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Solutions to the midterm homework.

Exercice 1. Let K = Fp((t)), thus K is a local field of characteristic p. Set f(X) =

Xp −X − 1

t
∈ K[X].

1) Show that f(X) has no roots in K.

Solution. Let Kalg denote an algebraic closure of K. We consider the discrete val-
uation vK on K and denote again by vK its continuation to Kalg. Let α ∈ Kalg be a
root of f(X). Since vK(t−1) = 1, and αp − α = 1/t, one has vK(α) < 0. Moreover
vK(αp) = pvK(α) < vK(α). This implies that vK(αp − α) = −pvK(α). On the other hand
vK(αp − α) = −vK(t) = −1 (t is a uniformizer of K). Therefore vK(α) = −1/p. This
implies that α /∈ K.

2) Let L = K(α), where α is a root of f(X). Express the roots of f(X) in terms of
α. Show that L is a splitting field of f(X) i.e. that f(X) decomposes over L into linear
factors.

Solution. Let β be another root of f(X). Set a = β − α. Then ap = βp − αp (note
that K is of characteristic p). Therefore a is a root of the polynomial Xp −X. Since the
roots of Xp −X are the elements of Fp, we obtain that the roots of f(X) are

α + a, a ∈ Fp.

Therefore
f(X) =

∏
a∈Fp

(X − (α + a)).

This implies that f(X) decomposes over L = K(α) into the product of linear factors.

3) Show that L/K is a Galois extension and that the map{
ϕ : Gal(L/K)→ Fp,

ϕ(g) = g(α)− α

is an injective homomorphism. Deduce that [L : K] = p.

Solution. For each g ∈ Gal(L/K), g(α) = α + ϕ(g), where ϕ(g) ∈ Fp. Therefore
∀g1, g2 ∈ Gal(L/K), one has:

g1g2(α) = g1(α + ϕ(g2)) = g1(α) + ϕ(g2) = α + ϕ(g1) + ϕ(g2).

This shows that ϕ(g1g2) = ϕ(g1) + ϕ(g2). Moreover, g is completely defined by g(α) and
therefore by ϕ(g). Hence ϕ is an injective homomorphism, and Im(ϕ) is a nontrivial sub-
group of Fp. Since Fp is of prime order p, this implies that ϕ is an isomorphism. In
particular, [L : K] = p.

4) Show that L/K is totally ramified and give an uniformizer of L.

Solution. Set πL = 1/α. Then vK(πL) = −vK(α) = 1/p = 1/[L : K]. This implies
that [L : K] is totally ramified and πL is a uniformizer of L.
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5) Describe the ramification subgroups of G = Gal(L/K) in low enumeration.

Solution. For any g ∈ Gal(L/K), one has:

g(πL)− πL =
1

α + a(g)
− 1

α
= − a(g)

α(α + a(g))
.

If a(g) 6= 0, then

vL(g(πL)− πL) = −vL(α(α + a(g))) = −2vL(α) = 2.

Therefore
G = G0 = G1, G2 = {e}.

Exercise 2. Let π1 be a root of the polynomial Xp− p. For each n > 1, let πn+1 = p
√
πn.

Let Fn = Qp(πn) and F∞ =
∞
∪
n=0

Fn. Show that F∞/F is deeply ramified.

Solution. The minimal polynomial of πn over Qp is fn(X) = Xpn − p. Since fn is
Eisenstein, OFn = Zp[πn] and we can compute its different:

DFn/Qp = (f ′n(πn)) = (pnπp
n−1
n ).

Therefore vQp(DFn/Qp) = n+ 1− vQp(πn) = n+ 1− 1
pn
. This implies that

vQp(DFn/Qp)→ +∞ when n→ +∞.
Hence F∞/Qp is deeply ramified.

Exercise 3. 1) Let ζpn be a pnth primitive root of unity. Set K = Qp(ζpn) and
G = Gal(K/Qp). We have an isomorphism

χn : G ' (Z/pnZ)∗, g(ζpn) = ζ
χn(g)
pn .

Set Γ = (Z/pnZ)∗. Let Γ(m) = {ā ∈ (Z/pnZ)∗ | a ≡ 1 (mod pm)} (in particular
Γ(0) = (Z/pnZ)∗ and Γ(n) = {1}).

1) Show that

χn(Gi) = Γ(m), where m is the unique integer such that pm−1 6 i < pm.

Solution. Recall that for any n, Qp(ζpn)/Qp is totally ramified of degree pn−1(p− 1),
and ζpn − 1 is a uniformizer of Qp(ζpn). Set π = ζpn − 1. For any g ∈ G, one has:

vK(g(π)− π) = vK(ζ
χn(g)
pn − ζpn) = vK(ζ

χn(g)−1
pn − 1).

If g 6= e, one can write:

χn(g)− 1 = pkc̄, p 6 |c, 0 6 k 6 n− 1.

Then ζ
χn(g)−1
pn = ζc

pn−k − 1 is a uniformizer of Qp(ζpn−k), and

vK(g(π)− π) = vK(ζcpn−k − 1) = pk

(note that [K : Qp(ζpn−k)] = pk). By the definition of ramification subgroups, g ∈ Gi if
and only if

vK(g(π)− π) > i+ 1.

Therefore g ∈ Gi if and only if pk > i + 1 if and only if i < pk. Hence χn(Gi) = Γ(m),
where m is the smallest integer such that i < pm. This proves the statement.

We remark that we proved that the ramification jumps of K/Qp (in low enumeration)
are 0, p− 1, p2 − 1, . . . , pn−1 − 1.
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2) Give Hasse Herbrand's functions r)x1q,, and i,1,67q,,.

Solution. Bv part 1). for an-rr ip1.*.r i > O,
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Show that the upper rarnification filtration on G is given ir1'
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4) Let (ζpn)n>1 denote a system of pnth primitive roots of unity such that ζppn = ζpn−1 .
Set Kn = Qp(ζpn), K∞ = ∪

n>1
Kn and G∞ = Gal(K∞/Qp). Let UQp = Z∗p be the group of

units of Qp. We have the isomorphism:

χ : G∞ ' UQp , g(ζpn) = ζ
χ(g)
pn , ∀n > 1.

For any v > 0 set

U
(v)
Qp

= U
(m)
Qp

, where m is the smallest integer > v.

Show that
χ(G(v)

∞ ) = U
(v)
Qp
, ∀v > 0.

Solution. One has:
G(v)
∞ = lim←−

n

Gal(Kn/Qp)
(v).

We have a commutative diagram, where by part 3), w the horizonal maps are isomor-
phisms:

Gal(Kn/Qp)
(v)

��

χn // (Z/pnZ)(v)

��

Gal(Kn−1/Qp)
(v)

χn−1 // (Z/pn−1Z)(v).

Hence
G(v)
∞ ' lim←−

n

(Z/pnZ)(v) ' U
(v)
Qp
.

Exercise 4. Let K∞/K be a totally ramified Zp-extension of local fields of charac-
teristic 0. Recall some standard notation. For each n, we denote by Kn ⊂ K∞ the unique
subextension of degree pn over K. Let Γ = Gal(K∞/K) and γ ∈ Γ a fixed topological gen-

erator of Γ. Let K̂∞ denote the completion of K∞ and | |K the extension of the absolute

value on K to K̂∞.
We consider the normalized traces TK∞/Kn : K̂∞ → Kn for the ground fields Kn

(n > 0). Recall that from Proposition 4.2 it follows that there exists a constant c > 0
which does not depend on n and such that

|TK∞/Kn(x)− x|K 6 c|γpn(x)− x|K , ∀x ∈ K̂∞.
1) Show that |TK∞/Kn(x)|K 6 max{1, c} · |x|K and deduce that the map TK∞/Kn is

continuous.

Solution. Since
TK∞/Kn(x) = (TK∞/Kn(x)− x) + x,

one has:
|TK∞/Kn(x)|K 6 max{|TK∞/Kn(x)− x|K , |x|K}.

Moreover
|γpn(x)− x|K 6 |x|K .

This implies 1).

2) Let x ∈ K̂∞. Show that the sequence
(
TK∞/Kn(x)

)
n>1

converges to x.

Solution. There exists a sequence (xn)n>0 such that xn ∈ Kn and limn→+∞ xn = x.
Write

|TK∞/Kn(x)−x|K = |(TK∞/Kn(x)−xn)+(xn−x)|K 6 max{|TK∞/Kn(x)−xn|K , |x−xn|K}.
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Since TK∞/Kn(xn) = xn, one has:

|TK∞/Kn(x)− xn|K = |TK∞/Kn(x− xn)|K 6 max{1, c} · |x− xn|K
(here we use part 1)). Hence

|TK∞/Kn(x)− x|K 6 max{1, c} · |x− xn|K .
This implies 2).

3) This question can be treated independently. Assume that W ⊂ K̂∞ is a finite dimen-
sional K-vector space which is stable under the action of Γ (i.e. γ(x) ∈ W for all x ∈ W ).
Show that W ⊂ K∞. Hint: consider γ as a linear operator on W. First consider the case
where the eigenvalues of γ are in K. Next reduce the general case to this particular case.

Solution. a) Assume that the eigenvalues of γ belong to K. We can decompose W
into the direct sum of generalized eigenspaces W = W1 ⊕ · · · ⊕Wm. Therefore without
loss of generality one can assume that λ 6= 0 is the unique eigenvalue of γ on W. Then

there exists x ∈ W \ {0} such that γ(x) = λx. Recall that γ − λ is invertible on K̂∞ if λ
is not a pnth root of unity. Hence λp

n
= 1 for some n. Recall the decomposition

K̂∞ = Kn ⊕ (K̂n)◦∞.

Let w ∈ W. Then (γ − λ)m(w) = 0 for some m > 1. Since

γp
n − 1 = (γ − λ)(γp

n−1 + · · ·+ λp
n−1),

one has (γp
n−1)m(w) = 0. Write w = α+β, where α ∈ Kn and β ∈ (K̂n)◦∞. Since γp

n−1

is invertible on (K̂n)◦∞, this implies that β = 0, and w = α ∈ Kn.
b) In the general case, assume that λ is an eigenvalue of γ. Then γ(x) = λx. Therefore

λ ∈ K̂∞. Moreover λ is algebraic over K. Hence

λ ∈ KGK∞ = K∞.

Therefore there exists n such that all eigenvalues of γ belong to Kn. Replacing W by
W ·Kn, we reduce the general case to the case a).


