UNIVERSITÉ DE BORDEAUX M2, *p*-adic Hodge Theory 2020-2021

Solutions to the midterm homework.

Exercice 1. Let $K = \mathbf{F}_p((t))$, thus K is a local field of characteristic p. Set $f(X) = X^p - X - \frac{1}{t} \in K[X]$.

1) Show that f(X) has no roots in K.

Solution. Let K^{alg} denote an algebraic closure of K. We consider the discrete valuation v_K on K and denote again by v_K its continuation to K^{alg} . Let $\alpha \in K^{\text{alg}}$ be a root of f(X). Since $v_K(t^{-1}) = 1$, and $\alpha^p - \alpha = 1/t$, one has $v_K(\alpha) < 0$. Moreover $v_K(\alpha^p) = pv_K(\alpha) < v_K(\alpha)$. This implies that $v_K(\alpha^p - \alpha) = -pv_K(\alpha)$. On the other hand $v_K(\alpha^p - \alpha) = -v_K(t) = -1$ (t is a uniformizer of K). Therefore $v_K(\alpha) = -1/p$. This implies that $\alpha \notin K$.

2) Let $L = K(\alpha)$, where α is a root of f(X). Express the roots of f(X) in terms of α . Show that L is a splitting field of f(X) *i.e.* that f(X) decomposes over L into linear factors.

Solution. Let β be another root of f(X). Set $a = \beta - \alpha$. Then $a^p = \beta^p - \alpha^p$ (note that K is of characteristic p). Therefore a is a root of the polynomial $X^p - X$. Since the roots of $X^p - X$ are the elements of \mathbf{F}_p , we obtain that the roots of f(X) are

 $\alpha + a, \qquad a \in \mathbf{F}_p.$

Therefore

$$f(X) = \prod_{a \in \mathbf{F}_p} (X - (\alpha + a)).$$

This implies that f(X) decomposes over $L = K(\alpha)$ into the product of linear factors.

3) Show that L/K is a Galois extension and that the map

$$\begin{cases} \varphi : \operatorname{Gal}(L/K) \to \mathbf{F}_p, \\ \varphi(g) = g(\alpha) - \alpha \end{cases}$$

is an injective homomorphism. Deduce that [L:K] = p.

Solution. For each $g \in \text{Gal}(L/K)$, $g(\alpha) = \alpha + \varphi(g)$, where $\varphi(g) \in \mathbf{F}_p$. Therefore $\forall g_1, g_2 \in \text{Gal}(L/K)$, one has:

$$g_1g_2(\alpha) = g_1(\alpha + \varphi(g_2)) = g_1(\alpha) + \varphi(g_2) = \alpha + \varphi(g_1) + \varphi(g_2).$$

This shows that $\varphi(g_1g_2) = \varphi(g_1) + \varphi(g_2)$. Moreover, g is completely defined by $g(\alpha)$ and therefore by $\varphi(g)$. Hence φ is an injective homomorphism, and $\operatorname{Im}(\varphi)$ is a nontrivial subgroup of \mathbf{F}_p . Since \mathbf{F}_p is of prime order p, this implies that φ is an isomorphism. In particular, [L:K] = p.

4) Show that L/K is totally ramified and give an uniformizer of L.

Solution. Set $\pi_L = 1/\alpha$. Then $v_K(\pi_L) = -v_K(\alpha) = 1/p = 1/[L : K]$. This implies that [L : K] is totally ramified and π_L is a uniformizer of L.

5) Describe the ramification subgroups of $G = \operatorname{Gal}(L/K)$ in low enumeration.

Solution. For any $g \in \operatorname{Gal}(L/K)$, one has:

$$g(\pi_L) - \pi_L = \frac{1}{\alpha + a(g)} - \frac{1}{\alpha} = -\frac{a(g)}{\alpha(\alpha + a(g))}$$

If $a(g) \neq 0$, then

$$v_L(g(\pi_L) - \pi_L) = -v_L(\alpha(\alpha + a(g))) = -2v_L(\alpha) = 2.$$

Therefore

$$G = G_0 = G_1, \qquad G_2 = \{e\}.$$

Exercise 2. Let π_1 be a root of the polynomial $X^p - p$. For each $n \ge 1$, let $\pi_{n+1} = \sqrt[p]{\pi_n}$. Let $F_n = \mathbf{Q}_p(\pi_n)$ and $F_{\infty} = \bigcup_{n=0}^{\infty} F_n$. Show that F_{∞}/F is deeply ramified.

Solution. The minimal polynomial of π_n over \mathbf{Q}_p is $f_n(X) = X^{p^n} - p$. Since f_n is Eisenstein, $O_{F_n} = \mathbf{Z}_p[\pi_n]$ and we can compute its different:

$$\mathfrak{D}_{F_n/\mathbf{Q}_p} = (f'_n(\pi_n)) = (p^n \pi_n^{p^n - 1}).$$

Therefore $v_{\mathbf{Q}_p}(\mathfrak{D}_{F_n/\mathbf{Q}_p}) = n + 1 - v_{\mathbf{Q}_p}(\pi_n) = n + 1 - \frac{1}{p^n}$. This implies that

 $v_{\mathbf{Q}_p}(\mathfrak{D}_{F_n/\mathbf{Q}_p}) \to +\infty \quad \text{when } n \to +\infty.$

Hence F_{∞}/\mathbf{Q}_p is deeply ramified.

Exercise 3. 1) Let ζ_{p^n} be a p^n th primitive root of unity. Set $K = \mathbf{Q}_p(\zeta_{p^n})$ and $G = \operatorname{Gal}(K/\mathbf{Q}_p)$. We have an isomorphism

$$\chi_n : G \simeq (\mathbf{Z}/p^n \mathbf{Z})^*, \qquad g(\zeta_{p^n}) = \zeta_{p^n}^{\chi_n(g)}.$$

Set $\Gamma = (\mathbf{Z}/p^n \mathbf{Z})^*$. Let $\Gamma^{(m)} = \{\bar{a} \in (\mathbf{Z}/p^n \mathbf{Z})^* \mid a \equiv 1 \pmod{p^m}\}$ (in particular $\Gamma^{(0)} = (\mathbf{Z}/p^n \mathbf{Z})^*$ and $\Gamma^{(n)} = \{1\}$).

1) Show that

 $\chi_n(G_i) = \Gamma^{(m)}$, where *m* is the unique integer such that $p^{m-1} \leq i < p^m$.

Solution. Recall that for any n, $\mathbf{Q}_p(\zeta_{p^n})/\mathbf{Q}_p$ is totally ramified of degree $p^{n-1}(p-1)$, and $\zeta_{p^n} - 1$ is a uniformizer of $\mathbf{Q}_p(\zeta_{p^n})$. Set $\pi = \zeta_{p^n} - 1$. For any $g \in G$, one has:

$$v_K(g(\pi) - \pi) = v_K(\zeta_{p^n}^{\chi_n(g)} - \zeta_{p^n}) = v_K(\zeta_{p^n}^{\chi_n(g) - 1} - 1).$$

If $g \neq e$, one can write:

 $\chi_n(g) - 1 = p^k \bar{c}, \qquad p \not| c, \quad 0 \leq k \leq n - 1.$

Then $\zeta_{p^n}^{\chi_n(g)-1} = \zeta_{p^{n-k}}^c - 1$ is a uniformizer of $\mathbf{Q}_p(\zeta_{p^{n-k}})$, and

$$v_K(g(\pi) - \pi) = v_K(\zeta_{p^{n-k}}^c - 1) = p^k$$

(note that $[K : \mathbf{Q}_p(\zeta_{p^{n-k}})] = p^k$). By the definition of ramification subgroups, $g \in G_i$ if and only if

$$v_K(g(\pi) - \pi) \ge i + 1.$$

Therefore $g \in G_i$ if and only if $p^k \ge i + 1$ if and only if $i < p^k$. Hence $\chi_n(G_i) = \Gamma^{(m)}$, where *m* is the smallest integer such that $i < p^m$. This proves the statement.

We remark that we proved that the ramification jumps of K/\mathbf{Q}_p (in low enumeration) are $0, p-1, p^2-1, \ldots, p^{n-1}-1$.

2) Give Hasse–Herbrand's functions ϕ_{K/\mathbf{Q}_p} and ψ_{K/\mathbf{Q}_p} .

Solution. By part 1), for any integer $i \ge 0$,

$$(G:G_i) = (p-1)p^{m-1}, \qquad p^{m-1} \le i \le p^m - 1.$$

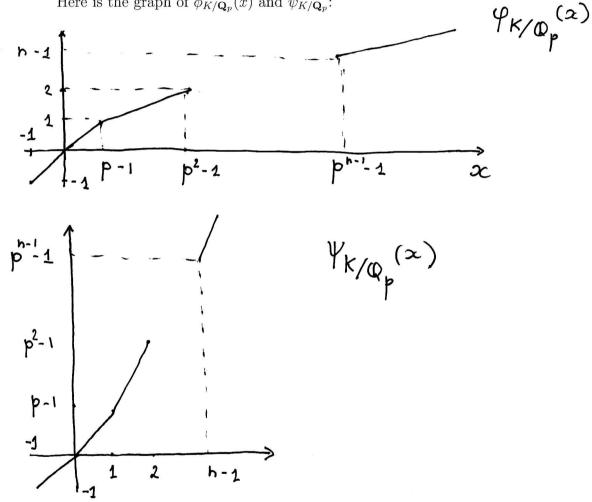
By definition and by part 1) of the exercise, for $0 \leq x \leq p^{n-1} - 1$, one has:

$$\phi'_{K/\mathbf{Q}_p}(x) = \frac{1}{(G:G_x)} = \frac{1}{p^{m-1}(p-1)}, \qquad p^{m-1} - 1 < x \le p^m - 1.$$

For $x > p^{n-1} - 1$, one has:

$$\phi'_{K/\mathbf{Q}_p}(x) = \frac{1}{(G:G_x)} = \frac{1}{p^{n-1}(p-1)}$$

Here is the graph of $\phi_{K/\mathbf{Q}_p}(x)$ and ψ_{K/\mathbf{Q}_p} :



3) Set

 $\Gamma^{(v)} = \Gamma^{(m)}$ where m is the smallest integer $\geq v$. Show that the upper ramification filtration on G is given by

$$\chi_n(G^{(v)}) = \Gamma^{(v)}.$$

Solution. Recall that $G^{(\phi_{K/\mathbf{Q}_p}(x))} = G_x$. Assume that $p^{m-1} - 1 < x \leq p^m - 1$, where $m \leq n-1$. Then

$$m-1 < \phi_{K/\mathbf{O}_n}(x) \leqslant m.$$

Therefore for $m - 1 < v \leq m$, and by part 1) one has:

$$\chi_n(G^{(v)}) = \Gamma^{(m)} = \Gamma^{(v)}.$$

4

4) Let $(\zeta_{p^n})_{n\geq 1}$ denote a system of p^n th primitive roots of unity such that $\zeta_{p^n}^p = \zeta_{p^{n-1}}$. Set $K_n = \mathbf{Q}_p(\zeta_{p^n}), K_\infty = \bigcup_{n\geq 1} K_n$ and $G_\infty = \operatorname{Gal}(K_\infty/\mathbf{Q}_p)$. Let $U_{\mathbf{Q}_p} = \mathbf{Z}_p^*$ be the group of units of \mathbf{Q}_p . We have the isomorphism:

$$\chi : G_{\infty} \simeq U_{\mathbf{Q}_p}, \qquad g(\zeta_{p^n}) = \zeta_{p^n}^{\chi(g)}, \quad \forall n \ge 1.$$

For any $v \ge 0$ set

 $U_{\mathbf{Q}_p}^{(v)} = U_{\mathbf{Q}_p}^{(m)}, \quad \text{where } m \text{ is the smallest integer} \ge v.$

Show that

$$\chi(G_{\infty}^{(v)}) = U_{\mathbf{Q}_p}^{(v)}, \qquad \forall v \ge 0.$$

Solution. One has:

$$G_{\infty}^{(v)} = \varprojlim_{n} \operatorname{Gal}(K_n/\mathbf{Q}_p)^{(v)}.$$

We have a commutative diagram, where by part 3), we the horizonal maps are isomorphisms:

Hence

$$G_{\infty}^{(v)} \simeq \varprojlim_{n} (\mathbf{Z}/p^{n}\mathbf{Z})^{(v)} \simeq U_{\mathbf{Q}_{p}}^{(v)}$$

Exercise 4. Let K_{∞}/K be a totally ramified \mathbb{Z}_p -extension of local fields of characteristic 0. Recall some standard notation. For each n, we denote by $K_n \subset K_{\infty}$ the unique subextension of degree p^n over K. Let $\Gamma = \operatorname{Gal}(K_{\infty}/K)$ and $\gamma \in \Gamma$ a fixed topological generator of Γ . Let \widehat{K}_{∞} denote the completion of K_{∞} and $| |_K$ the extension of the absolute value on K to \widehat{K}_{∞} .

We consider the normalized traces $T_{K_{\infty}/K_n} : \widehat{K}_{\infty} \to K_n$ for the ground fields K_n $(n \ge 0)$. Recall that from Proposition 4.2 it follows that there exists a constant c > 0which does not depend on n and such that

$$|\mathcal{T}_{K_{\infty}/K_{n}}(x) - x|_{K} \leq c |\gamma^{p^{n}}(x) - x|_{K}, \quad \forall x \in \widehat{K}_{\infty}$$

1) Show that $|T_{K_{\infty}/K_n}(x)|_K \leq \max\{1, c\} \cdot |x|_K$ and deduce that the map T_{K_{∞}/K_n} is continuous.

Solution. Since

$$T_{K_{\infty}/K_n}(x) = (T_{K_{\infty}/K_n}(x) - x) + x,$$

one has:

$$|T_{K_{\infty}/K_n}(x)|_K \leq \max\{|T_{K_{\infty}/K_n}(x) - x|_K, |x|_K\}.$$

Moreover

$$|\gamma^{p^n}(x) - x|_K \leqslant |x|_K.$$

This implies 1).

2) Let $x \in \widehat{K}_{\infty}$. Show that the sequence $(T_{K_{\infty}/K_n}(x))_{n \ge 1}$ converges to x.

Solution. There exists a sequence $(x_n)_{n\geq 0}$ such that $x_n \in K_n$ and $\lim_{n \to +\infty} x_n = x$. Write

$$|T_{K_{\infty}/K_{n}}(x) - x|_{K} = |(T_{K_{\infty}/K_{n}}(x) - x_{n}) + (x_{n} - x)|_{K} \leq \max\{|T_{K_{\infty}/K_{n}}(x) - x_{n}|_{K}, |x - x_{n}|_{K}\}\}$$

Since $T_{K_{\infty}/K_n}(x_n) = x_n$, one has:

$$|T_{K_{\infty}/K_{n}}(x) - x_{n}|_{K} = |T_{K_{\infty}/K_{n}}(x - x_{n})|_{K} \leq \max\{1, c\} \cdot |x - x_{n}|_{K}$$

(here we use part 1)). Hence

 $|T_{K_{\infty}/K_n}(x) - x|_K \leq \max\{1, c\} \cdot |x - x_n|_K.$

This implies 2).

3) This question can be treated independently. Assume that $W \subset \widehat{K}_{\infty}$ is a finite dimensional K-vector space which is stable under the action of Γ (i.e. $\gamma(x) \in W$ for all $x \in W$). Show that $W \subset K_{\infty}$. Hint: consider γ as a linear operator on W. First consider the case where the eigenvalues of γ are in K. Next reduce the general case to this particular case.

Solution. a) Assume that the eigenvalues of γ belong to K. We can decompose W into the direct sum of generalized eigenspaces $W = W_1 \oplus \cdots \oplus W_m$. Therefore without loss of generality one can assume that $\lambda \neq 0$ is the unique eigenvalue of γ on W. Then there exists $x \in W \setminus \{0\}$ such that $\gamma(x) = \lambda x$. Recall that $\gamma - \lambda$ is invertible on \widehat{K}_{∞} if λ is not a p^n th root of unity. Hence $\lambda^{p^n} = 1$ for some n. Recall the decomposition

$$\widehat{K}_{\infty} = K_n \oplus (\widehat{K}_n)_{\infty}^{\circ}$$

Let $w \in W$. Then $(\gamma - \lambda)^m(w) = 0$ for some $m \ge 1$. Since

$$\gamma^{p^n} - 1 = (\gamma - \lambda)(\gamma^{p^n - 1} + \dots + \lambda^{p^n - 1}),$$

one has $(\gamma^{p^n} - 1)^m(w) = 0$. Write $w = \alpha + \beta$, where $\alpha \in K_n$ and $\beta \in (\widehat{K}_n)^{\circ}_{\infty}$. Since $\gamma^{p^n} - 1$ is invertible on $(\widehat{K}_n)^{\circ}_{\infty}$, this implies that $\beta = 0$, and $w = \alpha \in K_n$.

b) In the general case, assume that λ is an eigenvalue of γ . Then $\gamma(x) = \lambda x$. Therefore $\lambda \in \widehat{K}_{\infty}$. Moreover λ is algebraic over K. Hence

$$\lambda \in \overline{K}^{G_{K_{\infty}}} = K_{\infty}.$$

Therefore there exists n such that all eigenvalues of γ belong to K_n . Replacing W by $W \cdot K_n$, we reduce the general case to the case a).