphisms.

Consider the diagram

Po——X

e L

id| Qe — X

g jid
'

P, ——X.

By Proposition[I.6] there exists a morphism g, which make this diagram commute.
Moreover g, o f. and id are homotopic:

ge © fo = id.
Applying the functor .%, we obtain a diagram

F(Pe) —= F(X)

lﬁ(f.) lid

id| F(Qs) — F(X)

lﬁ(g.) lid

F(Ps) — F(X),

where .7 (g.) o .Z (f.) = id. Therefore, by Proposition[2.1] the composition map on
homology
Hy(F(Ps)) = Hy(F(Qa)) = Hu(F(Pa))

coincides with the identity map. Exchanging P, and O, and mimiking the above
arguments wh obtain that the composition map

Hy(F(Qs)) = Hu(F (Pa)) = Hp(F(Qs))

is the identity map. This shows that the morphisms H,(.% (P,)) — H,(.%(Q,)) are
canonical isomorphisms. O

3) If X is projective, then L,.% (X) = 0 foralln > 1.

Proor. The complex
..—>0-0-> Py

with Py = X is a projective resolution of X. O
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4) Each morphism f : X — Y induces canonical morphisms
L,(f) : L,.7(X) > L,Z(Y), n > 0.
Proor. We have a diagram
Po——X
AR lf
Y v
Qo —_— Y;

where P, and Q, are projective resolutions of X and Y respectively. By Proposi-
tion[I.6] there exists a morphism f, which makes this diagram commute. Applying
the functor .# we obtain a diagram

F(P) —= F(X)
FH T lf(f)
Yy

F(Qe) —= F(Y).

The morphism of complexes
F(fo) + F(Ps) = F(Q)

induces morphisms on homology groups
(11) L, F (X) = Hy(F (Po)) = Hy(F(Q0)) =: Ly F (Y).

Assume that f] : Ps — Q, is another morphism between resolutions such that the
above diagram commutes. Then f] =~ f, and .Z#(f,) ~ % (f!). Therefore .#(f])
induces the same map on homology. This shows that the morphisms (IT)) do not
depend on the choice of f,. O

5) For each n <0, the assignment
L, :A— B,
X - L,%(X)

is an additive functor. Moreover Ly.% ~ % .
Proor. The proof is left as an exercise. O
Definition. The functors L,.F are called the left derived functors of 7.
6) For each short exact sequence
0-xLxsx 5o
there exists a long exact sequence
o Ly F(X) = LuF(X) > LFX") 2 L FX) > L FX) > ...

0
o LLZX) > LLFX) S LoF (X)) > LoZF(X) > Lo Z(X”) — 0.
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Proor. By Proposition[I.7] we can choose projective resolutions P,, P, P, of
X’, X and X"’ which sit in a commutative diagram

0 P, P. P/ 0
O
0 X’ X X" 0

For each n, we have a commutative diagram
74
Pn

id

P, Py 0,

0 P,

n

which shows that this sequence splits i.e. P, ~ P, & P, (here we use the projec-
tivity of P;/). Since the functor .% preserves direct sums, we obtain that .# (P,) ~
F(P))® .7 (P)), i.e. that the sequence

0 — F(P,)) — F(P,) — F(P))) —=0

is exact. Therefore we have an exact sequence of complexes

0 —— Z(P)) 2> Z(P) 5> F(P) —0.

Applying to this exact sequence Theorem [I.3](long exact homology sequence), we
obtain our statement. O

7) F is exactif and only if for all X € Obj(A) andn > 1, one has L, F (X) =
0.

Proor. a) Assume that .% is exact. For any object X € Obj(A) we have an
exact sequence P, — X — 0, where P, is a projective resolution of X. Then the
sequence

F(P) —> F(X)—>0

is exact, and from the definition of functors L,.%# we obtain that L,.% (X) = 0 for
nzl.
b) Assume that L,.# = 0 for n > 1. For any short exact sequence

0—>X’i>Xi>X”—>O
the associated long exact sequence reads:
S LFX) - FX) DL 700 S FX) 0.
Since L1.% (X)) = 0, we obtain that the sequence
0570 S 7005 Z(x") -0

18 exact. O
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8) (Dimension shifting) Consider a short exact sequence of the form

0o-rLprixoo,
where P is projective. Then
L, F(X) ~ L, 1 #(Y), Vn =2
and
L F(X) = ker(Z (Y) —» Z(P)).
Proor. We have an exact sequence
Ly F(P) > Ly F (X) = Ly1 F(Y) > Ly 1 F(P)
Since P is projective, L;(P) = 0 if i > 1. This proves the assertion. O

Definition. i) An object Q € Obj(A) is acyclic (or .F -acyclic) if L,.%(Q) = 0
foralln > 1.
ii) A resolution Q. of X is acyclic if all Q; are acyclic.

From property 3) it follows that each projective object is acyclic.

9) Let Q. be an acyclic left resolution of X. Then

L, F (X) = Hy(F(Q.)), n>0.

Proor. We will prove this assertion by induction on n. For n = 0, we mimick
the proof of property 1). Since .F is right exact, the exact sequence

Ql = QO - X - 0
induces an exact sequence
F(Q1) = F(Qo) > F(X) - 0.

This shows that Ly.% (X) = coker(Z(Q1) = F(Qp)) = F(X).
Assume that the statement holds for n—1 for all objects. Set Y = ker(Qp — X).
We have a short exact sequence

0-Y—>Q0) > X—0

and an exact sequence

o O > 01> Y -0

The complex ... — Q> — Qg is an acyclic resolution of Y and by our induc-
tion assumption L,_1.%(Y) ~ H,(%(Q.)). From the short exact sequence and
the acyclicity of Qg we obtain that L, #(Y) ~ L,.% (X). Therefore L, % (X) =~
Hy(F(Q.)). m
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3.2. Now we consider the case of a left exact functor. Assume that the cat-
egory A has enough injectives. Let .%# : A — B be covariant left exact functor.
For any X € Obj(A) take an injective resolution X — I° of X. The sequence

FUIY: 05 F1) > ZU0H)—> -
is a cochain complex, and we define:
R.Z(X) := H(ZU")).
Let A° and B° denote the dual categories. Then
F LA - B,
FX°) = F(X)°
is a covariant right exact functor. If I® is an injective resolution of M € Obj(A),
then /°° is a projective resolution of M*® in A°. Since
F°)° =~ FO(),
we obtain that '
R'F(M)° ~ L;.F°°(M°).
This allows to deduce general properties of R'.#(—) from general properties of

L;.7°°. In particular, we see that R".% () are well defined additive covariant func-
tors.

Definition. The functors R'.% (-) are called the right derived functors of the
left exact functor % .

Below we summarize some basic properties of right derived functors.

Properties 3.3.
1) RA.F (M) = M.
2) If X is injective, then R.F (I) = 0 for all i > 1.
3) For each exact sequence

05X ->X->X">0

there exists a long exact sequence

0= RFX) > RFX) - R FxX") s RFX)
> R'.ZX) >R FX") > -
4) (Dimension shifting) Consider a short exact sequence of the form
0-X—->I->Y >0,
where 1 is injective. Then
RZX)=R'Z), i>2
and R'.Z (X) = coker(F (1) —> F(Y)).

Definition. i) An object J is acyclic (or F -acyclic) if R.F (J) = O forall i > 1.
ii) A right resolution J* is acyclic if all J' are acyclic.
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5) Let J® be an acyclic right resolution of X. Then
R.Z(X)= H(Z(J*)).
3.4. We define derived functors of contravariant functors. If % : A — Bis
a contravariant functor which is right (respectively left) exact, then
F° LA > B,
FX°) = F(X)
is a covariant functor which is right (respectively left) exact, and we define the

left (respectively right) exact functors of .% by L;.%# (X) := L;.%°(X°) (respectively
R'.Z(X) := R'.Z°(X°)). Explicitely

L7 (X) .= H{(F(I*)), if . is contravariant right exact,
R.Z(X) := H(F(P,)), if Z is contravariant left exact,

where /° (respectively P,) denotes the right injective (respectively left projective)
resolution of X.

4. The functors Ext’

4.1. Let A be an abelian category having enough injectives. To simplify
notation, we will write Hom(—, —) instead Hom #(—, —). Fix an object M € Obj(A)
and consider the covariant left exact functor

hy @ A — Ab,
hy(N) := Hom(M, N).

Definition. The right derived functors of hys are called the Ext-groups and are
denoted as

Ext'(M, N) := R'hy(N).
Below we summarize some basic properties of these functors.

Properties 4.2.
i) Ext’(M, N) = Hom(M, N).

Proor. It’s clear. O
ii) The assignment
Ext'(—,—) : AXA — Ab,
(M,N) — Ext'(M, N)

is a functor which is contravariant in the first variable and covariant in the second
variable.

Proor. a) From general properties of derived functors it follows that Ext'(—, —)
is covariant in the second variable.
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b) Let f : M’ — M be a morphism. Let /* be an injective resolution of N.
Then the morphism f induces a natural morphism of complexes

Hom(M, I*) —— Hom(M’, I*)

hu(1*) hy (I°)

This morphism of complexes induces morphisms between their groups of coho-
mology :
Ext'(M, N) — Bxt'(M’,N).

Now it is easy to check that the assignment Ext(—, N) is a contravariant functor.

O
iil) A short exact sequence
0N ->N->N'-0
induces a long exact sequence
(12) 0 - Hom(M,N’) —» Hom(M, N) — Hom(M, N"") — Ext!(M, N’)
— Ext'(M, N) - Ext'(M,N") — ...
Proor. This is the long exact sequence of derived functors Rifi;. O

iv) A short exact sequence
0O-M-M->M -0

induces a long exact sequence

(13) 0 - Hom(M"”,N) —» Hom(M, N) - Hom(M’, N) — Ext'(M"", N)
— Ext!(M, N) - Ext!(M’,N) — ...

Proor. Let I* be an injective resolution of N. Since the contravariant functor
h’(-) = Hom(-, J) is exact if J is injective, we have an exact sequence of com-
plexes:

0 - Hom(M",I*) - Hom(M, I°*) - Hom(M',I°) — 0.
Taking the long exact sequence of cohomology attached to this exact sequence, we
obtain the sequence (13). o

Proposition 4.3. The following properties are equivalent:
1) I is injective.
2) The functor h'(=) := Hom(—, I) is exact.
3) For all M € Obj(A),

Ext'(M, ) = 0, Vi 1.

4) For all M € Obj(A),
Ext'(M, 1) = 0.



66 3. DERIVED FUNCTORS

Proor. We already know that 1) & 2) and 1) = 3) (see Proposition and
Section ). The implication 3) = 4) is trivial. We only need to show that 4) = 1).
Let

O-M-M->M -0

be a short exact sequence. The long exact sequence (13)) for N = I reads
0 —» Hom(M"”,I) - Hom(M, I) —» Hom(M’, I) — Ext'(M",I)
Since Ext!(M”, I) = 0, we obtain that the sequence
0 - Hom(M"”,I) - Hom(M, I) - Hom(M’,I) — 0
is exact. Therefore the functor 4/(-) is exact. o

Proposition 4.4. The following properties are equivalent:
1) P is projective.
2) The functor hp(—) := Hom(P, —) is exact.
3) Forall N € Obj(A),

Ext/(P,N) = 0, Vi 1.

4) For all N € Obj(A),
Ext!(P,N) = 0.

Proor. We already know that 1) & 2) and 2) = 3) (see Proposition [1.1| and
Section ). The implication 3) = 4) is trivial. We only need to show that 4) = 1).
Let

0->N —->N->N'—-0

be a short exact sequence. The long exact sequence (12)) for M = P reads
0 —» Hom(P,N’) —» Hom(P,N) — Hom(P,N") — Ext'(P,N").
Since Ext!(P, N’) = 0, we obtain that the sequence
0 —» Hom(P, N') —» Hom(P, N) —» Hom(P,N") — 0.

is exact. Hence the functor ip(—) is exact. O

4.5. Assume, in addition, that A has enough projectives. Fix N € Obj(A)
and consider the contravariant functor

V(=) : A - Ab,
WY (M) := Hom(M, N).

The functor #V(-) is left exact and we can consider its right derived functors:
RWN (M) :=H i(Hom(P., N)), where P, is a projective resolution of M.
The following theorem will be proved in the next section:

Theorem 4.6. There exist canonical and functorial isomorphisms

RN (M) ~ Ext'(M, N).



Example. If A is a ring, we write Extj'{ for the Ext-functors in the category of
left A-modules. Consider the category of Z-modules (or, equivalently, the category
of abelian groups). Choose a free Z-module P, together with a surjective morphism

Py % M. Since every non-null subgroup of a free Z-module is free, P; := ker(¢) is

free and

If M = Z/mZ, we can take

5. DOUBLE COMPLEXES

Pe : 0> Py > Py—0
is a projective resolution of M. Therefore

Ext, (M, N) = 0,

i>2.

P,:0-257 0.

The complex Homz(P,, N) is isomorphic to the complex

Therefore Ext%(Z/mZ, N) =~ N, where ,N = {x € N | mx = 0} is the m-torsion

0NN O.

submodule of N (we remark that ,,N = Hom(Z/mZ, N)), and
Exty(Z/mZ,N) =~ N/mN.

5. Double complexes

5.1. Double complexes. Let A be an abelian category.

Definition. A double cochain complex concentrated in the first quadrant is a

diagram in A of the form

v
d02

0 —> X©2

v
d() 1

0 —> X©OD

v
dOO

0 — X©0

0

h de h d;Z h

G a2 B yea 2
dy, dy,

h h h

G yan i yen @
dYO d‘Z}O

h h h

o 1.0 _To_ a0 B

0 0

where the morphisms satisfy the following properties:

dod" +d"od =0

(14)
More explicitly, for all (i, j)
h h
di+1,j ° dij =0, div,j+1

d"od" =d" od" =0,

Odlvj = 0,

d’

ho | h
i1 jodi+d;

i,j+1

v
o dij
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We remark, that in general, the above diagram is not commutative.
To each double cochain complex X** we associate:

X" = @ X0, n>0,

i+j=n
d=d"+d" : X" - X"
From the relations (I4) we see that
dod=d"+d)od" +d)=d"od"+d" od"+d"od" +d" od’ =0,
and therefore X* is a chain complex.

Definition. The complex X*® is called the total complex attached to X** and is
denoted by Tot(X*®).

The following proposition can be proved by a careful diagram chasing:

Proposition 5.2 (Acyclicity of the total complex). Assume that all rows (re-
spectively all columns) of of X** are exact. Then Tot(X*®) is acyclic.

5.3. Proof of Theorem 4.6 In this subsection, we return to our study of the
groups Ext'(M, N). Assume that A has enough projectives and injectives. Choose
a projective resolution P, % M — 0 of M and an injective resolution 0 — N 5
of N. Set

X%) = Hom(P;, I’).  i,j>0.
The morphisms P;;; — P; and I’ = [’*! induce morphisms

X+

h

X)) U xG+1L)),

and we obtain a diagram

7Y Y Y

0 —> X(O’z) fOZ X(]’z) f12 X(Z’Z) f22
fgl flvl d;l

h h h

0 xOh P van M yen
o0 fio fio

h h ch

0 — X(O’O) fOO X(I’O) fl() X(Z’O) f20

0 0 0

This diagram is not a double complex because the horizontal and the vertical mor-
phisms commute, namely

fvofh:fhofv,
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To remedy this problem, we define the differentials @" and @ as follows:
h / i+ j+1
i = f, di; = (=D

It is easy to check that (X**, d", d") is a double complex. We will prove the follow-
ing strong version of Theorem[4.6|:

Theorem 5.4. There exist natural an functorial quasi-isomorphisms :
Hom(P., N) — Tot(X**) « Hom(M & I°).
Proor. Since P; are projective, the complexes
0 - Hom(P;, N) — Hom(P,-,IO) - Hom(Pi,Il) - .-
are exact. To simplify notation, set
Z! .= Hom(P;, N).
Consider the double complex
&

d] dy

02 12 2

h h h

0 x02) 2 a2y My
do, dy, dy,

h h h

0 xO0 __ yan M yen
doo dyo dy

h h h
0 . X(O’O) dOO X(l’o) dl() X(z’o) dZO

& —& &

0 70 A 72

0 0 0

Let Y* denote the total complex attached to this diagram. We make the following
remarks :

a) The columns of this diagram are exact, and therefore Y* is acyclic by Theo-
rem

b) The vertical maps +& induce a morphism of complexes
g : Z° — Tot(X**).

We use the version of Proposition [3.1] for cochains, which can be easily obtained
by a renumbering of objects. There exists an exact sequence of complexes

0> Z* - c(g) » Tot(X**)[-1] — O,
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where c(g) is the cone of the morphism g. The complex c(g) is defined explicitly
as follows:

(g =7"o X", X'= @ X%,

i+j=n
d: c(g)" — c(e), d(zn, Xp-1) = (d(zn), (=1)"&(zn) + d(xp-1))-

and we can easily check that c¢(g) = Y*. By the remark a), this complex is acyclic,
and from Corollary [3.2]it follows that the map

g : Hom(P,, N) — Tot(X**)
is a quasi-isomorphism.
Mimiking the previous arguments, we construct a quasi-isomorphism Hom(M, I°) —
Tot(X**). The theorem is proved. O
6. Extensions

Let A be an abelian category. Let M and N be two objects of ‘A.

Definition. /) An extension of M by N in A is an exact sequence of the form
E: o0-NSxBuoo
2)IfE . 0->NSX ﬂ—> M — 0 is another extension of M by N, we
say that they are equivalent if there exists a commutative diagram

N—ex_ P ony
|
0 N—ox Py

By the five lemma, the morphism g is an isomorphism.

0 0

Recall that an exact sequence « splits if there exists a section s : M — X such
that g o s = idys or, equivalently, if « is equivalent to the extension

0—=N—ZNemM o pm——o,

where g)s and pys are the canonical morphisms (see Lemmal/l.3)).
Assume that A has enough injectives and therefore the functors Ext' are de-
fined.

Lemma 6.1. Assume that Ext'(M,N) = 0. Then every extension of M by N
splits.

Proor. 1) = 2). Consider an exact sequence
0->-N->X->M->0O0.

It induces a long exact sequence

0 — Hom(M, N) — Hom(M, X) — Hom(M, M) 2> Ext'(M, N).
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Assume that Ext' (M, N). Then the sequence
0 - Hom(M, N) - Hom(M, X) - Hom(M, M) — 0

is exact. Then the identity map id € Hom(M, M) lifts to a map s € Hom(M, X) and

we have a commutative diagram
X M
Ny
M

which shows that our sequence splits. O

0 N

More generally, to each extension
E: 0->N->X->M—->0

we can associate the connection map
Hom(M, M) %> Ext'(M, N)
and define 6(F) := 6(idy).

Theorem 6.2. The map 6 establishes a one-to-one correspondence:

{equivalence classes of extensions of M by N} <. Ext!(M, N).

SKETCH OF THE PROOE. We will only explain how to attach an extension to any
element x € Ext' (M, N). Take an exact sequence of the form

0—-L i> PL M- 0,
where P is projective. This short exact sequence induces the exact sequence
Hom(P, N) — Hom(L, N) — Ext' (M, N) — Ext!(P,N).
Since P is projective, the last term vanishes, and this sequence reads:
Hom(P, N) —» Hom(L, N) — Ext' (M, N) — 0.

Take any lift f € Hom(L,N) of x € Ext!(M, N). Using this morphism, we will
construct a diagram of the form

0 L p M 0
a B
0 N X M 0

Set
£
X :=coker(L —— N & P).
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Define the morphisms « and g as the composition of the morphisms N M NeP
and P 25 N @ P with the canonical map N & P — X. Finally the diagram

L——=N®P —
0,m) .~
M

shows that there exists a unique morphism 8 making this diagram commute. It can
be checked that the sequence

E : O—>N1>X£>M—>O

is exact and its equivalence class does not depend on the choice of f. To sum up,
this construction associates to each x € Ext' (M, N) a well defined equivalence class
of extensions. Some additional work shows that this map is the inverse of 6. O

Remark 6.3. 1) The bijection proved in Theorem [6.2]equips the set of equiv-
alence classes of extensions with the structure of an abelian group. This structure
can be defined directly in terms of extensions.

2) The theory sketched in this section can be extended to higher groups Ext’
(i=2).

7. The functors Tor;

In this section, we fix a ring A and denote by A — Mod (respectively Mod — A)
the abelian category of left (respectively right) A-modules.
Fix a right module M and consider the covariant right exact functor

Fyu:=M®s(-) : A—Mod — Ab,
Fu(N) =M Q4 N.
Definition. The left derived functors of %y are called the Tor-groups and are
denoted as
Tor!(M,N) := LiFy(N),  i>0.
We can also fix a left A-module N and consider the right exact functor
NF :=(—)®s N : Mod — A — Ab,
NF (M) =M ®, N.
Mimiking the agruments of Section[3]it is not difficult to prove that for all projective
resolutions P, and Q. of M and N, there exist canonical and functorial quasi-
isomorphisms
(Pe ®4 N) — Tot(Pe ®4 Qo) < (M ®4 Qo).
In particular
Ll' N?(M) =~ Lin(N), Vi>0.

Proposition 7.1. For any projective right A-module P the functor Fp := P Qy
(-) is exact. In particular,

Tor!(P,N)=0,  Vi>1.
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Proor. a) Since tensor product commutes with direct sums, the first assertion
holds for free modules (which are direct sums of copies of A). Let P be an arbitrary
projective module. By Proposition there exists a free module F such that
F =P P forsome P’ C F. Let

0->N ->N->N'"-0
be an exact sequence. Then we have an exact sequence
0> FuN > F®2N—>F®yN' -0
which can be also written in the form
0> (PRyN)YB(P' ®N') = (PRAN)BP ®N) — (P4N"Y®(P' ®4N") — 0.
Therefore the sequence
0PN PN —>PRQN'—0

is exact.
b) The vanishing of Tor’l.4 (P,N) fori > 1 follows from a) and general properties
of derived functors. O

Remark 7.2. The same argument shows that for any projective right module Q
the functor (—) ®4 Q is exact and the derived functors Tor?(—, Q) vanish fori > 2.

Example. Take A = Z. The complex
Pe: 0525250
is a projective resolution of Z/mZ. Therefore P,®z N is isomorphic to the complex
0>NSN-O.
We obtain that TorOZ(Z/mZ, N) = N/mN (= Z/mZ ®z, N) and
Tor’(Z/mZ,N) = ,N,
where ,,N := {x € N | mx = 0} is the m-torsion subgroup of N.
It can be proved that the functors Tor;.“ commute with direct limits, namely
Torf‘(li_r)n M;,N) =~ li_rI)lTof;‘(Mj,N).
J J
Using this property, we obtain the following:
Proposition 7.3. For all Z-modules M and N one has:
1) TorIZ(M, N) is a torsion group;
ii)) Tor”(M,N) = 0 fori > 2.
Proor. Each module is a direct limit of the system of its finitely generated
submodules. This reduces the proof to Proposition [7.]and the above example. O

Definition. A left (respectively right) A-module N is flat if the functor (—)®4 N
(respectively N @4 (—)) is exact.

Proposition 7.4. Let N be a left A-module. The following properties are equiv-
alent:
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1) N i;ﬂat,‘
2) Tory(M,N) =0 for all M and i > 1,
3) Tor(M,N) = 0 for all M.

Proor. The proof is straightforward and is left as an exercise.

Exercise 12. Give an example of a non-projective flat module over Z.



CHAPTER 4

Cohomology of finite groups

1. Cohomology of groups: derived functors

1.1. Basic constructions. In this section, we redefine cohomology of groups
using derived functiors and establish its basic properties.
Let G be a group. Each abelian group A can be considered as a trivial G-
module:
g-a=a, VgeG, acA.
This applies, in particular, to the group Z. For any G-module M, we set
M€ ={meM|gm=m, VgeG}
We will consider the assignment M — MY as a functor
(=)° : G—Mod — Ab.
Lemma 1.2. There exists an isomorphism of functors:
(-)% = Homz[GI(Z, -).
Proor. Let M be a G-module. It is easy to see that the map
HOII’IZ[G](Z, M) - MG,
fe f)
establishes an isomorphism
HOIDZ[G](Z, M) = MG.

Indeed, since g(f(1)) = f(g(1)) = f(1), one has f(1) € MY, and the inverse map
MY — Homgg|(Z, M) is given by

m+— f € Homz[G)(Z, M) such that (1) = m.

Corollary 1.3. The functor (=)© is left exact.
Of cause, this can be also easily checked directly.

Definition. Ler M be a G-module. The cohomology groups of G with coeffi-
cents in M are defined as

H'(G, M) := Exty;(Z, M).
Equivalently, H/(G, -) are the right derived functors of (—)°.

75
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For each short exact sequence of G-modules
0O-M ->M->M' -0

we have a long exact sequence of cohomology:

(15) 0 — HG, M") — H(G, M) — HG, M") >
H'(G.M') - H' (G, M) — H\G.M") > HXG. M) — ---

1.4. The bar resolution. We now prove that our definition agrees with the
definition given in Section [5|of Chapter 2. Set:

G*''=GxGx---xG
——— e

i+1
and
P =Z[G™"].

It is easy to see that P; is a free Z[G]-module generated by the elements of the form
(16) (€,81,82,-.,8) € G
(here e is the identity element of G). Define a map

(9,~ . Pl' - Pi—]
setting

i
ai(g()agly- . -,gi) = Z(_l)j(g()sgl’- . -7gj—lagj+l’gj+27' . -’gi)$
j=0

if (0. 81,...,8) € G

and extending this formula to Z[G'*!] by linearity. We also define the augmentation
map:
e : Py=7Z[G] - Z,

{55

geG geG

Proposition 1.5. The sequence

O+ 0; 0 &
-+ > Piy —|>Pl~—>---—I>P0—>Z—>O
is a projective resolution of Z.
Proor. The proof is routine and we omit it here. O

The complex P, is called the bar resolution of Z.
Using this resolution, we obtain the following

Theorem 1.6. For any G-module M the complexes HomzG)(Pe, M) and C*(G, M)
are isomorphic.
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Proor. Recall that
C(G,M)={f : G' > M).

We see that the groups Homgg(P;, M) and Ci(G, M) are isomorphic: each mor-
phism ¢ € Homgzg(P;, M) is completely determined by its values

w(e, 81,82,---»8i)-
Such a function is completely determined by its values on the elements of the form
(e,81,8182,---, 8182+ 8)- Let ¢ = f, be the map

Homg(P;, M) — C(G, M)
which to each ¢ associates the function
Jo(81,82,...,8) = p(e,81,8182,---,8182" " &)-
This gives isomorphisms
HomgG)(P;, M) ~ C'(G,M),  i>0.

Writing the differentials explicitly, it is not difficult to check that Homgz;G(P., M)
is isomorphic to the complex

0 1 2
cG.m: G5 cG.mS e -

where
()81, 82, 8ix1) = 81(f(82, 83, - - -, 8+1)+

+ (_I)Jf(gl’g2$ cee agjgj+l’gj+27 e ’gi+1) + (_1)i+1f(glag2a v ’gi)-

j=1

Recall that we set
Z{(G, M) = ker(d;) (group of i-cocycles),
Bi(G, M) = Im(d;—;) (group of i-coboundaries).
Then ‘ ‘ ‘
H'(G,M) ~7Z(G,M)/B (G, M).
1.7. Coinduced modules. Let A be an abelian group. Set
A" := Homgz(Z[G], A).
Then A* has a natural structure of a left G-module given by

AN = fud),  feA’, AueZGl

For any f € A*, one has:
f(z ngg) = Z ”gf(g)-
Therefore f is completely defined by the elements f(g) € A, g € G. Set

CY(G,A) ={f : G- A},
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and equip C'(G, A) with a left action of G given by
(gf) (h) = f(hg), feCYG,A), g.hedG.
Then A* ~ C(G, A).
Definition. The G-module A* is called a coinduced module.

Proposition 1.8. One has:

A, ifi=0

0, otherwise.

H(G,A") = {

Proor. Applying Proposition [8.5]to the rings B = Z and A = Z[G], we obtain
an isomorphism

Homg)(P, Homz(Z[G],A)) — Homg(P, A)
for any Z[G]-module P. Using the definition of A*, we can write it in the form
Homgz(P,A*) = Homgz(P, A).
Let P, be a free résolution of Z. Then
H"(G,A") = H"(HomgzG)(P.,A”)) ~ H"(Homg(P., A)).

Since P, are free Z-modules, the sequence

0 — Homg)(Z,A") — Homgg|(P.,A")
is exact. Hence H'(G,A*) = 0 for i > 1, and for i = 0 one has:

HY(G,A") = (A" = A

(see Exercise[14). mi

Exercise 13. Let G be an infinite cyclic group. Fix a generator g of G.
1) Show that Z[G] is isomorphic to the ring Z[X, X 1.
2) Show that the sequence

0
0-ZX, X 137X, X152 -0,

where do(f(X)) = (X — 1) f(X) and e(f) = f(1), is a free resolution of ’Z.
3) Let M be a G-module. Show that H*(G, M) = M®, H'(G, M) ~ M/(g— )M
and H(G,M) =0 fori > 2.

Exercise 14. Let A be an abelian group and f € A* = C'(G, A). Show that if
gf = fforall g € G, then f is a constant map, i.e. there exists a € A such that
f(g) = aforall g € G. Therefore (A*)¢ ~ A.
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2. Homology of groups
2.1. Let G be a group. We consider Z as a trivial right G-module.
Definition. For any left G-module M, set
H{(G, M) := Tory;\(Z, M).
The groups H{(G, M) are called the homology groups of G with coefficients in M.

Explicitly, let P, be a projective resolution of Z. Then P, ®z;61 M is a complex,
and

Hi{(G,M) = Hi(P. ®z161 M).
We compute Hy(G, M). Let
e: ZIG] - Z
be the augmentation map

:an.

geG

8[2 s

geG
Set I = ker(e). Explicitly,

I =1{)" nggl > ng =0}

2cG 2cG
Lemma 2.2. The ideal I is generated by the elements
g—e, g€G.
(here e is the identity element of G.)

Proor. Itis clear that g —e € Ig. Conversely, any ), 1¢8 € Ig can be written

in the form:
ang = an(g—e)+ ane = an(g—e).
geG geG geG g€G
Hence the elements g — e generate /. O

We have a tautological exact sequence
(17) 0-Ig— Z[G1 S Z — 0.

Let A be aring. For any left A-module M and ideal I C A we will write IM for the
submodule of M generated by the elements am, a € I, m € M.
For a G-module M, we set

MG = M/IgM.
Proposition 2.3. One has:

Ho(G,M) ~ Mg.
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Proor. Since the tensor product is right exact, we have an exact sequence
I ®7[G] M — Z]|G] ®7[G] M—-7Z Rz[G] M — 0.

Here Z[G] ®z;61 M = M. On the other hand, the image of I ®zjc) M in M is IcM.
Therefore
Hy(G,M) = Z®Z[G] M~ M/IGM.

For any short exact sequence of G-modules
0O->-M ->M->M' -0

we have a long exact sequence of homology:
s
- = Hy(G, M") - Hy(G, M) > Hy(G, M") = H\(G,M") -

Hi(G, M) — H{(G,M") 25 Hy(G, M") — Ho(G, M) — Ho(G, M") — 0.
2.4. Induced modules. Let A be an abelian group. The tensor product A, =
Z[G] ®z A is equipped with a natural structure of a left G-module:
gh®a)=(gh)®a, g, heG, acA.
Definition. The G-module A. is called an induced module.

Proposition 2.5. One has

A, ifn=0
H(G,Ay={" "7
0, otherwise.

Proor. Let A, = Z[|G] ®z A and let P, — Z be a free resolution of Z. Then P,
are free abelian groups, and

Hy(G,A) = H,(Ps ®z(G) Ax) = Hy(Ps ®z(G) (Z[G] ®z A)) = H,,(Pe ®7 A).
Since P, are free, the complex
Po®7A—>A—>0
is exact. Hence H,(G, A,) = 0 for n > 1. On the other hand,
Ho(G,A,) = Z ®z16) (Z[G] ®7 A) = A.

Proposition 2.6. One has:
H_(G,Z) ~G/IG,G].

Proor. The short exact sequence (17)) induces a long exact sequence of homol-

ogy:
H_l(G,Z[G]) d H_l(G, Z) i H()(G, IG) i H()(G, Z[G])

Since Z[G] is free, H_{(G, Z[G]) = 0, and we have an isomorphism:
H_1(G,Z) = I/ I}.
Now the proposition follows from Exercise |15|below. O
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Exercise 15. Show that the map
G — Ig/12, g g—1 (modI%)
induces an isomorphism G/|G,G] ~ I(;/Ié.
Exercise 16. Let G be an infinite cyclic group. Fix a generator g of G. Show
that Hy(G, M) = M/(g — )M, H{(G, M) = M® and H{(G, M) =0 fori > 2.
3. Tate (co)homology

3.1. Let
0O-M-M->M -0

be a short exact sequence of G-modules. We have long exact sequences:
s
-+ = H(G, M') - Hi(G, M) » H\(G,M") =
M JIgM' — M]IgM — M" [IM” — 0
and
s
0> M- M - M H(G M) - H'(G,M) - H(G,M") > -

If G is finite, we can glue these sequences.
Namely, assume that G is finite. For any G-module M, we define the norm
map:

N : M- M,
N(m) = ng.
geG

Set yM := ker(N) and N(M) := Im(N).
Lemma 3.2. One has:
N(M) c MC,
IcM C yM.

Proor. a) Since

gNm) =g > hm = (ghym = > hm = N(m),

heG heG heG

we have N(M) c MC.
b) Let x = (g — e)m. Then

N(x) = Z h(g - e)x = Z(hg)x - Z h(x) = N(x) — N(x) = 0.
heG heG heG

Hence x € yM. Since I; is generated by the elements g — e, g € G, the submodule
IgM c M is generated by x = (g — e)m, g € G, m € M. Therefore N(y) = O for all
y € IlgM. O
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Theorem 3.3. Let G be a finite group. Then for any exact sequence of G-
modules

0O-M ->M->M' -0
there exists a long exact sequence:
o> H(G,M") - H{(G,M) - Hi(G,M") - yM'|IgM’ —
— NMJIGM — yM" [IcM" %S MG IN(M') — MO IN(M) —
= M INM") S HYG M) > HNG. M) - H'(G.M") = - -

CoMMENTS ON THE PROOF. We only need to show that there exists an exact se-
quence

Hi(G,M")—> yM'|IcM' — yM]IcM — yM" [IcM" — M'G/N(M')
— MY/N(M) —» M"CIN(M") — H'(G, M").
Applying the snake lemma to the diagram
M | IcM — M[IcM — M" |IcM" — 0
O (R

0 M/G MG M//G

we obtain an exact sequence:

WM JIcM’ = yMIIGM — yM” [IM" > MG IN(M') > MO IN(M) — M IN(M")
So we only should prove that Im(6;) € yM’ and N(M’") C ker(dy). O
Definition. The Tate cohomology of M is defined as

H(G, M), ifi>1,
MCIN(M),  ifi=0,
NM/IgM, ifi=-I,
H_;1(G,M), ifi<-2.

A(G,M) =

With this notation, the long exact sequence for Theorem [3.3|reads:
> H*G,M) > A*G,M") - H'G,M) > A'(G,M) -
- HYG,M") - B*G,M') —» B*G, M) - B*G,M") >
- H'(G,M") - H (G, M) > H'(G,M") — -
Example. We consider Z as a trivial G-module. Then:
A°%G,Z) =Z/nZ,  wheren = |G];
AYG,Z) =0,
A7YG,Z)=0.
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Proor. We have N(x) = nx for all x € Z. Hence N(Z) = nZ and yZ = 0. As a
result, ﬁO(G, Z) = Z./nZ and FI‘I(G, Z) = 0. Moreover,
A'(G,Z) = H'(G,Z) = Hom(G, Z),
where Hom(G, Z) = 0 for finite groups. O

3.4. Recall that for an abelian group A we set A* = Homg(Z[G],A) and
A, = Z[G] ®z A). If G if finite, the map

a: AY - A,
(18) af) =) ¢ @[
geG

is a well defined isomorphism ( see Exercise[I7]below).
Proposition 3.5. One has:
H(G,A") = H(G,A,) =0, Viel.

Prook. In view of Propositions[I.8 and[2.5]and the isomorphism (I8), we only
need to show that

A°G,A) = A (G,A,) =0.
a)Letxe ) s®a; € A,. Then

seG
g(x) = ng@as = Zs@ag_ls.

seG seG

If x € (A,)°, then g(x) = x for all g € G, and therefore a
Hence all a; are equal, and x is of the form

x=(2s®a), a€A.

seG

o1y = as forall g € G.

Then x = N(e ® a), where e € G is the identity element, and we proved that
x € N(A,). Therefore (A,)¢ c N(A,), and H%(G, A,) = 0.

b) Now assume that
N(x) = N[Zs ® a) =0.

seG
Writing the action of N explicitly, it is easy to see that

Zas =0,

seG
Therefore
X = Zs@ax - Ze@as = Z(s— 1) ®as € IGA,.
seG seG seG
Therefore yA, C IGA, and Hy(G, A,) = 0. The proposition is proved. O

Exercise 17. Assume that G is finite. Show that for any abelian group A, the
map (18) is an isomorphism of G-modules.
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4. Cyclic groups

4.1. Cohomology of cyclic groups. In this section, we compute Tate coho-
mology H"(G, M) for a finite cyclic group G. Set n := |G| and fix a generator g of

G. Define:
n—1
s= > h=>"g eZlG),
heG i=0
t=g—-ecZ[G].
Let

N* : Z[G] - Z[G],

N*(x) = sx, x € Z[G],
denote the multiplication by s map, and similarly

T : ZIG] - Z[G],

T"(x) = tx, x € Z[G],
denote the multiplication by ¢.

Let Z[X] denote the ring of polynomials over Z. Since g" = e, we have an
isomorphism:
Z[G] > Z[X]/(X" - 1), go X (mod X" —1).

Under this isomorphism, the maps N* et T* correspond to the multiplication by
1+X+X?+---X"1and 1+ X in Z[X] respectively. From the formula

X-DX""+X"2+ 4 X+1D)=X"-1

it follows that
ker(T™) = Im(N™),

ker(N*) = Im(T™).

Therefore the sequence

szl Sz Sz S i1 S zig1 Sz > o

is exact and gives us a projective resolution P, of Z.
Let M be a G-module. Then Homgz61(Z[G], M) =~ M, and the complex HomzG(P., M)
reads:

T N T N
O- M- M—->-M->M-—---,
where N(x) = 3 e hx and T(x) = gx — x. The groups H'(G, M) are isomorphic to
the cohomology of this complex? Namely:
MC, sii=0
H'(G,M) ={ yM/T(M), ifiisodd
MCIN(M), ifi>2is even.

Now we compute the homology groups H;(G, M). Since Z[G] ®zi61 M = M, the
complex P, ®ga M reads:

A uiutmulmso
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Therefore:
M/T(M), ifi=0
H{(G,M) =< MC/N(M), ifnisodd
NM/T(M), ifi>2iseven.
For the Tate groups we obtain:

MS/N(M), ifiiseven

H(G, M) =
( ) {NM/T(M), if i is odd.

4.2. Herbrand quotient. We continue to assume that G is a cyclic group of
finite order n and M isa G-module. Assume that H°(G, M) and H'(G, M) are finite.
We define the Herbrand quotient of M as

_HYG, M) (MC : N(M))

h(M) = — = .
HY(G,M)| (~nM :T(M))

Proposition 4.3. i) Let
0O-M-M->M -0

be an exact sequence. If two of three Herbrand quotients are defined, so is the third
and
h(M) = h(M") h(M"").
ii) If M is finite, then h(M) = 1.
iii) Assume that N is a submodule of M of finite index. Then

h(M) = h(N).

Proor. See the homework, exercise 4. O

5. Change of groups

5.1. Shapiro’s lemma. In this section, G is a finite group and H is a subgroup
of G. Let M be an H-module. Then Z[H] C Z[G], and we can consider Z[G] as an
Z[H]-module. We apply a construction from Section Chapter 1. Set

Ind$(M) = Homg(ZIG), M).

The ring Z[G] has a natural structure of a right Z[G]-module, and this allows to
define a structure of a left Z|G]-module on Indg(M ):

&N)o) = f(og), Vf € Homzm(ZIG], M), o,8¢€G.
In particular, if H = {e} then
Ind{}, (M) = M*.
Mimiking the construction of the isomorphism (I8), one can prove that
Ind$(M) = Z[G] ®zm) M.

Lemma 5.2 (Faddeev—Eckmann—Shapiro). There exist canonical and functo-
rial isomorphisms:

H(G,Ind$(M)) - H'(H, M), ieZ.
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Proor. Take a free resolution P, of Z in the category of Z[G]-modules. Then
P, is also a free resolution of Z in the category of Z[H]-modules. Applying Exer-
cisebelow to A = Z[H] and B = Z[G] we have an isomorphism:

HomyG(P., Ind$(M)) = Homgg(P., Homz;(Z[G], M)) ~ Homgz;)(Pe, M).
Therefore
H'(G,Ind$(M)) = H'(Homg;g)(P., Ind$(M))) = H'(Homgy(Pe, M)) = H"(H, M)

foralli > 0.
On the other hand, since Indg(M ) is isomorphic to Z[G] ®z;x) M,, we have:

P. ®76) Ind$(M) = P, ®7;61 (ZIG) ®z11 M) = Po @711 M.
Hence
Hi(G,Indj; (M) = Hi(P. ®z;G) Indj(M)) = Hi(Ps ®z11) M) = Hi(H, M)
forall i > 0. O

Exercise 18. Let @ : A — B be a morphism of rings. Each B-module M can
be seen as an A-module: the action of A on M is given by ax = a(a)x. In particular,
B is an A-module. If N is an A-module,we equip Homy4 (B, N) with a B-module
structure setting:

(bf)(x) = f(xb), f € Homs(B,N), b,x€ B.
Show that for all B-module M there exists a natural isomorphism
Hompg(M, Homy (B, N)) ~ Homa (M, N).

5.3. Restriction, corestriction, inflation.

5.3.1. We first consider the general case. Let ¢ : H — G be a morphism
of (not necessarily finite) groups. Then each G-module M has a natural structure
of an H-module, which is induced by ¢. Let PY and P¢ denote the projective
resolutions of Z in the categories of Z[H] and Z[G]-modules respectively. Then
P¢ can be also seen as a (not necessarily projective) resolution of Z in the categoy
of Z[H]-modules. Therefore we have a map ¢* : P — PY. which makes the
diagram

Pi_Z-17
-
P¢ 257
commute and is unique up to a chain homotopy. If induces a morphism
Homg,c (PS¢, M) — Homgz (P, M)
and functorial morphisms on cohomology:

(19) ¢ 1 H(G,M) - H(H,M), i>0.
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The maps ¢* can be naturally described in terms of complexes C*(—, —). Namely,
® gives rise to the morphism

C*(G, M) — G*(H, M),
fe foop,

which induces the maps (19) on cohomology.
Dually, we have a morphism

P @z M — PS ®zi6) M
which induces functorial morphisms on homology:
¢« : H(H,M) - Hi(G, M) i>0.

We are mainly interested in the case where H is a subgroup of G.

Definition. Let H be a subgroup of G and M a G-module. The canonical maps
(20) res : H(G,M) — H'(H, M),
2D cor : Hi(H,M) - H;(G,M)

are called the restriction and the corestriction maps respectively.

5.3.2. We continue to assume that H is a subgroup of G and M is a G-
module. Then M* has a natural structure of G/H-module. The projection mor-
phism 7 : G — G/H induces a morphism P — PS¢ on projective resolutions.
The inclusion M — M induces a morphism

HomZ[G/H](PE;/H, MMy — Homggy(PS, M)
and the resulting morphisms on cohomology
(22) inf : H(G/H,M") > H'(G, M)
called the inflation maps.

These maps can be naturally described in terms of complexes C*(—, —). Let
f € C(G/H, M. Composing f with ,i : G — G/H we obtain the map forn €
C(G, M). This defines a morphism of complexes

C*(G/H,M™) > C*(G. M),
which induces the morphisms (22) on cohomology.

Proposition 5.4. i) There exists an exact sequence

re.

0 — H' (G/H,M") 2 B (G, My = H'\(H, M),
ii) Assume that H'(H, M) = Oforalli =1,2,...,q — 1. Then there exists an
exact sequence.‘
0 - HUG/H,M") 2 HUG, M) > HIH, M),

Proor. Part i) can be proved by a direct computation using the description of
group cohomology in terms of cocycles and coboundaries. Part ii) can be deduced
from part i) using the dimension shifting. O
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5.5. The case of finite groups.
5.5.1. In this subsection, we assume that G is finite. Consider a free Z[G]-
resolution of Z:

(23) Po: -5 P,>P >PyS>Z—0.
By Exercise|17] we have an isomorphism
Homgz(Z[G], Z) ~ Z|[G],

which shows that Pi = Homgz(P;,Z) are free Z[G]-modules. Therefore P, =
Homg(P.,Z) is a right projective resolution of Z:

(24) 05Z5 PP,
We can glue the resolutions (23)) and (24):
L, : ---—>P2—>P1—>P02>P8—>P’[—>---
Here we define:
P; ifi>0,
Li= {Pt*_i_1 ifz' < (—)1.

The complex L, is called a complete resolution of Z.
Theorem 5.6. There exist functorial isomorphisms
H'(G, M) = H'(HomgzG)(Le, M)).
Proor. The proof is omitted. O

5.6.1. Let H be a subgroup of G. Each L; is free over Z[H], and L, is a full
resolution of Z in the category of Z[H]-modules. Therefore the natural map
HomZ[G] (L., M) — HomZ[H] (L., M)
induces morphisms N N
res : H(G,M) — H'(H,M)
foralli € Z.1tis easy to see that this definition agrees with (20)) for i > 0. Therefore
our construction extends the definition of the restriction map to the case i < —1.

5.6.2. Write G as the union of left cosets of H: G = kLZJlng. Consider the
map
t: HOIHZ[H](L,',M) - HomZ[G](Ll-, M)
defined as follows:

(N ) = afg'x),  f e Homg(Li, M), x€ L.
k=1

An easy computation shows that ¢ is well defined and #(f) does not depend on the
choice of representatives g;. Hence we have a morphism of complexes

t : Homgg(Le, M) — HomgG)(Le, M),
which induces morphisms on cohomology:
cor : H(H,M) - H(G, M), ieZ.
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It can be checked that this definition agrees with (2I) if i < —1. Therefore our
construction extends the definition of the corestriction map to the case i > 0.

Proposition 5.7. The map
cor : H°(H, M) — A°(G, M)
is induced by the map

-
Ng/u : MY - MG, X ng(x).
k=1

Proor. We have H(H, M) = M" /Ny(M) and H°(G, M) = MC/Ng(M). The
formula follows directly from the definition of the map z. O
Proposition 5.8. Let (G : H) = n. Then
corores =n
i.e. for all i € Z the composition
A(G, M) = A'(H, M) =5 H'(G, M)
coicides with the multiplication by n map.

Proor. a) We first prove this formula for i = 0. The map res : A%G, M) -
H°(H, M) is induced by the natural inclusion M® — M* . By Proposition |5.7, for
all x € M®, we have:

n
cor o res(x) = cor(x) = Z gi(x) = nx,
i=1

because g;(x) = x for all i.

b)In the general case, we prove the proposition by induction using the dimen-
sion shifting. Assume that the statement holds for som i. We have an exact se-
quence

0->M5 M - X0,
where the map @ : M — Homgz(Z[G], M) is
a(m)(g) := gm.
This exact sequence provides us with a diagram:

H(G,X) ——~ H'(H,X) ———~ H(G, X)

| | |

H*Y(G, M) —=~ H"\(H, M) =~ H*Y(G, M).

The vertical arrows of the diagram are isomorphisms because H(G, M*) = 0 for all
g. By the induction hypothesis, the composition H(G, X) — H'(H,X) — H(G, X)
is the multiplication by n map. Therefore this is also true for the bottom row. This
proves the proposition for i > 0. For i < 0, we consider the exact sequence

O—>Y—>M*£>M—>O,



90 4. COHOMOLOGY OF FINITE GROUPS
with S(g ® x) = gx and use the dimension shifting argument. O

From this proposition, we deduce two important corollaries:

Corollary 5.9. If n = |G|, the groups H/(G, M) are annihilated by the multipli-
cation by n.

Proor. We apply Proposition to H = {e}. Since I:[i({e}, M) = 0, we have
n = cor ores = 0 i.e. the multiplication by n annihilates (G, M). O

Let p be a prime number and G, C G be a p-Sylow subgroup of G. For each
abelian group A, we denote by A(p) the p-primary component of A, namely:

A(p) = {x € A| Im > 1 such that p"x = 0}.
Corollary 5.10. The restriction map
res : H'(G,M) - H'(G,, M)
is injective on the p-primary component of H(G, M) i.e. the induced map
H'(G. M) (p) - H'(Gp. M)
is injective.
Proor. The composition
H'(G, M) (p) = H'(G,, M) = H'(G, M)

concides with the multiplication by m = (G : G,). Since G, is a p-Sylow subgroup,
we have (m, p) = 1. Therefore the multiplication by m is injective on the p-primary
component. O

Exercise 19. Let H be a subgroup of a finite index of a group G. Write G =
UZ: 1 Hgk.

a) Show that Z[G] = @Z=1Z[H]gi and deduce that Z[G] is isomorphic to
Z[H]™ as a Z[H]-module.

b) Show that a free resolution of Z[G]-modules is also a free resolution of
Z[ H]-modules.

c) Let A be an abelian group. Show that the induced G-module A, = Z[G]®zA
is also an induced H-module.

Exercise 20. a) Let f : M — N be a morphism of G-modules. Show that it
commutes with the restriction and the corestriction maps, i.e. that the diagrams

(G, M)~ (G, N)

lres lres

Ai(H, M) L Ai(H,N)



6. COHOMOLOGICAL TRIVIALITY 91

and

Hi(H, M) - Hi(H, N)

l cor l cor
s

Bi(G, M) -1~ Bi(G, N)
are commutative.
b) Let
0O->-M ->M->M' -0

be a short exact sequence of G-modules and let H be a subgroup of G. Show that
the restriction and the corestriction commute with the coboundary maps, i.e. that
the diagrams

Ifli(G’ M/) ﬁ‘s_ I:IH—I(G,M”)

lres jI'CS

I:Ii(H’ M/) _6>_ Ifli+l(H’ M//)

Hi(H, M/) _‘5> Hl'+l(H’ M//)

l cor j cor

Hi(G, M/) _6> Hi+l(G, M//)
are commutative.

c) Assume that H is normal in G. Show that for any morphism of G-modules
f : M — N the diagram

H"(G/H, M™) AN H"(G/H,N™)
jinf linf
H'(G, M) — = H"G. N),

commutes (functoriality of inflation).

6. Cohomological triviality

Definition. Let G be a finite group. A G-module M is cohomologically trivial
if for all subgroups H C G one has:

H(HM)=0, Viel
Examples. i) For any abelian group A, the les modules A, et A* are cohomo-

logically trivial. In particular, Z[G] is cohomologically trivial.
ii) If two of the three modules in a short exact sequence

0O-M ->M->M' -0

are cohomologically trivial, so is the third. This follows from the long exact se-
quence for Tate groups.
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iii) A G-module M is uniquely (or strongly) divisible if for all nonzero n € N
the multiplication by n is an isomorphism n : M = M. Any uniquely divisible
G-module is cohomologically trivial. In particular,

H(G,Q) =0, VieZ,

Proor. Let H be a subgroup of G of order m. Then the isomorphismn : M =~
M induces the multiplication by m map on cohomology:

m : H'(H,M) > H(H,M).

On the other hand, Hi(H,M) are killed by the multiplication by m. Hence
Hi(H, M) = 0 for all i. O

Le but de ce paragraphe est d’établir un critére de trivialité cohomologique
(voir les théoremes 8.3 et 8.4). On commence par quelques resultats auxiliaires.
Soit p un nombre premier. On dit que G est un p-groupe si G est d’ordre p*. Nous
allons utiliser la formule suivante qui est bien connue. Soit B un ensemble fini
muni d’une action de G. Alors

1Bl = Z G| = Z(G -Gy,

ou G, désigne le stabilisateur de x; € B. Ici x; parcourt un systtme de
représentants des orbites.

Lemma 6.1. Soit G un p-groupe et soit A un G-module vérifiant pA = 0. Alors
les assertions suivantes sont équivalentes:

i)A =0;

ii) H'(G,A) = 0;

iii) Hy(G,A) = 0.

Proor. (voir [?], lemme 9.1).

i) = ii), iii) C’est clair.

ii) = i) Preuve par I’absurde. Supposons que A # 0. Soit x un élément non-
nul de A et soit B = Z[G]x le sous-module engendré par x. Comme G est fini et
pA = 0, B est fini. Le groupe G opere sur B et on peut utiliser la formule (**).
Posons p% = (G : Gy,). Alors (¥*) s’écrit

p=>p"
i

Si x; ¢ BY, alors Gy #Geta; >1.Six¢€ BC, alors @; = 0 et p* = 1. Donc
p divise |BY|. Comme 0 € B on en déduit que B® # 0, d’ott H(G,A) = A® # 0.
Contradiction.

iii) = i) On a Hy(G,A) = A/JA, donc iii) signifie que JA = A. Posons B =
Hom(A, Z/pZ). On définit une action de G sur B en posant

(gf) (@) = f(g '), f € Hom(A,Z/pZ), a € A.
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Soit f € BY. Alors f(a) = f(ga), d’ou f((g — e)a) = 0 pour tout g € G. Comme
les éléments g — e engendrent J, on en déduit que f(JA) = 0. Alors I’hypothese
JA = A implique f = 0 ce qui montre que B = 0.
En appliquant if) = i) a B on en déduit que B = 0. Donc Hom(A, Z/pZ) = 0,
d’ou A =0.
O
Le lemme suivant correspond au lemme 9.2 et au théoreme 9.1 de [?], §9.

Lemma 6.2. Soit G un p-groupe et soit M un G-module vérifiant pM = 0.
Supposons qu’il existe q € Z tel que H1(G, M) = 0. Alors M est un Z/pZ|G]-
module libre.

Proor. a) On étudie d’abord le cas ¢ = —2. Comme pM = 0 on peut considérer
M/JM comme un Z/pZ-espace vectoriel. Soit {a;};c; une famille d’éléments de M
telle que a; = a; + JM forment une base de M/JM sur Z/pZ. Soit N le Z[G]-sous-
module de M engendré par {a;};c; et soit A = M/N. On a une suite exacte

0O->N-M-A->0
qui induit une suite exacte
N/JN - M|/JM — A/JA — O.

L application N/JN — M/JM est surjective par construction, d’ou A/JA = 0. En
utilisant le lemme 8.1 on en déduit que A = 0. Donc M est engendré par {a;};e;.
Nous allons montrer que {a;};c; est une base de M. Soit

L=Z/p2iG)" = P 2/pZ(Ge;
iel
un Z./ pZ|G]-module libre de rang I (I peut étre infini). On note {e;};c; une base de
L. Alors I’application
fi:L—->M,

f(z a;e;) = Z a;a;, a; € Z/pZ[G]

est un homomorphisme surjectif. On note X le noyau de f et on considere la suite
exacte
0-X—->L->M->O.

On va montrer que X = 0.
La suite exacte longue de homologie s’écrit (voir 4.5.2)
> Hi(G,M)—> X/JX > L/JL > M|JM — 0.
Par I’hypothese, on a H((G,M) = I:I‘Z(G, M) = 0. D’autre part, comme
Z|G]/J S Z,ona
Z/pZIGl/(JZ/pZIG]) - Z]PZ,
d’ou
LIJL S @(Z/pZ) e;

iel
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Comme

M|IM = (D(Z/pZa;
i€l
I’application L/JL — M/JM est un isomorphisme et la suite exacte (*) s’écrit:

0— X/JX - L/JL > M/JM — 0.

Alors X/JX =0d’ou X = 0 (lemme 8.1).

Donc M et L sont isomorphes ce qui montre le lemme dans le cas g = —2.

b) Cas général. Supposons que H%(G, M) = 0. En utilisant le décalage (voir
7.1) on trouve un G-module N tel que

H(G,N) > B*(G, M), VieZ.
En posant i = -2 on obtient
A%(G,N) = A4G,M) = 0.

I résulte de la partie a) de la preuve que N est Z/pZ[G]-libre. Donc il est co-
homologiquement trivial. La relation (**) implique maintenant la trivialité coho-
mologique de M. En particulier, H2(G, M) = 0 et on applique encore a). Le
lemme est démontré. O

Maintenant nous pouvons démontrer les résultats principaux de ce paragraphe.

Theorem 6.3 (critere de trivialité cohomologique pour les p-groupes). Soient
G un p-groupe et M un G-module. S’il existe q € Z tel que

HYG, M) = A7 (G, M) = 0,
alors M est cohomologiquement trivial.

Proor. a) Supposons d’abord que M est sans p-torsion i.e. que px = 0 im-
plique x = 0. Alors la multiplication par p est injective et on a une suite exacte

0->M2L M- M/pM - 0.
La suite exacte longue de cohomologie s’écrit:
-+ > HYG, M) —» HG,M/pM) — H*"'(G. M) — - --

Comme HY(G,M) = H?Y(G,M) = 0, on en déduit que HY(G,M/pM) = 0.
Comme p(M/pM) = 0, le lemme 8.2 montre que M/pM est Z/pZ[G]-libre. En
particulier, pour tout sous groupe H C G on a

H'(H,M/pM) =0, VieZ.
En revenant a la suite exacte longue de cohomologie
= A™Y(H, M/ pM) — Ai(H, M) 2 Ai(H, M) — B'(H,M/pM) = 0
on obtient que la multiplication par p induit un isomorphisme

AiH, M L B H, M.



6. COHOMOLOGICAL TRIVIALITY 95
Par récurrence, pour tout k > 1 la multiplication par p* est un isomorphisme

. K A
AiH, M) 2 AiH, M.

D’autre part, soit |H| = p®. On sait que H(H, M) est annulé par multiplication par
p*.En posant k = s on obtient que H'(H, M) = 0. Donc, M est cohomologiquement
trivial.

b) Cas général. Tout G-module M est quotient d’un Z[G]-module libre L.
Donc, on a une suite exacte

0->X—->L—->M-—DO.
Comme L est libre, X C L est sans p-torsion. D’autre part L est cohomologique-
ment trivial et la suite exacte longue de cohomologie
25 = HYG, M) - AT (G, X) e ™G, L) —
= A7NG, M) - AT(G, X) »— H™(G, L)

donne H?*1(G,X) = HI**(G,X) = 0. Alors, par a) X est cohomologiquement
trivial, d’ou la trivialité cohomologique de M. Le théoréme est démontré. O

Nous considérons maintenant le cas d’un groupe fini quelconque.

Theorem 6.4 (criterion of cohomological triviality). Let Gbe a finite group
and M a G-module. Assume that there exists q € Z such that for all subgroup
HcG,

AYH, M) = A" (H,M) = 0.

Then M is cohomologically trivial.

Proor. Soit H un sous-groupe de G. On va montrer que H(H, M) = 0 pour
tout . Il suffit de montrer que pour nombre premier p la composante p-primaire
H'(H, M) (p) est = 0. Soit H,, un p-groupe de Sylow de H. Par hypothése, on a

HY(H,, M) = A% (H,, M) = 0.

Le théoreme 8.3 implique que M est cohomologiquement trivial en tant que H,-
module. Donc H(H,, M) = 0. Par le corollaire 7.6, H'(H, M) (p) s’injecte dans
Hi(H,, M), d’ot H'(H, M) (p) = 0. Le théoréme est démontré.

O

Exercise 21. Let L/ K be a finite Galois extension of fields and let G = Gal(L/K).
Show that the additive group of L is cohomologically trivial as G-module. Hint:
use the normal basis theorem.

Exercise 22. Let G be a finite group. Show that H'(G,Z) = 0 and H*(G,Z) ~
Hom(G, Q/Z).

Exercise 23. Let G be a finite group.
1) Using the exact sequence

01 >Z[G1SZ—0
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show that for each subgroup H C G there exists canonical and functorial isomor-
phisms
H(H,Z) - A™\(H, I;).
2) Deduce that
H'(H,Ig)=Z/mZ,  m=|H|

A*(H, 1) = 0.

7. Tate theorem

7.1. The fundamental class. We maintain previous notation and conventions.
Let G be a finite group of order n and let I := ker(Z[G] 5 7).
Lemma 7.2. i) I is the free abelian group of rank n — 1 generated by the
elements y; :==17—e, 7€ G\ {e}.
ii) The following formulas hold true:
0Yr = Yor = Yo lfO'rﬁe,T_l.
T_lyT = _y‘['_l’
€yr = Yr.
Proor. The proof is left as an exercise. O
Let M be a G-module and let & € Z*(G, M) be a 2-cocycle with values in M.
Then:
g12(82, 83) — (8182, 83) + (g1, 8283) — a(g1, 82) = 0.
Let
I= @Zxo- =Zxg +--+ZLx,,

oeG
ote

be a free abelian group of rank n — 1 with basis G \ {e}. un groupe abélien libre de
rangn — 1 = |G| — 1. Set
My=M®oI

and define an action of G on M, by the formulas:

ocmdx)=(om+a(o,7)® (Xgr — Xs), SLO # 7! ,e,

om® x;) = (om+ a(0, 7)) ® (—x1), if 0 = 1

e(m® x;) =me® xr.

Proposition 7.3. i) The above formulas equip MQ with the structure of a G-

module.
ii) The sequence

(26) 0-mLu, Lo,
where fi(m) = m® 0 and fo(m ® x;) = y, is exact.

Proor. The proof is left as an exercise. O
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The exact sequence induces a map
om : H'(G,Ig) > HXG, M).

Taking the composition of this map with the isomorphism é; : Z/nZ ~ H (G, 1)
(see Exercise[23)), we obtain a map

¢ : Z/nZ — H*(G, M).
Claim: ¢(1) = cl(a).

ProoF oF THE cLAIM. From the definition of the coboundary map it follows that
the image of 1 under the map &; is the class of the cocycle

B:gH—g-—ecls.
To compute the image of cl(8) under §,,, take the lift,Eof Bin M, given by E(g) =
0® B(g). Then 6,,(cl(B)) is represented by the cocycle
(1,82) = 1B(82) — Bg2) = 810 ® yg,) — 0By, = (g1, 82).
This proves the claim. O
Definition. Let M be a G-module such that
H'(H,M) =0, for all subgroups H C G.

We say that x = cl(@) € HX(G, M) is a fundamental class if for each H C G the
following conditions hold:

a) H*(H, M) is cyclic of order |H|;

b) H>(H, M) is generated by res(x).

Proposition 7.4. Assume that H'(H,M) = 0 for all H c G. Let cl(a) €
H?(G, M). The following properties are equivalent:

a) cl(a) is a fundamental class;

b) For each H C G, the short exact sequence

0> M- MQ - Ig—>0
induces an isomorphism
H'(H,I5) ~ H*(H, M).
¢) My, is cohomologically trivial.

Proor. The equivalence a) < b) follows directly from definitions.
b)=c). We have a long exact cohomology sequence

H'(H,M) - H'(H,M,) > H'(H, 1) = H*(H,M) - H*(H,M,) - H*(H, ;).
Here H'(H, M) :_O by assumptiins and H2(H_,Ic;) ~ H'(H,Z) = 0 by Exercise
Therefore H I(PL M,) ~ H*(H,M,) = 0 and M, is cohomologically trivial.
c)= b). If M, is cohomologically trivial, then in the exact sequence
H'(H, M) — H'(H,Ig) — H*(H, M) — H*(H, M,)

HY(H,M,) = H*(H,M,) = 0. Hence the map H'\(H,15) — H*(H, M) is an iso-
morphism. O
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7.5. Tate theorem.

Theorem 7.6 (Tate). . Soit G un groupe fini et soit M un G-module. Supposons
que cl(a) € H*(G, M) est une classe fondamentale. Alors, pour tout q € Zla classe
cl(@) induit un isomorphisme canonique

H(G,M) > H™(G, 7).
Proor. La suite exacte courte

0> M- Ma - I;—>0

induit une suite exacte

HI™Y(G, M,) — AT (G, I6) — AYG, M) — HI(GM,).
Par I’exercice 1.8.9, le module M,, est cohomologiquement trivial. Donc on a
A1Y(G, M,) = 4G, M,) =0

est la suite (*) se réduit a un isomorphisme

A6, 1) - AYG, M).

Comme ~
H71(G, I6) - HT(G, Z)
(voir exercice 1.8.6) on en déduit le théoreme. O



CHAPTER 5

Local class field theory

1. Local fields

1.1. Basic definitions. We recall basic facts about local fields. Let K be a
field. A discrete valuation on K is a surjective map vk : K — Z U {+oo} satisfying
the following properties:

1) vg(xy) = vg(x) + vk (y), Yx,y e K¥;
2) vg(x +y) = min{vg(x), vk (W)}, Vx,y € K*;
3) vg(x) = 400 © x =0.
In other words, vg is a surjective morphism of groups K* — Z extended to K by
the condition vg(0) = +c0. To each discrete valuation one can associate:
The ring of integers Ok = {x € K | vg(x) > 0};
The maximal ideal mg := {x € K | vg(x) > 0};
The residue field kg := Og/mg;
The group of units Uk := {x € K | vg(x) = 0}.

A element g € Ok is a uniformizer of K if vg(ng) = 1. Note that mg = (7g)

and
K'=U K X <7T K> .

The valuation vk equips K with a topology characterized by the following
property:

Im x,=x & vg(x,—x) — +oo.
n—+oo n—+oo

Definition. A discrete valuation field K is called a local field if the following
conditions hold:

1) K is complete;
2) The residue field ki is finite.

Recall the classification of local fields:

Theorem 1.2. i) Each local field of characteristic 0 is isomorphic to a finite
extension of Q,, with p = char(kg).

it) Each local field of characteristic p is isomorphic to F,((t)) where ¥ is a
finite field of q elements and the valuation on ¥,((?)) is given by

VF, (1) (Zaktk] = min{k | a; # 0}.

k
99
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Let L/K be a finite extension of a local field K. Then L is a local field. Let k;,
denote the residue field of L and let r; be a uniformizer of L. Set

f=1lkr : kk] the inertia degree of L/K,
e :=vi(rg) the ramification index of L/K.
We have the fundamental relation:
ef =[L: K]

An extension L/K is unramified (respectively totally ramified) if ¢ = 1 (respec-

tively f = 1). If L/K is a finite extension of local fields, then there exists a unique

subextention K C Ly C L such that Ly/K is unramified and L/K is totally ramified.
Let L/K be a finite Galois extension. We have a natural surjective map

Gal(L/K) — Gal(kr/kk)

which is an isomorphism if and only in L/K is unfamified. In that case Gal(L/K) =~
Gal(kr/kk) is cyclic of order f = f(L/K) and we denote by Fry,x € Gal(L/K) the
inverse image of the Frobenius automorphism

er/K : kL - kL,
x> xl g = kgl
1.3. The multiplicative group of a local field. Let K be a local field. Set
Uy = Uk,
Ug ={x € Uxlvg(x = 1) > n},

or, equivalently,
Ug =1 + 1Ok, n>0.

Proposition 1.4. For each n > 1, one has:
WUk : U =4""'(q =),
where g = |kk|.
Proor. The proof is omitted. O

In the rest of this section, we assume that char(K) = 0. Set ex = e(K/Q)).
Define:
ok
X
exp(x) = kz_(; R

log(1 + x) = Z(—l)"“x—k.
k=0 k

Proposition 1.5. i) For each x € Ok such that
eK
p—1

the series exp(x) converges to an element of Ok and

vr(x) >

exp(x +y) = exp(x) exp(y).
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ii) For each x € mg, the series log(1 + x) converges to an element of K and
log(xy) = log(x) + log(y).
iii) For all m > [%] + 1, the maps exp and log define isomorphisms :
exp : mlp — UR,
log : UM — w2,
which are inverse to each other.

Proor. The proof is omitted.

2. Cohomology of the group of units

Let L/K be a finite Galois extension of local fields and let G = Gal(L/K). The
main result of this section is the following (see [?], §1.4, Proposition 1.3):

Proposition 2.1. The group of units Up contains a cohomologically trivial
G-submodule of finte index.

Proor. We will prove this proposition for local fields of characteristic 0. This
assumption allows to use the p-adic exponential. In the general case, the proof is
slightly different (see [?], Proposition 1.3).

By the normal basis theorem, there exists @ € L such that each x € L can be
written in a unique way in the form

X = Z agg(a), ag € K.
geG

In other words, L is the free K[G]-module generated by a. Multiplying, if neces-
sary, @ by some ¢ € Ok, one can assume that @ € Or. Then

M= Okgla)
geG
is a G-submodule of Oy, which is isomorphic to Og[G]. Therefore M is induced,
hence cohomologically trivial. This implies that for all m > 0, the module 7 M
is cohomologically trivial. Set e = e(L/K) and fix m such that v (7)) = me >

[%] + 1. Set:

N = exp(ng M).

By Proposition N is a submodule of U(Lme). Since exp defines an isomorphism

between mj¢ and Uﬁ{me), N and M are isomorphic. In particular, N is cohomo-

logically trivial. It remains to prove that (U : N) < +oco. Note that Oy is a free
Og-module of rank n = [L : K]. Fix a base xi, ..., x, of Oy, over Og. Then

x; = bpgi(@) + bpga(a) + -+ + bingn(@), bij € K.
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Fix k such that n’,‘(bij € Ok forall 1 < i,j < n. Then n’%xl- € M, and therefore
n’,‘(OL C M. Hence

e(k+m) _ +m m
m, = ﬂ'];( O CmgM,

and
U(Le(k+m)) = exp(mi(km)) C exp(ryM) = N.
Since Uée(kﬂ")) has finite index in Uy, we obtain that (U, : N) < +oco. O

We will deduce from this proposition several important corollaries.

Definition. Let G be a cyclic group and M a G-module. If the groups H*(G, M)
and H 1(G, M) are finite, we set

A%G, m)|

h(M =
i A'G, M)

and call it the Herbrand index of M.
We recall the main properties of Herbrand index:

Proposition 2.2. i) If M is finite, then h(M) = 1.
ii) Let
0O-M->M-M' -0
be a short exact sequence of G-modules. If two of the three terms of this sequence
have finite Herbrand indexes, so the third and

h(M) = h(M") h(M"").
Recall that an extension L/K is called cyclic if G is a cyclic group.

Corollary 2.3. Assume that L/K is a cyclic extension of local fields of degree
n. Then:

i)(Up) = 1.

ii) (L") = n;

iii) |H%(G, L")

= |H*(G, L")

=n.

Proor. i) Let N € Uy, be a cohomologically trivial G-submodule of finite in-

dex. Then 1.6.3, 0on a
h(N) =1,

hUL/N) =1,
hUL) = (UL/N)h(N) = 1.
ii) The valuation map vy : L* — Z gives rise to an exact sequence
O—>UL—>L*V—L>Z—>O.
Since h(Z) = n, we get
L") = KULKZ) = n.
iii) Recall that H°(G, L*) ~ H*(G, L*). By definition,
HG, L
n < G I
|H' (G, L")
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On the other hand, by Hilbert theorem 90
HY(G,L") = 0.
hence
|IA%(G, L*)| = k(L") = n.
O

Corollary 2.4. Let L/K be an unramified extension of local fields. Then Uy is
cohomologically trivial.

Proor. We use our criterion of cohomological triviality. Recall that

a) Each unramified extension is unramified;

b) If H C G is a subgroup, then H = Gal(L/F) with F = L¥ (Galois theory).
It is sufficient to show that

H'(G,U) = B°G,Up) = 0.
The short exact sequence
0-U,—->L" -Z-0
induces a long exact cohomology sequence
0 - HG,U;) - H(G,L") - H*G,Z) - H'(G,U;) » H'(G,L") > ...

One has H(G, L") = K*, H*(G,Z) = Z and H'(G, L*) = 0. Hence our sequence
reads:

0— Ugx - K 57 — H\(G,UpL) — 0.

Since L/K is unramified, v;(K*) = v, (L*) = Z. Hence H'(G, U;) = 0. By Corol-
lary we have #(Up) = 1, and therefore H*(G, U;) = 0. O

Corollary 2.5. Let L/K be a finite unramified extension. Then:
H(G,L") > H(G,Z), VieZ.
Proor. The short exact sequence
0-U.,—-L" -Z-0
induces a long exact sequence
A(G,Up) » A (G, L") - H(G,Z) - A (G, Uy)

Since Uy is cohomologically trivial, the middle map is an isomorphism. O

Exercise 24. Assume that L/K is unramified. Show that que

Np/x(Ur) = Uk.
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3. The Brauer group of a local field

3.1. The Brauer group. Let K be a field and let K ¢ L c E be Galois ex-
tensions of K. Since H'(Gal(E/L), E*) =, 0 the inflation-restriction exact sequence
reads:

0 — H*(Gal(L/K), L") —» HXGal(E/K), E*) —> H*(Gal(E/L), E*).
Therefore the map inf is an injection.
Definition. The direct limit

Br(K) = limH*(Gal(L/K), E*) = U H?*(Gal(L/K), L").
LW)( L/K

where E[K runs all Galois extensions of K, is called the Brauer group of K.
Example. /et K = R. Then
Br(R) = H*(Gal(C/R), C*).
The group Gal(C/R) is cyclic of order 2 :
Gal(C/R) = {id, o}.
Hence
Br(R) = (C*)"'/N(C") = R*/(R)" = {1,-1).

3.2. The Brauer group of a local field. In this section, K is a local field. We
define the unramified part of the Brauer group of K as

Br(K)y = U H(Gal(L/K), L").
L/K unram.
Let L/K be a finite unramified extension. Then

H?*(Gal(L/K), L") ~ H*(Gal(L/K),Z) ~ Hom(Gal(L/K), Q/Z).

The group Gal(L/K) is generated by the Frobenius automorphism Frz k. The
map

Hom(Gal(L/K),Q/Z) — %Z/Z,

X = )((FI‘L / K)-
is an isomorphism.
The following lemma shows that these isomorphisms are compatible:

Lemma 3.3. Let K C L C E be a tower of Galois extensions. The following
diagram is commutative

H*(Gal(L/K), L") == H*(Gal(L/K), Z) =—— Hom(Gal(L/K), Q/Z) — Q/Z

l inf l inf t inf H

H2(Gal(E/K), E*) == H*(Gal(E/K), Z) = Hom(Gal(E/K), Q/Z) — Q/Z
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Proor. The commutativity of the left squares follows from the functoriality
of inflation. The commutativity of the third square follows from the fact that the
projection Gal(E/K) — Gal(L/K) sends Frg,g to Frz k. O

Passing to the direct limit, we obtain an isomorphism

invg : Br(K)y = U H(Gal(L/K), L") > U %Z/Z = Q/Z.

L/K unram. n

Let F/K be a finite extension of degree n. For any unramified extension L/K
set L’ = LF. Then L’/F is unramified. Set G = Gal(L/K) and H = Gal(L’/F). By
Galois theory, H C G, and we have a map

HXG, L") = HXH, L") — H*H,L™).

To simplify the notation, we denote it by res. Passing to the direct limit, we obtain
a map
res : Br(K)y — Br(F)y,.

Proposition 3.4. Let F/K be a finite extension of degree n. Then the diagram

Br(K)ur —X~ Q/Z
jres jn
Bi(F)ur -t Q/Z.
commutes.

Proor. On pose e = e(F/K) et f = f(F/K). Soit L/K une extension non-
ramifiée. Alors f = f(L’/F). Nous allons démontrer que le diagramme suivant est
commutatif:

H*(G, L") =—— H*(G,Z) —— Hom(G, Q/Z) — Q/Z
lres leres Leres Ln:ef
H*(H,L"*) == H*(H,Z) == Hom(H, Q/Z) — Q/Z

En effet, comme L/K est non-ramifiée, on a e(L’/L) = e(F/K) = e. Donc, on a un
diagramme commutatif

L—2-7

L)

Y7

qui donne la commutativité du premier carré de (*):
H*(G, L") == H*(G, Z)

| |

H*(H,L"*) — H*(H,Z)
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Comme I’application “restriction” commute avec 1’application “cobord”
le deuxieme carré est commutatif. Pour démontrer la commutativité du dernier
carré, posons gx = lkk|, gr = |krl, qr = |kz| et g = |kr/|. Alors

1 i (x) = xF,
Fri e (%) = X%
Comme gp = q{(, on voit que la restriction de f7y,, k. sur k; coincide avec f ;{L =
Donc la restriction de F'ry//r a L coincide avec I r{ K Ceci donne la commutativité
du diagramme:
H'(G,Q/Z) —= Q/Z
jres L f
H'(H,Q/Z) — Q/Z.
Comme n = ef, on obtient la commutativité du troisieme carré de (*). La proposi-

tion s’en déduit. O

Corollary 3.5. Let F/K be a Galois extension of degree n and G = Gal(F/K).
Set
H*(G, F*)y = H*(G, F*) N Br(K)y:.
Then H*(G, F*)y; is cyclic of order n. In particular,

|H*(G, F")

> n.
Proor. Consider the exact sequence
inf ‘
0 — HXG, F*) = Br(K) —> Br(F).
Therefore, we have an exact sequence
0 = H*(G, F*)ar = Br(K)ur — Br(Far
and a commutative diagram

0 —— H*(G, F*)ur — Br(K)ur — Br(F)ur

inv K \ inv F

0—>%Z/Z Q/Z —_—=Q/Z.

V

Hence, H*(G, F*)y = 1Z/Z. O
We need the following technical result:

Lemma 3.6 (the "ugly” lemma). Let G be a finite group and M a G-module.
Let g and p be two integers > 0. Assume that the following conditions hold:

a) H'(H, M) = 0 for each subgroup H c G and alli = 1,2,...,q - 1.

b) For each chain of subgroups H C K C G such that H is normal in K and
(K : H) is a prime number, one has:

|[HY(K/H, M™)| divise (K : HY.
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Then |H1(G, M)| divides |G| .

Proor. a) First assume that |G| = p*, where p is a prime number. We show the
lemma by induction on k. For k = 1, the statement is clearly true. Now assume that
k > 2. Since the center Z(G) of G is no trivial, G has a normal subgroup N such
that 1 < |N| < |G|. We have the inflation-restriction exact sequence

0 — HYG/N, M) 25 59G, M) =5 HI(N, M).

By the induction hypothesis, [HY(G/N, M")| divides (G : N)° = |G/N° and |H(N, M)|
divides |N|°. Hence |HY(G, M)| divides

(G : NYINP = |GP.

b) We prove the lemma for an arbitrary group G. For each p, let G, denote the
Sylow p-subgroup of G. Then
G =] [1G,.
p

Applying part a) to the groups G,, we obtain that |HY(G,, M)| divides |G|’ for
each p. On the other hand, the maps

res : HI(G,M)(p) = H1(G,, M)
are injective. Hence [HY(G, M) (p)| divides |G, |°. Since

HY(G, M) = ) HI(G, M) (p),
p

we obtain that |[HY(G, M)| divides |G|°. O
We prove the main result of this section:

Theorem 3.7. i) Let L/K be a finite Galois extension with the Galois group
G = Gal(L/K). Then

a) H*(G,L"),, = HXG, L") i.e. H(G,L*) C Br(K)y,.

b) H*(G, L") is a cyclic group of order n = [L : K].

ii) Br(K) = Br(K)yr and the map invg induces an isomorphism

invg : Br(K) =~ Q/Z.

Proor. i)We apply Lemma to the group. H*(G,L*). For all H ¢ G, we
have H'(H, L") = 0 by Hilbert theorem 90. Let K C G tbe a subgroup such that
H is normal in K. Set M = LX. Then Gal(F/M) = K/H. If (K : H) is a prime
number, then, by Corollary [2.3] the group H2(K/H, (L*)") = H*(Gal(F/M), F*) is
of order (K : H). By Lemma|[3.6] this implies that

|H*(G, L")| divides |G| = [L : K.
On the other hand, by Corollary we have:
IH2(G, L") = |HX(G, L")ul = [L: KI.
Hence |[H*(G, L") = [L : K] and H*(G, L*)yy = H*(G, L*). This proves a) and b).
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ii) One has
Br(K) = Uk H*(Gal(L/K), L") = Uk H*(Gal(L/K), L )ur = Br(K)ur,
This proves ii). O

Corollary 3.8. Let L/K be a finite extension of degree n. Then the diagram

Br(K) £~ Q/Z
res n
Bi(L) £ Q/Z
commutes.
Proor. This follows from Proposition [3.4 O

4. The reciprocity map

4.1. The fundamental class. We apply Tate’s theorem. Let L/K be a finite
extension of degree n and let G = Gal(L/K). The restriction of invg on H?*(G, L")
gives an isomorphism:

1
invy/k,: H(G,L") ~ -Z/Z.
n
Letup/x € H?*(G, L*) be such that

. 1
invy g(up/k) = P

Then uz,k is a canonical generator of H?*(G, L"). For any subextension K C F C L,
we have:
[F:K] 1

invyp(res(urk)) = [F @ Klinvy g(up/x) = LKl [L:F|

Hence urp g = res(ur k). Since H 1(Gal(L/F), L*) = 0 for each intermediate exten-
sion, uy/k is a fundamental class. By Tate’s theorem, we have canonical isomor-
phisms

H(G,L") ~ A7%G,Z), i€l
4.2. The reciprocity map. Take i = 0 in the above isomorphism:
A°G,L")~ A%G,2), i€l
Since A%(G,L*) ~ K*/Ny/x(L*) and H™%(G,Z) ~ G/[G, G|, we obtain an isomor-
phism:
Ok © K*/Nk(L*) = G/[G,G].
If L/K is abelian, [G, G] = 1 and we obtain an isomorphism
HL/K . K*/NL/K(L*) =~ Gal(L/K)

called the reciprocity map.
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