Solutions to the midterm homework.

Exercice 1. Let $K=\mathbf{F}_{p}((t))$, thus K is a local field of characteristic p. Set $f(X)=$ $X^{p}-X-\frac{1}{t} \in K[X]$.

1) Show that $f(X)$ has no roots in K.

Solution. Let $K^{\text {alg }}$ denote an algebraic closure of K. We consider the discrete valuation v_{K} on K and denote again by v_{K} its continuation to $K^{\text {alg. Let } \alpha \in K^{\text {alg }} \text { be a }}$ root of $f(X)$. Since $v_{K}\left(t^{-1}\right)=1$, and $\alpha^{p}-\alpha=1 / t$, one has $v_{K}(\alpha)<0$. Moreover $v_{K}\left(\alpha^{p}\right)=p v_{K}(\alpha)<v_{K}(\alpha)$. This implies that $v_{K}\left(\alpha^{p}-\alpha\right)=-p v_{K}(\alpha)$. On the other hand $v_{K}\left(\alpha^{p}-\alpha\right)=-v_{K}(t)=-1(t$ is a uniformizer of $K)$. Therefore $v_{K}(\alpha)=-1 / p$. This implies that $\alpha \notin K$.
2) Let $L=K(\alpha)$, where α is a root of $f(X)$. Express the roots of $f(X)$ in terms of α. Show that L is a splitting field of $f(X)$ i.e. that $f(X)$ decomposes over L into linear factors.

Solution. Let β be another root of $f(X)$. Set $a=\beta-\alpha$. Then $a^{p}=\beta^{p}-\alpha^{p}$ (note that K is of characteristic p). Therefore a is a root of the polynomial $X^{p}-X$. Since the roots of $X^{p}-X$ are the elements of \mathbf{F}_{p}, we obtain that the roots of $f(X)$ are

$$
\alpha+a, \quad a \in \mathbf{F}_{p} .
$$

Therefore

$$
f(X)=\prod_{a \in \mathbf{F}_{p}}(X-(\alpha+a))
$$

This implies that $f(X)$ decomposes over $L=K(\alpha)$ into the product of linear factors.
3) Show that L / K is a Galois extension and that the map

$$
\left\{\begin{array}{l}
\varphi: \operatorname{Gal}(L / K) \rightarrow \mathbf{F}_{p} \\
\varphi(g)=g(\alpha)-\alpha
\end{array}\right.
$$

is an injective homomorphism. Deduce that $[L: K]=p$.
Solution. For each $g \in \operatorname{Gal}(L / K), g(\alpha)=\alpha+\varphi(g)$, where $\varphi(g) \in \mathbf{F}_{p}$. Therefore $\forall g_{1}, g_{2} \in \operatorname{Gal}(L / K)$, one has:

$$
g_{1} g_{2}(\alpha)=g_{1}\left(\alpha+\varphi\left(g_{2}\right)\right)=g_{1}(\alpha)+\varphi\left(g_{2}\right)=\alpha+\varphi\left(g_{1}\right)+\varphi\left(g_{2}\right) .
$$

This shows that $\varphi\left(g_{1} g_{2}\right)=\varphi\left(g_{1}\right)+\varphi\left(g_{2}\right)$. Moreover, g is completely defined by $g(\alpha)$ and therefore by $\varphi(g)$. Hence φ is an injective homomorphism, and $\operatorname{Im}(\varphi)$ is a nontrivial subgroup of \mathbf{F}_{p}. Since \mathbf{F}_{p} is of prime order p, this implies that φ is an isomorphism. In particular, $[L: K]=p$.
4) Show that L / K is totally ramified and give an uniformizer of L.

Solution. Set $\pi_{L}=1 / \alpha$. Then $v_{K}\left(\pi_{L}\right)=-v_{K}(\alpha)=1 / p=1 /[L: K]$. This implies that $[L: K]$ is totally ramified and π_{L} is a uniformizer of L.
5) Describe the ramification subgroups of $G=\operatorname{Gal}(L / K)$ in low enumeration.

Solution. For any $g \in \operatorname{Gal}(L / K)$, one has:

$$
g\left(\pi_{L}\right)-\pi_{L}=\frac{1}{\alpha+a(g)}-\frac{1}{\alpha}=-\frac{a(g)}{\alpha(\alpha+a(g))} .
$$

If $a(g) \neq 0$, then

$$
v_{L}\left(g\left(\pi_{L}\right)-\pi_{L}\right)=-v_{L}(\alpha(\alpha+a(g)))=-2 v_{L}(\alpha)=2
$$

Therefore

$$
G=G_{0}=G_{1}, \quad G_{2}=\{e\} .
$$

Exercise 2. Let π_{1} be a root of the polynomial $X^{p}-p$. For each $n \geqslant 1$, let $\pi_{n+1}=\sqrt[p]{\pi_{n}}$. Let $F_{n}=\mathbf{Q}_{p}\left(\pi_{n}\right)$ and $F_{\infty}=\bigcup_{n=0}^{\infty} F_{n}$. Show that F_{∞} / F is deeply ramified.

Solution. The minimal polynomial of π_{n} over \mathbf{Q}_{p} is $f_{n}(X)=X^{p^{n}}-p$. Since f_{n} is Eisenstein, $O_{F_{n}}=\mathbf{Z}_{p}\left[\pi_{n}\right]$ and we can compute its different:

$$
\mathfrak{D}_{F_{n} / \mathbf{Q}_{p}}=\left(f_{n}^{\prime}\left(\pi_{n}\right)\right)=\left(p^{n} \pi_{n}^{p^{n}-1}\right) .
$$

Therefore $v_{\mathbf{Q}_{p}}\left(\mathfrak{D}_{F_{n} / \mathbf{Q}_{p}}\right)=n+1-v_{\mathbf{Q}_{p}}\left(\pi_{n}\right)=n+1-\frac{1}{p^{n}}$. This implies that

$$
v_{\mathbf{Q}_{p}}\left(\mathfrak{D}_{F_{n} / \mathbf{Q}_{p}}\right) \rightarrow+\infty \quad \text { when } n \rightarrow+\infty
$$

Hence $F_{\infty} / \mathbf{Q}_{p}$ is deeply ramified.
Exercise 3. 1) Let $\zeta_{p^{n}}$ be a p^{n} th primitive root of unity. Set $K=\mathbf{Q}_{p}\left(\zeta_{p^{n}}\right)$ and $G=\operatorname{Gal}\left(K / \mathbf{Q}_{p}\right)$. We have an isomorphism

$$
\chi_{n}: G \simeq\left(\mathbf{Z} / p^{n} \mathbf{Z}\right)^{*}, \quad g\left(\zeta_{p^{n}}\right)=\zeta_{p^{n}}^{\chi_{n}(g)} .
$$

Set $\Gamma=\left(\mathbf{Z} / p^{n} \mathbf{Z}\right)^{*}$. Let $\Gamma^{(m)}=\left\{\bar{a} \in\left(\mathbf{Z} / p^{n} \mathbf{Z}\right)^{*} \mid a \equiv 1\left(\bmod p^{m}\right)\right\}$ (in particular $\Gamma^{(0)}=\left(\mathbf{Z} / p^{n} \mathbf{Z}\right)^{*}$ and $\left.\Gamma^{(n)}=\{1\}\right)$.

1) Show that

$$
\chi_{n}\left(G_{i}\right)=\Gamma^{(m)}, \quad \text { where } m \text { is the unique integer such that } p^{m-1} \leqslant i<p^{m} .
$$

Solution. Recall that for any $n, \mathbf{Q}_{p}\left(\zeta_{p^{n}}\right) / \mathbf{Q}_{p}$ is totally ramified of degree $p^{n-1}(p-1)$, and $\zeta_{p^{n}}-1$ is a uniformizer of $\mathbf{Q}_{p}\left(\zeta_{p^{n}}\right)$. Set $\pi=\zeta_{p^{n}}-1$. For any $g \in G$, one has:

$$
v_{K}(g(\pi)-\pi)=v_{K}\left(\zeta_{p^{n}}^{\chi_{n}(g)}-\zeta_{p^{n}}\right)=v_{K}\left(\zeta_{p^{n}}^{\chi_{n}(g)-1}-1\right) .
$$

If $g \neq e$, one can write:

$$
\chi_{n}(g)-1=p^{k} \bar{c}, \quad p \nmid c, \quad 0 \leqslant k \leqslant n-1 .
$$

Then $\zeta_{p^{n}}^{\chi_{n}(g)-1}=\zeta_{p^{n-k}}^{c}-1$ is a uniformizer of $\mathbf{Q}_{p}\left(\zeta_{p^{n-k}}\right)$, and

$$
v_{K}(g(\pi)-\pi)=v_{K}\left(\zeta_{p^{n-k}}^{c}-1\right)=p^{k}
$$

(note that $\left.\left[K: \mathbf{Q}_{p}\left(\zeta_{p^{n-k}}\right)\right]=p^{k}\right)$. By the definition of ramification subgroups, $g \in G_{i}$ if and only if

$$
v_{K}(g(\pi)-\pi) \geqslant i+1
$$

Therefore $g \in G_{i}$ if and only if $p^{k} \geqslant i+1$ if and only if $i<p^{k}$. Hence $\chi_{n}\left(G_{i}\right)=\Gamma^{(m)}$, where m is the smallest integer such that $i<p^{m}$. This proves the statement.

We remark that we proved that the ramification jumps of K / \mathbf{Q}_{p} (in low enumeration) are $0, p-1, p^{2}-1, \ldots, p^{n-1}-1$.
2) Give Hasse-Herbrand's functions $\phi_{K / \mathbf{Q}_{p}}$ and $\psi_{K / \mathbf{Q}_{p}}$.

Solution. By part 1), for any integer $i \geqslant 0$,

$$
\left(G: G_{i}\right)=(p-1) p^{m-1}, \quad p^{m-1} \leqslant i \leqslant p^{m}-1 .
$$

By definition and by part 1) of the exercise, for $0 \leqslant x \leqslant p^{n-1}-1$, one has:

$$
\phi_{K / \mathbf{Q}_{p}}^{\prime}(x)=\frac{1}{\left(G: G_{x}\right)}=\frac{1}{p^{m-1}(p-1)}, \quad p^{m-1}-1<x \leqslant p^{m}-1 .
$$

For $x>p^{n-1}-1$, one has:

$$
\phi_{K / \mathbf{Q}_{p}}^{\prime}(x)=\frac{1}{\left(G: G_{x}\right)}=\frac{1}{p^{n-1}(p-1)} .
$$

Here is the graph of $\phi_{K / \mathbf{Q}_{p}}(x)$ and $\psi_{K / \mathbf{Q}_{p}}$:

3) Set

$$
\Gamma^{(v)}=\Gamma^{(m)} \quad \text { where } m \text { is the smallest integer } \geqslant v
$$

Show that the upper ramification filtration on G is given by

$$
\chi_{n}\left(G^{(v)}\right)=\Gamma^{(v)} .
$$

Solution. Recall that $G^{\left(\phi_{K / Q_{p}}(x)\right)}=G_{x}$. Assume that $p^{m-1}-1<x \leqslant p^{m}-1$, where $m \leqslant n-1$. Then

$$
m-1<\phi_{K / \mathbf{Q}_{p}}(x) \leqslant m
$$

Therefore for $m-1<v \leqslant m$, and by part 1) one has:

$$
\chi_{n}\left(G^{(v)}\right)=\Gamma^{(m)}=\Gamma^{(v)}
$$

4) Let $\left(\zeta_{p^{n}}\right)_{n \geqslant 1}$ denote a system of p^{n} th primitive roots of unity such that $\zeta_{p^{n}}^{p}=\zeta_{p^{n-1}}$. Set $K_{n}=\mathbf{Q}_{p}\left(\zeta_{p^{n}}\right), K_{\infty}=\underset{n \geqslant 1}{\cup} K_{n}$ and $G_{\infty}=\operatorname{Gal}\left(K_{\infty} / \mathbf{Q}_{p}\right)$. Let $U_{\mathbf{Q}_{p}}=\mathbf{Z}_{p}^{*}$ be the group of units of \mathbf{Q}_{p}. We have the isomorphism:

$$
\chi: G_{\infty} \simeq U_{\mathbf{Q}_{p}}, \quad g\left(\zeta_{p^{n}}\right)=\zeta_{p^{n}}^{\chi(g)}, \quad \forall n \geqslant 1 .
$$

For any $v \geqslant 0$ set

$$
U_{\mathbf{Q}_{p}}^{(v)}=U_{\mathbf{Q}_{p}}^{(m)}, \quad \text { where } m \text { is the smallest integer } \geqslant v .
$$

Show that

$$
\chi\left(G_{\infty}^{(v)}\right)=U_{\mathbf{Q}_{p}}^{(v)}, \quad \forall v \geqslant 0
$$

Solution. One has:

We have a commutative diagram, where by part 3), w the horizonal maps are isomorphisms:

Hence

$$
G_{\infty}^{(v)} \simeq \lim _{\underset{n}{ }}\left(\mathbf{Z} / p^{n} \mathbf{Z}\right)^{(v)} \simeq U_{\mathbf{Q}_{p}}^{(v)} .
$$

Exercise 4. Let K_{∞} / K be a totally ramified \mathbf{Z}_{p}-extension of local fields of characteristic 0 . Recall some standard notation. For each n, we denote by $K_{n} \subset K_{\infty}$ the unique subextension of degree p^{n} over K. Let $\Gamma=\operatorname{Gal}\left(K_{\infty} / K\right)$ and $\gamma \in \Gamma$ a fixed topological generator of Γ. Let \widehat{K}_{∞} denote the completion of K_{∞} and $\left|\left.\right|_{K}\right.$ the extension of the absolute value on K to \widehat{K}_{∞}.

We consider the normalized traces $\mathrm{T}_{K_{\infty} / K_{n}}: \widehat{K}_{\infty} \rightarrow K_{n}$ for the ground fields K_{n} $(n \geqslant 0)$. Recall that from Proposition 4.2 it follows that there exists a constant $c>0$ which does not depend on n and such that

$$
\left|\mathrm{T}_{K_{\infty} / K_{n}}(x)-x\right|_{K} \leqslant c\left|\gamma^{p^{n}}(x)-x\right|_{K}, \quad \forall x \in \widehat{K}_{\infty} .
$$

1) Show that $\left|\mathrm{T}_{K_{\infty} / K_{n}}(x)\right|_{K} \leqslant \max \{1, c\} \cdot|x|_{K}$ and deduce that the map $\mathrm{T}_{K_{\infty} / K_{n}}$ is continuous.

Solution. Since

$$
\mathrm{T}_{K_{\infty} / K_{n}}(x)=\left(\mathrm{T}_{K_{\infty} / K_{n}}(x)-x\right)+x,
$$

one has:

$$
\left|\mathrm{T}_{K_{\infty} / K_{n}}(x)\right|_{K} \leqslant \max \left\{\left|\mathrm{~T}_{K_{\infty} / K_{n}}(x)-x\right|_{K},|x|_{K}\right\} .
$$

Moreover

$$
\left|\gamma^{p^{n}}(x)-x\right|_{K} \leqslant|x|_{K} .
$$

This implies 1).
2) Let $x \in \widehat{K}_{\infty}$. Show that the sequence $\left(T_{K_{\infty} / K_{n}}(x)\right)_{n \geqslant 1}$ converges to x.

Solution. There exists a sequence $\left(x_{n}\right)_{n \geqslant 0}$ such that $x_{n} \in K_{n}$ and $\lim _{n \rightarrow+\infty} x_{n}=x$. Write
$\left|T_{K_{\infty} / K_{n}}(x)-x\right|_{K}=\left|\left(T_{K_{\infty} / K_{n}}(x)-x_{n}\right)+\left(x_{n}-x\right)\right|_{K} \leqslant \max \left\{\left|T_{K_{\infty} / K_{n}}(x)-x_{n}\right|_{K},\left|x-x_{n}\right|_{K}\right\}$.

Since $T_{K_{\infty} / K_{n}}\left(x_{n}\right)=x_{n}$, one has:

$$
\left|T_{K_{\infty} / K_{n}}(x)-x_{n}\right|_{K}=\left|T_{K_{\infty} / K_{n}}\left(x-x_{n}\right)\right|_{K} \leqslant \max \{1, c\} \cdot\left|x-x_{n}\right|_{K}
$$

(here we use part 1)). Hence

$$
\left|T_{K_{\infty} / K_{n}}(x)-x\right|_{K} \leqslant \max \{1, c\} \cdot\left|x-x_{n}\right|_{K} .
$$

This implies 2).
3) This question can be treated independently. Assume that $W \subset \widehat{K}_{\infty}$ is a finite dimensional K-vector space which is stable under the action of Γ (i.e. $\gamma(x) \in W$ for all $x \in W$). Show that $W \subset K_{\infty}$. Hint: consider γ as a linear operator on W. First consider the case where the eigenvalues of γ are in K. Next reduce the general case to this particular case.

Solution. a) Assume that the eigenvalues of γ belong to K. We can decompose W into the direct sum of generalized eigenspaces $W=W_{1} \oplus \cdots \oplus W_{m}$. Therefore without loss of generality one can assume that $\lambda \neq 0$ is the unique eigenvalue of γ on W. Then there exists $x \in W \backslash\{0\}$ such that $\gamma(x)=\lambda x$. Recall that $\gamma-\lambda$ is invertible on \widehat{K}_{∞} if λ is not a p^{n} th root of unity. Hence $\lambda^{p^{n}}=1$ for some n. Recall the decomposition

$$
\widehat{K}_{\infty}=K_{n} \oplus\left(\widehat{K}_{n}\right)_{\infty}^{\circ} .
$$

Let $w \in W$. Then $(\gamma-\lambda)^{m}(w)=0$ for some $m \geqslant 1$. Since

$$
\gamma^{p^{n}}-1=(\gamma-\lambda)\left(\gamma^{p^{n}-1}+\cdots+\lambda^{p^{n}-1}\right)
$$

one has $\left(\gamma^{p^{n}}-1\right)^{m}(w)=0$. Write $w=\alpha+\beta$, where $\alpha \in K_{n}$ and $\beta \in\left(\widehat{K}_{n}\right)_{\infty}^{\circ}$. Since $\gamma^{p^{n}}-1$ is invertible on $\left(\widehat{K}_{n}\right)_{\infty}^{\circ}$, this implies that $\beta=0$, and $w=\alpha \in K_{n}$.
b) In the general case, assume that λ is an eigenvalue of γ. Then $\gamma(x)=\lambda x$. Therefore $\lambda \in \widehat{K}_{\infty}$. Moreover λ is algebraic over K. Hence

$$
\lambda \in \bar{K}^{G_{K_{\infty}}}=K_{\infty} .
$$

Therefore there exists n such that all eigenvalues of γ belong to K_{n}. Replacing W by $W \cdot K_{n}$, we reduce the general case to the case a).

