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CHAPTER 1

Preliminaries

1. Non-archimedean fields

1.1. We recall basic definitions and facts about non-archimedean fields.

DEFINITION. A non-archimedean field is a field K equipped a non-archimedean
absolute value that is, an absolute value | · |K satisfying the ultrametric trinagle in-
equality

|x+ y|K ⩽ max
{
|x|K , |y|K

}
, ∀x,y ∈ K.

We will say that K is complete if it is complete for the topology induced by | · |K .

To any non-archimedean field K can associate its ring of integers

OK =
{

x ∈ K | |x|K ⩽ 1
}
.

The ring OK is local, with the maximal ideal

mK =
{

x ∈ K | |x|K < 1
}
.

The group of units of OK is

UK =
{

x ∈ K | |x|K = 1
}
.

The residue field of K is defined as

kK = OK/mK .

THEOREM 1.2. Let K be a complete non-archimedean field and let L/K be a
finite extension of degree n = [L : K]. Then the absolute value | · |K has a unique
continuation | · |L to L, which is given by

|x|L =
∣∣NL/K(x)

∣∣1/n
K ,

where NL/K is the norm map.

PROOF. See [1, Ch. 2, Thm 7]. Another proof (valid only for locally compact
fields) can be found in [5, Chapter II, section 10]. □

This theorem allows to extend | · |K to the algebraic closure of K. In particular,
we have a unique extension of | · |K to the separable closure K of K.

PROPOSITION 1.3 (Krasner’s lemma). Let K be a complete non-archimedean
field. Let α ∈ K and let α1 = α,α2, . . . ,αn denote the conjugates of α over K. Set

dα = min
{
|α−αi|K | 2 ⩽ i ⩽ n

}
.

If β ∈ K is such that |α−β |< dα , then K(α)⊂ K(β ).
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6 1. PRELIMINARIES

PROOF. We recall the proof. Assume that α /∈ K(β ). Then K(α,β )/K(β )
is a non-trivial extension, and there exists an embedding σ : K(α,β )/K(β )→
K/K(β ) such that αi := σ(α) ̸= α. Hence

|β −αi|K = |σ(β −α)|K = |β −α|K < dα

and

|α−αi|K = |(α−β )+(β −αi)|K ⩽ max
{
|α−β |K , |β −αi|K

}
< dα .

This gives a contradiction. □

We give an application of Krasner’s lemma. Let K be an algebraic closure of
K. By Theorem 1.2, the absolute value | · |K extends in a unique way to an absolute
value on K, which we will again denote by | · |K . Let CK denote the completion of
K with respect to | · |K .

PROPOSITION 1.4. Assume that K is a complete non-archimedean field of
characteristic 0. Then the field CK is algebraically closed.

PROOF. Proof by contradiction. Let f (X)=Xn+an−1Xn−1+· · ·+a0 ∈OCK [X ]
be an irreducible monic polynomial of degree ⩾ 2, and let C denotes its splitting
field. By Theorem 1.2, the absolute value | · |K extends to C. Let α1, α2, · · · ,αn be
the roots of f (X) in C. Set

d := min
1⩽i̸= j⩽n

|αi−α j|K > 0.

Choose a monic polynomial g(X) := Xn +bn−1Xn−1 + · · ·+b0 ∈ K[X ] such that

|bi−ai|K < dn, for all 0 ⩽ i ⩽ n−1.

Let β ∈ K be a root of g(X). Since

f (X)−g(X) =
n−1

∑
i=0

(ai−bi)X i,

and β ∈ OK , we have:

| f (β )|K = | f (β )−g(β )|K ⩽ max
0⩽i⩽n−1

|bi−ai|K < dn.

On the other hand, f (β ) =
n
∏
i=1

(β −αi). Hence

n

∏
i=1
|β −αi|K < dn.

Therefore, there exists i0 such that |β −αi0 |K < d. Taking into account the defini-
tion of d, we obtain that

|β −αi0 |K < min
i̸=i0
|αi−αi0 |K

By Krasner’s lemma, this implies that CK(αi0) ⊂ CK(β ) = CK . Therefore αi0 ∈
CK , and we conclude that f (X) has a root in CK . This contradicts the irreductibility
of f (X). □
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PROPOSITION 1.5 (Hensel’s lemma). Let K be a complete non-archimedean
field. Let f (X) ∈ OK [X ] be a monic polynomial such that

a) the reduction f̄ (X) ∈ kK [X ] of f (X) modulo mK has a root ᾱ ∈ kK ;
b) f̄ ′(ᾱ) ̸= 0.
Then there exists a unique α ∈OK such that f (α) = 0 and ᾱ = α (mod mK).

PROOF. See, for example [14, Chapter 2, §2]. □

1.6. Recall that a valuation on K is a function vK : K→R∪{+∞} satisfying
the following properties:

1) vK(xy) = vK(x)+ vK(y), ∀x,y ∈ K∗;
2) vK(x+ y)⩾ min{vK(x),vK(y)}, ∀x,y ∈ K∗;
3) vK(x) = ∞⇔ x = 0.

For any ρ ∈]0,1[, the function |x|ρ = ρvK(x) defines an ultrametric absolute value on
K. Conversely, if | · |K is an ultrametric absolute value, then for any c the function
vc(x) = logc |x|K is a valuation on K. This establishes a one to one correspondence
between equivalence classes of non-archimedean absolute values and equivalence
classes of valuations on K.

Exercise 1. Let K be a field of characteristic p with algebraically closed
residue field. Consider the polynomial f (X) := X p−X − c. Show that if c ∈ OK ,
then f (X) splits in K.

2. Local fields

2.1. In this section we review the basic theory of local fields.

DEFINITION. A discrete valuation field is a field K equipped with a valuation
vK such that vK(K∗) is a discrete subgroup of R. Equivalently, K is a discrete
valuation field if it is equipped with an absolute value | · |K such that |K∗|K ⊂ R+

is discrete.

Let K be a discrete valuation field. In the equivalence class of discrete val-
uations on K we can choose the unique valuation vK such that vK(K∗) = Z. An
element πK ∈ K such that vK(πK) = 1 is called a uniformizer of K. Every x ∈ K∗

can be written in the form x = π
vK(x)
K u with u ∈UK , and one has:

K∗ ≃ ⟨πK⟩×UK , mK = (πK).

We adopt the following convention.

DEFINITION. A local field is a complete discrete valuation field K whose
residue field kK is finite.

Note that many (but not all) results and constructions of the theory are valid
under the weaker assumption that the residue field kK is perfect.

We will always assume that the discrete valuation

vK : K→ Z∪{+∞}
is surjective.
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PROPOSITION 2.2. Let K be a local field. Then the groups OK , m
n
K and UK

are compact.

PROOF. One can easily prove the sequential compacteness of OK considering
finite sets OK/m

n
K . Since mK = πKOK and UK ⊂ OK is closed, this proves the

lemma. □

2.3. If L/K is a finite extension of local fields, we define the ramification
index e(L/K) and the inertia degree f (L/K) of L/K by

e(L/K) = vL(πK), f (L/K) = [kL : kK ].

Recall the fundamental formula

f (L/K)e(L/K) = [L : K]

(see, for example, [1, Ch. 3, Thm 6] ).

2.4. Let K be a local field, q = |kK |.

PROPOSITION 2.5. i) For any x ∈ kK there exists a unique [x] such that x = [x]
mod πK and [x]q = [x].

ii) The multiplicative group of K contains the subgroup µq−1 of (q−1)th roots
of unity and the map

[ · ] :k∗K → µq−1,

x 7→ [x]
is an isomorphism.

iii) If char(K) = p, then [ · ] gives an inclusion of fields kK ↪→ K.

PROOF. The statements i-ii) follow easily from Hensel’s lemma, applied to the
polynomial Xq−X .

iii) If char(K) = p then for any x,y ∈ kK

([x]+ [y])q = [x]q +[y]q = [x]+ [y]

(use binomial expansion). By unicity, this implies that [x+ y] = [x]+ [y]. □

COROLLARY 2.6. Every x ∈ OK can be written by a unique way in the form

x =
∞

∑
i=0

[ai]π
i
K .

Exercise 2. Let x ∈ kK and let x̂ ∈OK be any lift of x under the map OK → kK .
a) Show that the sequence (x̂qn

)n∈N converges to an element of OK which
doesn’t depend on the choice of x̂.

b) Show that [x] = limn→+∞ x̂qn
.

THEOREM 2.7. Let K be a local field and p = char(kK).
i) If char(K) = p, then K is isomorphic to the field kK((X)) of Laurent power

series, where kK is the residue field of K and X is transcendental over k. The dis-
crete valuation on K is given by

vK( f (X)) = ordX f (X) := min{i ∈ Z | ai ̸= 0},
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where f (X) = ∑
i≫−∞

aiX i. Note that X is a uniformizer of K and OK ≃ kK [[X ]].

ii) If char(K) = 0, then K is isomorphic to a finite extension of the field of p-
adic numbers Qp. The absolute value on K is the extension of the p-adic absolute
value ∣∣∣a

b
pk
∣∣∣

p
= p−k, p ̸ |a,b.

PROOF. i) Assume that char(K) = p. By Corollary 2.6, we have a bijection

K→ kK((X)),

x 7→ x =
∞

∑
i=0

aiX i, where x =
∞

∑
i=0

[ai]π
i
K .

By Proposition 2.5 iv), this map is an isomorphism.
ii) Assume that char(K) = 0. Then Q ⊂ K. The absolute value | · |K induces

an absolute value on Q. By Ostrowski theorem, any non archimedean absolute
value on Q is equivalent to the p-adic absolute value for some prime p. Since K is
complete, this implies that Qp ⊂ K. Since kK is finite, [kK : Fp]<+∞. Since vK is
discrete, e(K/Qp) = vK(p)<+∞. This implies that [K : Qp]<+∞.

□

2.8. The group of units UK is equipped with the exhaustive descending filtra-
tion

U (n)
K = 1+π

n
KOK , n ⩾ 0.

PROPOSITION 2.9. i) The map

UK → k∗K , x 7→ x̄ := x (mod πK)

induces an isomorphism UK/U (1)
K ≃ k∗K .

ii) For any n ⩾ 1, the map

U (n)
K → kK , 1+π

n
Kx 7→ x̄

induces an isomorphism U (n)
K /U (n+1)

K ≃ k+K .

PROOF. The proof is left as an exercise. □

DEFINITION 2.10. One says that L/K is
i) unramified if e(L/K) = 1 (and therefore f (L/K) = [L : K]);
ii) totally ramified if e(L/K) = [L : K] (and therefore f (L/K) = 1).

2.10.1. The unramified extensions can be described entirely in terms of the
residue field kK . Namely, there exists a one-to-one correspondence

{finite extensions of kK}←→ {finite unramified extensions of K}
which can be explicitly described as follows. Let k/kK be a finite extension of
kK . Write k = kK(α) and denote by f (X) ∈ kK [X ] the minimal polynomial of α.

Let f̂ (X) ∈ OK [X ] denote any lift of f (X). Then we associate to k the extension
L = K(α̂), where α̂ is the unique root of f̂ (X) whose reduction modulo mL is α.
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An easy argument using Hensel’s lemma shows that L doesn’t depend on the choice
of the lift f̂ (X).

Unramified extensions form distinguished classes of extensions in the sense
of [13]. In particular, for any finite extension L/K one can define its maximal
unramified subextension Lur as the compositum of all its unramified subextensions.
Then one has

f (L/K) = [Lur : K], e(L/K) = [L : Lur].

The extension L/Lur is totally ramified.
2.10.2. Assume that L/K is totally ramified of degree n. Let πL be any uni-

formizer of L and let

f (X) = Xn +an−1Xn−1 + · · ·+a1X +a0 ∈ OK [X ]

be the minimal polynomial of πL. Then f (X) is an Eisenstein polynomial, namely

vK(ai)⩾ 1 for 0 ⩽ i ⩽ n−1, and vK(a0) = 1.

Conversely, if α is a root of an Eisenstein polynomial of degree n over K, then
K(α)/K is totally ramified of degree n, and α is an uniformizer of K(α).

DEFINITION 2.11. One says that an extension L/K is
i) tamely ramified, if e(L/K) is coprime to p.
ii) totally tamely ramified, if it is totally ramified and e(L/K) is coprime to p.

Using Krasner’s lemma, it is easy to give an explicit description of totally
tamely ramified extensions.

PROPOSITION 2.12. If L/K is totally tamely ramified of degree n, then there
exists a uniformizer πK ∈ K such that

L = K(πL), π
n
L = πK .

PROOF. Assume that L/K is totally tamely ramified of degree n. Let Π be a
uniformizer of L and f (X) = Xn + · · ·+ a1X + a0 its minimal polynomial. Then
f (X) is Eisenstein, and πK := −a0 is a uniformizer of K. Let αi ∈ K (1 ⩽ i ⩽ n)
denote the roots of g(X) := Xn +a0. Then

|g(Π)|K = |g(Π)− f (Π)|K ⩽ max
1⩽i⩽n−1

|aiΠ
i|K < |πK |K

Since |g(Π)|K =
n
∏
i=1

(Π−αi) and Π = (−1)n
n
∏
i=1

αi, we have

n

∏
i=1
|Π−αi|K <

n

∏
i=1
|αi|K .

Therefore there exists i0 such that

(1) |Π−αi0 |K < |αi0 |K .

Set πL = αi0 . Then

∏
i ̸=i0

(πL−αi) = g′(πL) = nπ
n−1
L .
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Since (n, p) = 1 and |πL−αi|K ⩽ |πL|K , the previous equality implies that

dπL := min
i̸=i0
|πL−αi|K = |πL|K .

Together with (1), this gives that

|Π−αi0 |K < dπL .

Applying Krasner’s lemma we find that K(πL)⊂ L. Since [L : K] = [K(πL) : K] = n,
we obtain that L = K(πL), and the proposition is proved.

□

Exercise 3. Show that Qp( p−1
√
−p) = Qp(ζp), where ζp is a primitive pth root

of unity.

Exercise 4. Let K be a local field and πK and π ′K be two uniformizers of K.
Show that

Kur( n
√

πK) = Kur( n
√

π ′K), for any (n, p) = 1.

Deduce that the compositum of two tamely ramified extensions is tamely ramified.

Exercise 5. ( See[14, Chapter 2, Proposition 14]). Let K be a local field
of characteristic 0. Show that for any n ⩾ 1 there exists only a finite number of
extensions of K of degree n.

Exercise 6. Show that a local field of characteristic p has infinitely many sepa-
rable extensions of degree p. This could be proved using Artin–Schreier extensions
(see for example [13, Chapter VI,§6] for basic results of Artin–Schreier theory).

3. The different

3.1. The Dedekind different. In this subsection, A denotes a Dedekind ring
with fraction field K. Let L/K be a finite separable extention and B the integral
closure of A in L. We consider the map

tL/K : L×L→ K,

tL/K(x,y) = TrL/K(xy).

PROPOSITION 3.2. tL/K is a non-degenerate symmetric K-bilinear form on L.

PROOF. We have:
tL/K(x1 + x2,y) = TrL/K((x1 + x2)y) = TrL/K(x1y+ x2y) =

TrL/K(x1y)+TrL/K(x2y) = tL/K(x1,y)+ tL/K(x2,y).

If a ∈ K, then for any z ∈ L on has TrL/K(az) = aTrL/K(z), and therefore

⟨ax,y⟩= TrL/K(axy) = aTrL/K(xy) = a⟨x,y⟩.
This shows that tL/K is a K-bilinear form. Moreover, it is clear that it is sym-
metric. From the general theory of field extensions, it is known that the sepa-
rability of L/K implies that for any basis {ωi}n

i=1 of L over K, the determinant
det
(
tL/K(ωi,ω j)1⩽i, j⩽n

)
is non-zero. Therefore the form tL/K is non-degenarate.

□
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If M⊆ L is a finitely generated A-module, we define its complementary module
M′ as

M′ = {x ∈ L | tL/K(x,y) ∈ A for all y ∈M}.
It is easy to see that M′ is an A-module and that M ⊆ N implies N′ ⊆M′.
Let ω1, . . . ,ωn be a base of L/K and let ω ′1, . . . ,ω

′
n denote the dual base, i.e.

tL/K(ωi,ω
′
j) =

{
1, if i = j,
0, if i ̸= j.

If M = Aω1 + . . .+Aωn, then M′ = Aω ′1 + · · ·+Aω ′n.
We study the complementary module B′ of the Dedekind ring B. Note that, in

general, B is not free over A.

PROPOSITION 3.3. i) There exist free A-modules M1,M2 ⊂ L such that

M1 ⊆ B⊆M2.

ii) B′ is a fractional ideal of B and B⊂ B′.
iii) The inverse (B′)−1 of B′ is an ideal of B.

PROOF. i) Let {ωi}n
i=1 be a basis of L/K. There exists a∈A such that aω1, . . . ,aωn

are integral over A. Let M1 denote the A-module generated by aω1, . . . ,aωn. Then
M1 is A-free, and M1 ⊆ B.

ii) By definition, B′ is an A-module. If x,y ∈ B, then

tL/K(x,y) = TrL/K(xy) ∈ A.

Hence B⊂ B′. To show that B′ is a fractional ideal, we only should find b ̸= 0 such
that bB′ ⊆ B. Let x1, . . . ,xn be a basis of M2 over A. Then there exists b ∈ B such
that bx1, . . . ,bxn ∈ B. Hence bB′ ⊂ bM2 ∈ B.

iii) By definition, the inverse (B′)−1 of B′ is the fractional ideal defined by

(B′)−1 = {x ∈ L |xB′ ⊂ B}
Let x ∈ (B′)−1. Since B⊆ B′, we have x ∈ xB⊂ xB′ ⊂ B. This proves that (B′)−1 ⊂
B. □

DEFINITION. The ideal DB/A := (B′)−1 is called the different of B over A.

THEOREM 3.4. Let K ⊂ L⊂M be a tower of separable extensions. Let B and
C denote the integral closure of A in L and M respectively. Then

DC/A =DC/BDB/A.

Here DC/BDB/A denotes the ideal of C generated by the products xy, x ∈ DC/B,
y ∈DB/A.

PROOF. We will prove the theorem in the equivalent form

D−1
C/A =D−1

C/BD
−1
B/A.

First prove that

(2) D−1
C/BD

−1
B/A ⊂D−1

C/A.
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The ideal D−1
C/BD

−1
B/A is generated by the products xy x∈D−1

C/B, y∈D−1
B/A. Let z∈C.

Then TrM/L(xz) ∈ B, and

TrM/K((xy)z) = TrL/K(yTrM/L(xz)) ∈ A.

therefore xy ∈D−1
C/A, and the inclusion (2) is proved.

Now assume that x ∈D−1
C/A. Then for all y ∈C one has

TrM/K(xy) ∈ A.

Since TrM/K = TrL/K ◦TrM/L, we obtain that for all b ∈ B

TrL/K(TrM/L(xy)b) = TrM/K(x(yb)) ∈ A.

Hence, TrM/L(xy) ∈D−1
B/A. This implies that for all z ∈DB/A one has

TrM/L((xz)y) = zTrM/L(xy) ∈ B,

and we obtain that xz ∈D−1
C/B. Therefore we proved that

D−1
C/ADB/A ⊂D−1

C/B,

i.e. that
D−1

C/A ⊂D−1
B/AD

−1
C/B.

Together with (2), this gives the theorem. □

Now we compute the different in the important case of simple extensions of
Dedekind rings.

THEOREM 3.5. Assume that B = A[α], where α is some element integral over
A. Then DB/A coincides with the principal ideal generated by f ′(α) :

DB/A = ( f ′(α)).

PROOF. Let f (X) = a0 +a1X + · · ·+an−1Xn−1 +Xn ∈ A[X ] denote the mini-
mal monic polynomial of α over K. Then {1,α,α2, . . . ,αn−1} is a basis of B over
A. In particular, B is free of rank n over A.

Let α1, . . . ,αn denote the roots of f (X) in some algebraic closure of K contain-
ing B. We claim that

(3)
n

∑
i=1

f (X)

X−αi

αr
i

f ′(αi)
= X r

for all r = 0,1, . . . ,n− 1. To prove this formula, it is sufficient to remark that X r

and ∑
n
i=1

f (X)
X−αi

αr
i

f ′(αi)
are both polynomials of degree ⩽ n−1 taking the same values

at α1, . . .αn. Namely,(
f (X)

X−αi

)∣∣∣∣
X=α j

=

{
0, if i ̸= j,
f ′(α j), if i = j.

and therefore
n

∑
i=1

(
f (X)

X−αi

αr
i

f ′(αi)

)∣∣∣∣
X=α j

= f ′(α j) ·
αr

j

f ′(α j)
= f ′(α j).
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Now we prove the theorem using formula (3).
For any polynomial g(X) = c0+c1X + · · ·+ckXk with coefficients in L, define:

TrL/K(g(X)) =
k

∑
i=1

TrL/K(ci)X i.

Then formula (3) reads:

TrL/K

(
f (X)

X−α

αr

f ′(α)

)
= X r.

Set
f (X)

X−α
= b0 +b1X + · · ·+bn−1Xn−1.

From the Euclidean division, it follows that all bi ∈ B. We have:

TrL/K

(
bi

f ′(α)
α

r
)
=

{
0, if i ̸= r,
1, if i = r.

Therefore the elements bi/ f ′(α), 0 ⩽ i ⩽ n− 1 form the dual basis of the basis
1,α, . . . ,αn−1. Hence

D−1
B/A =

1
f ′(α)

(b0A+b1A+ · · ·+bn−1A).

To complete the proof, we only need to show that

(4) b0A+b1A+ · · ·+bn−1A = A[α].

Since bi ∈ B the inclusion

b0A+b1A+ · · ·+bn−1A⊂ B

is clear. On the other hand from the identity

f (X) = (b0 +b1X + · · ·+bn−1Xn−1)(X−α)

we obtain, by induction that

bn−1 = 1 ⇒ A = bn−1A
bn−2−α = an−1 ⇒ α = bn−2−an−1 ∈ A+bn−2A,

bn−3−αbn−2 = an−2 ⇒ α
2 ∈ A+bn−2A+bn−3A,

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

Therefore A[α]⊆ b0A+b1A+ · · ·+bn−1A, and (4) is proved. It implies that D−1
B/A =

f ′(α)−1B, and we are done. □
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3.6. The case of local fields. Let L/K be a finite separable extension of local
fields. In that case, DL/K is a principal ideal and therefore DL/K = ms

L for some
s ⩾ 0. Set

vL(DL/K) := s = inf{vL(x) | x ∈DL/K}.

PROPOSITION 3.7. Let L/K be a finite separable extension of local fields and
e = e(L/K) the ramification index. The following assertions hold true:

i) If OL = OK [α], and f (X) ∈ OK [X ] is the minimal polynomial of α, then
DL/K = ( f ′(α)).

ii) DL/K = OL if and only if L/K is unramified.
iii) vL(DL/K)⩾ e−1.
iv) vL(DL/K) = e−1 if and only if L/K is tamely ramified.

PROOF. The first statement is a particular case of Theorem 3.5. We prove ii-iv)
(see also [14, Chapter 3, Proposition 8] for more detail).

a) Let L/K be an unramified extension of degree n. Write kL = kK(ᾱ) for some
ᾱ ∈ kL. Let f (X) ∈ kK [X ] denote the minimal polynomial of ᾱ. Then deg( f̄ ) = n.
Take any lift f (X) ∈ OK [X ] of f̄ (X) of degree n. By Proposition 1.5 (Hensel’s
lemma) there exists a unique root α ∈OL of f (X) such that ᾱ = α (mod mK). It’s
easy to see that OL = OK [α]. Since f̄ (X) is separable, f̄ ′(ᾱ) ̸= 0, and therefore
f ′(α) ∈UL. Applying i), we obtain that

DL/K = ( f ′(α)) = OL.

Therefore DL/K = OL if L/K is unramified.
b) Assume that L/K is totally ramified. Then OL = OK [πL], where πL is any

uniformizer of OL. Let f (X) = Xe + ae−1Xe−1 + · · ·+ a1X + a0 be the minimal
polynomial of piL. Then

f ′(πL) = eπ
e−1
L +(e−1)ae−1π

e−2
L + · · ·+a1.

Since f (X) is Eisenstein, vL(ai)⩾ e, and an easy estimation shows that vL( f ′(πL))⩾
e−1. Thus

vL(DL/K) = vL( f ′(α))⩾ e−1.

This proves iii). Moreover, vL( f ′(α)) = e− 1 if and only if (e, p) = 1 i.e. if and
only if L/K is tamely ramified. This proves iv).

c) Assume that DL/K = OL. Then vL(DL/K) = 0. Let Lur denote the maximal
unramified subextension of L/K. By (??), a) and b) we have

vL(DL/K) = vL(DL/Lur)⩾ e−1.

Thus e = 1, and we showed that each extension L/K such that DL/K = OL is un-
ramified. Together with a), this proves i). □

Exercise 7. Let L/K be a finite extension of local fields. Show that OL =OK [α]
for some α ∈ OL. Hint: take α = [ξ ]+πL, where kL = kK(ξ ).
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4. Ramification filtration

4.1. In this section, we determine Galois groups of unramified extensions.

PROPOSITION 4.2. Let L/K be a finite unramified extension. Then L/K is a
Galois extension and the natural homomorphism

r : Gal(L/K)→ Gal(kL/kK)

is an isomorphism.

PROOF. a) Write kL = kK(ξ ) and denote by f (X) the minimal polynomial of
ξ . Let f̂ (X) ∈ OK [X ] be a lift of f (X). Then OL = OK [ξ̂ ] where f̂ (ξ̂ ) = 0 and
ξ = ξ̂ (mod πL) Since kL/kK is a Galois extension, all roots ξ1, . . . ,ξn of f (X) lie
in kL. By Hensel’s lemma, there exists unique roots ξ̂1, . . . , ξ̂n ∈ OL of f̂ (X) such
that ξi = ξ̂i (mod πL). This shows that L/K is a Galois extension.

b) Let gi ∈ Gal(L/K) be such that gi(ξ̂ ) = ξ̂i. Then r(gi)(ξ ) = ξi. This shows
that r is an isomorphism. □

Recall that Gal(kL/kK) is the cyclic group generated by the automorphism of
Frobenius:

fkL/kK (x) = xq, ∀x ∈ kL.

DEFINITION. We denote by FL/K and call the Frobenius automorphism of L/K
the pre-image of fkL/kK in Gal(L/K). Thus FL/K is the unique automorphism such
that

FL/K(x)≡ xq (mod πL).

4.3. Let L/K be a arbitrary finite Galois extension, and let Lur denote its
maximal unramified subextension. Then we have an exact sequence

{1}→ IL/K → Gal(L/K)→ Gal(Lur/K)→{1}
The subgroup IL/K = Gal(L/Lur) is called the inertia subgroup of Gal(L/K).

4.4. Let L/K be a finite Galois extension of local fields. Set G = Gal(L/K).
For any integer i ⩾−1 define

Gi = {g ∈ G | vL(g(x)− x)⩾ i+1, ∀x ∈ OL}.

DEFINITION. The subgroups Gi are called ramification subgroups.

We have a descending chain

G = G−1 ⊃ G0 ⊃ G1 ⊃ ·· · ⊃ Gm = {1}
called the ramification filtration on G (in low numbering). Below we collect some
basic properties of these subgroups.

1) G−1 = G and G0 = IL/K .

PROOF. We have

g ∈ G0⇔ g(x)≡ x (mod πL)⇔ g ∈ IL/K .

□
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2) Gi are normal subgroups of G.

PROOF. Let g ∈ Gi and s ∈ G. Then

vL(s−1gs(x)− x) = vL(s−1gs(x)− s−1s(x)) = vL(gs(x)− s(x)).

□

3) For each i ⩾ 0 one has

Gi =

{
g ∈ G | vL

(
1− g(πL)

πL

)
⩾ i
}
.

PROOF. We have

g(πk
L)−π

k
L = (g(πL))

k−π
k
L = (g(πL)−πL)a, a ∈ OL

Since g acts trivially on Teichmüller lifts, this implies that

g ∈ Gi⇔ vL(g(πL)−πL)⩾ i+1.

This implies the assertion. □

PROPOSITION 4.5. i) For all i ⩾ 0, the map

(5) si : Gi/Gi+1→U (i)
L /U (i+1)

L ,

which sends ḡ = g mod Gi+1 to si(ḡ) =
g(πL)

πL
(mod U (i+1)

L ), is a well defined
monomorphism which doesn’t depend on the choice of the uniformizer πL of L.

ii) The composition of si with the maps (2.9) gives monomorphisms

(6) δ0 : G0/G1→ k∗, δi : Gi/Gi+1→ k+, for all i ⩾ 1.

PROOF. The proof is straightforward. See [17, Chapitre IV, Propositions 5-
7]. □

COROLLARY 4.6. The Galois group G is solvable for any Galois extension.

4.7. For our study of the ramification filtration, it is convenient to introduce
the function

iL/K : G→ Z∪{+∞}, iL/K(g) = min{g(x)− x | x ∈ OL}.

Below, we summarize basic properties of this function:

1) If OL = OK [α], then

iL/K(g) = vL(g(α)−α).

Note that for any finite extension of local fields L/K, there exists α ∈ L
such that OL = OK [α] (see Exercise 7).

PROOF. We only need to show that for any x ∈ OL,

vL(g(x)− x)⩾ vL(g(α)−α).
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Since x =
n−1
∑

k=0
akαk for some ak ∈ OK , this follows from the computation

g(α)−α =
n−1

∑
k=0

akg(αk)−
n−1

∑
k=0

akα
k =

n−1

∑
k=1

ak(g(α)k−α
k)

and the identity

g(α)k−α
k = (g(α)−α) ·

(
k−1

∑
j=0

g(α)k− j−1
α

k

)
.

□

2) For all g1,g2 ∈ G,

iL/K(g1g2)⩾ min{iL/K(g1), iL/K(g2)}.

PROOF. For any x ∈ OL, one has

g1g2(x)− x = g1(g2(x)− x)+(g1(x)− x).

Since vL(g(y)) = vL(y) for any y ∈ L and g ∈ G, we obtain that

vL(g1g2(x)− x)⩾ min{vL(g1(g2(x)− x)),vL(g1(x)− x)}
= min{vL(g2(x)− x),vL(g1(x)− x)},

and we are done. □

3) For all g1,g2 ∈ G,

iL/K(g
−1
1 g2g1) = iL/K(g2).

PROOF. Let OL = OK [α]. Since g1 : OL→OL is a bijection, one has
OL = OK [g−1

1 (α)] and iL/K(g) = vL(gg−1
1 (α)− g−1

1 (α)) for any g ∈ G.
Hence

iL/K(g
−1
1 g2g1) = vL(g−1

1 g2g1(g−1
1 (α)−g−1

1 (α))) = vL(g−1
1 g2(α)−g−1

1 (α))

= vL(g−1
1 (g2(α)−α)) = vL(g2(α)−α) = iL/K(g2).

□

4) For any g ∈ G,

iL/K(g
−1) = iL/K(g).

PROOF. This property follows immediately from the following com-
putation:

vL(g−1(x)− x) = vL(g(g−1(x)− x)) = vL(x−g(x)).

□

5) g ∈ Gi if and only if iL/K(g)⩾ i+1.

PROOF. This property is clear. □
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4.8. The different DL/K of a finite Galois extension can be computed in terms
of the ramification subgroups.

PROPOSITION 4.9. Let L/K be a finite Galois extension of local fields. Then

vL(DL/K) = ∑
g̸=1

iL/K(g) =
∞

∑
i=0

(|Gi|−1).

PROOF. Let OL = OK [α] and let f (X) be the minimal polynomial of α. Since

f ′(α) = ∏
g̸=1

(α−g(α)),

we have

vL(DL/K)= vL( f ′(α))= ∑
g̸=1

vL(α−g(α))= ∑
g̸=1

iL/K(g)=
∞

∑
i=0

(i+1)(|Gi|−|Gi+1|)

=
∞

∑
i=0

(i+1)
(
(|Gi|−1)− (|Gi+1|−1)

)
=

∞

∑
i=0

(|Gi|−1).

□

4.10. Our next goal is to understand the behavior of the ramification filtration
in towers of local fields. We will consider a tower

(7) L

H

G F

K

where G := Gal(L/K) and H := Gal(L/F). From the definition of the ramifiaction
subgroups it follows immediately that

Hi = H ∩Gi, i ⩾−1.

COROLLARY 4.11. One has

e(L/F)vF(DF/K) = ∑
g∈G\H

iL/K(g).

PROOF. Write Proposition 4.9 for the extension L/F :

vL(DL/F) = ∑
h∈H\{e}

iL/F(h)

Taking into account that iL/F(h) = iL/K(h) and G = (G\H)∪H, we have

(8) vL(DL/K)− vL(DL/F) = ∑
g∈G\H

iL/F(g).

On the other hand, from Theorem 3.4, we have

(9) vL(DL/K) = vL(DL/F)+ vL(DF/K) = vL(DL/F)+ e(L/F)vF(DF/K).
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(Here we use the formula vL(x) = e(L/F)vF(x) for x∈ F.) Comparing formulas (8)
and (9), we obtain the corollary. □

From now one, we assume that F/K is a Galois extension. Note that in that
case Gal(F/K) = G/H. If g∈G and s∈G/H, we will write g 7→ s if s is the image
of g under the canonical projection G→ G/H.

PROPOSITION 4.12. For all s ∈ G/H,

e(L/F)iF/K(s) = ∑
g7→s

iL/K(g).

PROOF. If s = e, the both sides of the formula are equal to +∞. Assume that
s ̸= e. Write OL = OF [α] and denote by f (X) ∈ OF [X ] the minimal polynomial of
α over F. Let s f (X) ∈OF [X ] denote the polynomial obtained acting s on the coef-
ficients of f (X) (so, s acts trivially on the variable X). Directly from the definition
of iF/K , one has

s f (X)− f (X)≡ 0 (mod m
iF/K(s)
F ).

Hence (s f )(α)≡ 0 (mod m
iF/K(s)
F ). On the other hand, acting on the both sides of

the formula f (X) = ∏
h∈H

(X−h(α)) by any lift of s in G, we obtain

s f (X) = ∏
g7→s

(X−g(α)).

Therefore, (s f )(α) = ∏
g7→s

(α−g(α)), and

∏
g7→s

(α−g(α))≡ 0 (mod m
iF/K(s)
F ).

Taking the valuations of the both sides, we obtain the inequality

∑
g7→s

iL/K(g)⩾ e(L/F)iF/K(s).

To show that this inequality is in fact equality, we take the sum over all s ̸= e and
use Corollary 4.11:

e(L/F)∑
s̸=e

iF/K(s)⩾ ∑
s̸=e

∑
g7→s

iL/K(g) = ∑
g∈G\H

iL/K(g) = e(L/F)∑
s̸=e

iF/K(s).

Therefore e(L/F)iF/K(s) = ∑
g7→s

iL/K(g) for all s, and the proposition is proved. □

For any s ∈ G/H, define

j(s) := max{iL/K(g) | g 7→ s}.
Then there exists g̃ 7→ s such that j(s) = iL/K(g̃). Then any g such that g 7→ s can
be written in the form g = g̃h for some h ∈ H. Hence

iL/K(g)⩾ min{iL/K(g̃), iL/K(h)}.

On the other hand, writing h = g̃−1g we have

iL/K(h)⩾ min{iL/K(g̃
−1), iL/K(g)}= min{iL/K(g̃), iL/K(g)}= iL/K(g).
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Therefore
iL/K(g) = min{iL/K(g̃), iL/K(h)},

and we can write Proposition 4.12 in the following form:

COROLLARY 4.13. For all s ∈ G/H,

e(L/F)iF/K(s) = ∑
h∈H

min{ j(s), iL/K(h)}.

4.14. Let L/K en a finite Galois extension of local fields. For any real x ⩾−1
set Gx := Gm, where m is the unique integer such that m ⩽ x < m+1. The Hasse–
Herbrand function varphiL/K is defined as follows

(10) ϕL/K(u) =

u if −1 ⩽ u ⩽ 0,∫ u

0

dx
(G0 : Gx)

, if u ⩾ 0

From definition it follows that ϕL/K is a continuous strictly increasing piecewise
linear function. More explicitly, if we set gm := |Gm| for all integer m ⩾−1, then

ϕL/K(u) =
1
g0

(g1 + . . .+gm +(u−m)gm+1), if m < u ⩽ m+1.

In particular ϕL/K : [−1,+∞[→ [−1,+∞[ is a bijection, and we denote by ψL/K its
inverse function:

ψL/K(v) := ϕ
−1
L/K(v).

LEMMA 4.15. The following formula holds true:

ϕL/K(u) =
1
g0

∑
g̸=e

min{iL/K(g),u+1}−1.

PROOF. a) The both sides of this formula are continuous functions. In addi-
tion, because iL/K(g)⩾ 0, for any u ∈ [−1,0] one has

min{iL/K(g),u+1}=

{
0, if g /∈ G0,

u+1, if g ∈ G0.

Therefore, if u ∈ [−1,0], then

RHS(u) =
1
g0

∑
g̸=e

min{iL/K(g),u+1}−1 =
g0(u+1)

g0
−1 = u,

and RHS(u) = ϕL/K(u) on [−1.0].
b) Assume that m < u < m+1 for some integer m ⩾ 0. Then

min{iL/K(g),u+1}=

{
iL/K(g), if g /∈ Gm+1,

u+1, if g ∈ Gm+1,

and therefore
RHS′(u) =

gm+1

g0
= ϕ

′
L/K(u).

This implies that RHS′(u) = ϕ ′L/K(u) if u /∈ Z. Hence RHS(u) = ϕL/K(u), and the
lemma is proved. □
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LEMMA 4.16. Let K ⊂ F ⊂ L be a tower of finite Galois extensions. We keep
notation of diagram (7). Then

iF/K(s) = ϕL/F( j(s)−1)+1, s ∈ G/H.

PROOF. From Lemma 4.15 it follows that

ϕL/F( j(s)−1)+1 =
1
|H0|∑h̸=e

min{iL/K(h), j(s)}.

On the other hand, Corollary 4.13 can be written in the form

iF/K(s) =
1
|H0| ∑h∈H

min{ j(s), iL/K(h)}.

Here we remark that e(L/F) = |H0|. These formulas imply the lemma. □

We are now in position to prove the central results of the ramification theory
of Hasse-Herbrand.

THEOREM 4.17. i) For any u ⩾ 0

GuH/H ≃ (G/H)ϕL/F (u).

ii) ϕL/K = ϕF/K ◦ϕL/F and ψL/K = ψL/F ◦ψF/K .

PROOF. i) The first statement follows from the equivalences

s ∈ (G/H)ϕL/F (u)⇔ iF/K(s)⩾ ϕL/F(u)+1 lemma 4.16⇔ ϕL/F( j(s)−1)⩾ ϕL/F(u)

⇔ j(s)⩾ u+1⇔∃g 7→ s, such that g ∈ Gu.

ii) We deduce ii) from i). We have

(ϕF/K ◦ϕL/F)
′(u)=ϕ

′
F/K(ϕL/F(u))ϕ

′
L/F(u)=

1
((G/H)0 : (G/H)ϕL/F (u)) · (H0 : Hu)

and

(G/H)ϕL/F (u) = GuH/H = Gu/(H ∩Gu) = Gu/Hu.

This implies that

((G/H)0 : (G/H)ϕL/F (u)) = (G0 : Gu)/(H0 : Hu),

and therefore

(ϕF/K ◦ϕL/F)
′(u) =

1
(G : Gu)

= ϕ
′
L/K(u).

This implies ii). □
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4.18. In order to define the ramification filtration for infinite extensions, we
introduce the so-called upper numbering of ramification subgroups.

DEFINITION. The ramification subgroups in upper numbering are defined as
follows:

G(v) = GψL/K(v)

or equivalently GϕL/K(u) = Gu.

THEOREM 4.19.

(G/H)(v) = G(v)/G(v)∩H, ∀v ⩾ 0.

PROOF. We have (G/H)(v) = (G/H)ψF/K(v) and

G(v)/G(v)∩H = GψL/K(v)/GψL/K(v)∩H.

Setting x = ψL/K(v), we have

G(v)/G(v)∩H = Gx/Gx∩H

and (G/H)(v) = (G/H)ϕL/F (x). By Theorem 4.17, (G/H)ϕL/F (x) = Gx/Gx∩H, and
we are done. □

PROPOSITION 4.20. One has

ψL/K(v) =

v if −1 ⩽ v ⩽ 0,∫ v

0
(G(0) : G(x))dx if u ⩾ 0.

PROOF. Since ψL/K(v) = ϕ
−1
L/K(v), we have

ψ
′
L/K(ϕL/K(u)) =

1
ϕ ′L/K(u)

= (G0 : Gu) = (G(0) : G(ϕL/K(u))).

Setting x = ϕL/K(u), we obtain that ψ ′L/K(x) = (G(0) : G(x)). This proves the propo-
sition. □

4.21. Hasse-Hebrand theory allows to define the ramification filtration for
infinite Galois extensions. Namely, for any (finite or infinite) Galois extension of
local fields M/K define

Gal(M/K)(v) = lim←−
L/K finite

Gal(L/K)(v)

In particular, we can consider the ramification filtration on the absolute Galois
group GK of K. This filtration contains fundamental information about the field K.

Exercise 8. 1) Let ζpn be a pnth primitive root of unity. Set K = Qp(ζpn) and
G = Gal(K/Qp). We have the isomorphism

χn : G≃ (Z/pnZ)∗, g(ζpn) = ζ
χn(g)
pn .
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Set Γ = (Z/pnZ)∗. Let Γ(m) = {ā ∈ (Z/pnZ)∗ | a ≡ 1 (mod pm)} (in particular
Γ(0) = (Z/pnZ)∗ and Γ(n) = {1}).

a) Show that

χ(Gi) = Γ
(m), where m is the unique integer such that pm−1 ⩽ i < pm.

b) Give Hasse–Herbrand’s functions φK/Qp and ψK/Qp .
c) Set

Γ
(v) = Γ

(m) where m is the smallest integer ⩾ v.

Show that the upper ramifiation filtration on G is given by

χn(G(v)) = Γ
(v).

2) Let (ζpn)n⩾1 denote a system of pnth primitive roots of unity such that ζ
p
pn =

ζpn−1 . Set Kn = Qp(ζpn), K∞ = ∪
n⩾1

Kn and G∞ = Gal(K∞/Qp). Let UQp = Z∗p be the

group of units of Qp. We have the isomorphism:

χ : G≃UQp , g(ζpn) = ζ
χ(g)
pn , ∀n ⩾ 1.

For any v ⩾ 0 set

U (v)
Qp

=U (m)
Qp

, where m is the smallest integer ⩾ v.

Show that

χ(G(v)) =U (v)
Qp

, ∀v ⩾ 0.

4.22. Formula (4.9) can be written in terms of upper ramification subgroups:

THEOREM 4.23. Let L/K be a finite Galois extension. Then

vK(DL/K) =
∫

∞

−1

(
1− 1
|G(v)|

)
dv.

PROOF. We start with the computation of the derivative of ψL/K . From the
identity ψL/K ◦ϕL/K(u) = u, we have ψ ′L/K(ϕL/K(u))ϕ ′L/K(u) = 1. Since ϕ ′L/K(u) =
1/(G0 : Gu), this implies that

ψ
′
L/K(ϕL/K(u)) = (G0 : Gu).

Setting v = ϕL/K(u), we obtain the formula

ψ
′
L/K(v) = (G0 : GψL/K(v)) = (G0 : G(v)) = (G(0) : G(v)).

We pass to the proof of the theorem. By (4.9), we have

vK(DL/K) =
vL(DL/K)

e(L/K)
=

1
|G0|

∫
∞

−1
(|Gu|−1)du.
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Setting u = ψL/K(v) and taking into accout that ψ ′L/K(v) = (G(0) : G(v)) we can
write:

vK(DL/K) =
1
|G0|

∫
∞

−1
(|G(v)|−1)ψ ′L/K(v)dv

=
1
|G0|

∫
∞

−1
(|G(v)|−1)(G(0) : G(v))dv =

∫
∞

−1

(
1− 1
|G(v)|

)
dv.

The theorem is proved. □

The above theorem can be generalized to arbitrary (not necessarily Galois)
finite extensions as follows. For any v ⩾ 0 define

K(v)
= KG(v)

K .

THEOREM 4.24. For any finite extension L/K one has

(11) vK(DL/K) =
∫

∞

−1

(
1− 1

[L : L∩K(v)
]

)
dv

PROOF. See [6, Lemma 2.1]). □

5. Galois groups of local fields

5.1. The maximal unramified extension. In this section, we review the struc-
ture of Galois groups of local fields. Let K be a local field. Fix a separable clo-
sure K of K and set GK = Gal(K/K). Since the compositum of two unramified
(respectively tamely ramified) extensions of K is unramified (respectively tamely
ramified) we have the well defined notions of the maximal unramified (respectively
maximal tamely ramified) extension of K. We denote these extension by Kur and
Ktr respectively.

For each n there exists a unique unramified Galois extension Kn of degree
n, and we have a canonical isomorphism Gal(Kn/K) ≃ Z/nZ which sends the
Frobenius automorphism FrKn/K onto 1 mod nZ. If n | m, the diagram

Gal(Km/K)

��

∼ // Z/mZ

��
Gal(Kn/K)

∼ // Z/nZ

commutes. Passing to projective limits, we obtain an isomorphism

Gal(Kur/K) = lim←−
n

Gal(Kn/K)
∼−→ Ẑ,

where Ẑ = lim←−n
Z/nZ. To sum up, the maximal unramified extension Kur of K is

procyclic and its Galois group is generated by the Frobenius automorphism FrK :

Gal(Kur/K)
∼−→ Ẑ,

FrK ←→ 1.

FrK(x)≡ xqK (mod πK), ∀x ∈ OKur .
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Exercise 9. 1) Let ℓ be a prime number. Show that lim←−k
Z/ℓkZ≃ Zℓ.

2) Show that Ẑ≃∏
ℓ

Zℓ.

Exercise 10. Let K be a local field with residue field of characteristic p. Show
that

Kur = ∪
(n,p)=1

K(ζn).

5.2. The maximal tamely ramified extension. Let L/K be a finite Galois
extension with the Galois group G. Recall that G0 coincides with the inertia sub-
group IL/K of G and L0 := LG0 is the maximal unramified subextension of L/K. Set
L1 := LG1 . Then Gal(L1/L0)≃G0/G1 and Gal(L/L1) =G1. From Propositions 4.5
and 2.9 it follows that L1 is the maximal tamely ramified subextension Ltr of L/K.
To sup up, we have the tower of extensions

(12) L

G1

G0 Ltr

G0/G1

Lur

G/G0

K

DEFINITION 5.3. The group PL/K := G1 is called the wild inertia subgroup.

We remark that PL/K is a p-group (its order is a power of p).
Passing to direct limit in the above diagram (12), we have:

(13) K

PK

IK Ktr

Kur

Ẑ

K

Consider the exact sequence

(14) 1→ Gal(Ktr/Kur)→ Gal(Ktr/K)→ Gal(Kur/K)→ 1.

Here Gal(Kur/K)≃ Ẑ. From the explicit description of tamely ramified extensions
(see also Exercise 4), it follows that Ktr is generated over Kur by the roots π

1/n
K ,
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(n, p) = 1 of any uniformizer πK of K. Since

Gal(Kur(π
1/n
K )/Kur)≃ Z/nZ (not canonically)

this immediately implies that

Gal(Ktr/Kur)≃ lim←−
(n,p)=1

Z/nZ≃∏
ℓ̸=p

Zl.

REMARK 5.4. It is not difficult to discribe the group Gal(Ktr/K) in terms of
generators and relations.

5.5. Local class field theory. We say that a Galois extension L/K is abelian if
Gal(L/K) is an abelian group. It’s easy to see that the compositum of two abelian
extensions is abelian. Denote by Kab the compositum of all abelian extensions of
K and by Gab

K := Gal(Kab/K) its Galois group. Local class field theory gives an
explicit description of Gab

K in terms of K.

THEOREM 5.6. There exists a canonical group homomorphism (called the
reciprocity map) with dense image

θK : K∗→ Gab
K

such that
i) For any finite abelian extension L/K, the homomorphism θK induces an

isomorphism

θL/K : K∗/NL/K(L
∗)
∼−→ Gal(L/K),

where NL/K : L→ K is the norm map.
ii) If Kur/K is the maximal unramified extension of K, then for any uni-

formizer πK ∈ K∗ the restriction of the automorphism θK(πK) on Kur co-
incides with the Frobenius FrL/K , and we have a commutative diagram

K∗
θK //

vK
��

Gab
K

��
Ẑ // Gal(Kur/K),

where the bottom map sends 1 to FrK . Equivalently, for any x ∈ K∗, the
automorphism θK(x) acts on Kur by

θK(x)|Kur = FrvK(x)
K .

REMARK 5.7. Local class field theory was developed by Hasse. The modern
approach is based on the cohomology of finite groups (see [17] or [5, Chapter VI],
written by Serre).

It can be shown, that the reciprocity map is compatible with the ramification
filtration in the following sense. For any real v ⩾ 0, set U (v)

K =U (n)
K , where n is the

smallest integer ⩾ v. Then

(15) θK

(
U (v)

K

)
= (Gab

K )(v), ∀v ⩾ 0.
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For the classical proof of this result, see [17, Chapter XV].

5.8. Ramification jumps.

DEFINITION. Let L/K be a Galois extension of local fields (finite or infinite).
We say that v ⩾−1 is a ramification jump of L/K if

Gal(L/K)(v+ε) ̸= Gal(L/K)(v), ∀ε > 0.

From (15) it follows that the ramification jumps of Kab/K are the integers −1,
0, 1, . . . . Under the reciprocity map, the inertia subgroup IKab/K of Gab

K is isomor-
phic to UK and the wild ramification subgroup PKab/K of IKab/K is isomorphic to

U (1)
K . Therefore, for the maximal abelian tamely ramified extension Kab,tr we have

Gal(Kab,tr/Kur)≃UK/U (1)
K ≃ k∗K .

If L/K is an abelian extension with Galois group G, then by Galois theory,
G = Gab

K /H for some closed subgroup H ⊂ Gab
K . From Herbrand’s theorem we

have G(v) = (Gab
K )(v)/H ∩ (Gab

K )(v). Therefore from (15) it follows that the jumps
of the ramification filtration on G are integers (theorem of Hasse-Arf). Assume, in
addition, that L/K is wildly ramified i.e. totally ramified of degree power of p. The
canonical projection of Gab

K onto G induces a diagram

0 // PKab/K
//

��

Gab
K

��

// Gal(Kab,tr/K) //

��

0

0 // PL/K
// G // G/PL/K

// 0.

Since L/K is wildly ramified, G = PL/K , and one has

G≃ PKab/K/(H ∩PKab/K).

Therefore
G(v) ≃ P(v)

Kab/K/(H ∩P(v)
Kab/K), v ⩾ 1.

We can write this property in terms of the group of units UK . Namely, let N de-
note the subgroup of U (1)

K that corresponds to H ∩PKab/K under the isomorphism

PKab/K ≃U (1)
K . Then we have an isomorphism

ρ : G≃U (1)
K /N.

From the description of the ramification in terms of the reciprocity map (15), we
obtain that

(16) ρ

(
G(v)

)
≃U (v)

K /(N∩U (v)
K ), v ⩾ 1.

Let denote by v0 < v1 < v2 < .. . the ramification jumps of L/K. Since the quotients
U (i)

K /U (i)
K are p-elementary abelian groups (each non trivial element has order p),

we conclude that all quotients G(vi)/G(vi+1) are p-elementary. This also can be
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proved directly using Proposition 4.5 without any reference to the reciprocity map
θK .

6. Ramification in Zp-extensions

We illustrate the ramification theory of infinite extensions on the example of
Zp-extensions.

DEFINITION. A Zp-extension is a Galois extension L/K with Galois group
isomorphic to Zp.

In this section, we assume that K∞/K is a totally ramified Zp-extension of
local fields of characteristic 0 and set Γ = Gal(K∞/K). For any n, pnZp is the
unique open subgroup of Zp of index pn and we denote by Γ(n) the corresponding
subgroup of Γ. Set Kn = LΓ(n). Then Kn is the unique subextension of K∞/K of
degree pn over K. We have

K∞ = ∪
n⩾1

Kn, Gal(Kn/K)≃ Z/pnZ.

Note that K∞/K is abelian by definition. Let (vi)i⩾0 denote the increasing
sequence of ramification jumps of L/K. Since Γ≃Zp and all quotients Γ(vi)/Γ(vi+1)

are p-elementary, we obtain that

Γ
(vi) = piZp, ∀i ⩾ 1.

THEOREM 6.1 (Tate [18]). Let K be a finite extension of Qp and let K∞/K
be totally ramified Zp-extension. Let (vi)i⩾1 denote the increasing sequence of
ramification jumps of K∞/K. Then

i) There exists i0 such that

vi+1 = vi + eK , ∀i ⩾ i0.

ii) There exists a constant c such that for all n ⩾ 1

vK(DKn/K) = eKn+ c+an p−n,

where (an)n⩾1 is bounded.

We first prove the following auxiliary lemma:

LEMMA 6.2. Let K/Qp be a finite extension and let eK = e(K/Qp). Then the
following holds true:

i) The series

log(1+ x) =
∞

∑
m=1

(−1)m+1 xm

m

converges for all x ∈mK .
ii) The series

exp(x) =
∞

∑
m=0

xm

m!

converges for all x such that vK(x)> eK
p−1 .
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iii) For any integer n > eK
p−1 we have isomorphisms

log : U (n)
K →mn

K , exp : mn
K →U (n)

K

which are inverse to each other.

PROOF. We have
vK(m)⩽ eK logp(m),

and
vK(m!) = eK

(
[m/p]+ [m/p2]+ · · ·

)
⩽

eKm
p−1

.

This implies the convergence of the series. Other assertions can be proved by
routine computations. □

COROLLARY 6.3. For any integer n > eK
p−1(

U (n)
K

)p
=U (n+eK)

K .

PROOF.
(

U (n)
K

)p
and U (n+eK)

K have the same image under log . □

PROOF OF THE THEOREM.
i) We apply the arguments of Section 5.8 to our setting with L=K∞ and G=Γ.

Write Γ = Gab
K /H with some closed subgroup H of Gab

K . Let N denote the subgroup
of U (1)

K that corresponds to PKab/K ∩H under the reciprocity map. Set

U (v) =U (v)
K /(N∩U (v)

K ), ∀v ⩾ 1.

Then the isomorphism (16) reads

ρ(Γ(v))≃U (v), v ⩾ 1.

Let γ be a topological generator of Γ. Then γn = γ pn
is a topological generator

of Γ(n). Let i0 be an integer such that

ρ(γi0) ∈U (m0),

with some integer m0 >
eK

p−1 . Fix such i0 and assume that, for this fixed i0, m0 is
the biggest integer satisfying these conditions. Since γi0 generates Γ(i0), this means
that

ρ(Γ(i0)) = U (m0), but ρ(Γ(i0)) ̸= U (m0+1).

Therefore m0 is the i0-th ramification jump for K∞/K, i.e.

m0 = vi0 .

We can write ρ(γi0) = x, where x = x (mod (N ∩U (m0)
K )) and x ∈U (m0)

K \U (m0+1)
K .

By Corollary 6.3,

xpn ∈U (m0+eKn)
K \U (m0+eKn+1)

K , ∀n ⩾ 0.

Since ρ(γi0+n) = xpn
and γi0+n generates Γ(m0 +n), this implies that

ρ(Γ(i0 +n)) = U (m0+neK) but ρ(Γ(i0 +n)) ̸= U (m0+neK+1).
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This shows that for each integer n ⩾ 0 the ramification filtration has a jump at
m0 +neK and

Γ
(m0+neK) = Γ(i0 +n).

In other terms, for any real v ⩾ vi0 = m0 we have

Γ
(v) = Γ(i0 +n+1) if vi0 +neK < ν ⩽ vi0 +(n+1)eK .

This shows that vi0+n = vi0 + eKn for all n ⩾ 0, and the assertion i) is proved.

ii) We prove ii) applying Theorem 4.23. For any n > 0, set G(n) = Γ/Γ(n).
We have

vK(DKn/K) =
∫

∞

−1

(
1− 1
|G(n)(v)|

)
dv.

By Herbrand’s theorem, G(n)(v) = Γ(v)/(Γ(n)∩Γ(v)). Since Γ(vn) = Γ(n), the ram-
ification jumps of G(n) are v0,v1, . . . ,vn−1, and we have

(17) |G(n)(v)|=

{
pn−i, if vi−1 < v ⩽ vi,

1, if v > vn−1

(for i = 0 we set vi−1 := 0 to uniformize notation). Assume that n > i0. Then

vK(DKn/K) = A+
∫ vn−1

vi0

(
1− 1
|G(n)(v)|

)
dv,

where A =
∫ vi0

−1

(
1− 1
|G(n)(v)|

)
dv. We evaluate the second integral

∫ vn−1

vi0

(
1− 1
|G(n)(v)|

)
dv =

n−1

∑
i=i0+1

(vi− vi−1)

(
1− 1
|G(n)(v)|

)
=

n−1

∑
i=i0+1

eK

(
1− 1

pn−i

)
(here we use i) and (17). An easy computation gives

n−1

∑
i=i0+1

eK

(
1− 1

pn−i

)
= eK(n− i0−1)+

eK

p−1

(
1− 1

pn−i0−1

)
.

Setting c = A− eK(i0 +1)+ eK
p−1 , we see that for n > i0

vK(DKn/K) = c+ eKn− 1
(p−1)pn−i0−1 .

The theorem is proved.
□





CHAPTER 2

Almost étale extensions

1. Norms and traces

1.0.1. The results proved in this section are technical by the nature, but they
play a crucial role in our discussion of deeply ramified extensions and the field of
norms functor. They can be seen as a first manifestation of a deep relation between
characteristic 0 and characteristic p cases. In this section, we assume that L/K is a
finite extension of local fields of characteristic 0.

LEMMA 1.1. One has
TrL/K(m

n
L) =mr

K ,

where r =
[

vL(DL/K)+n
e(L/K)

]
.

PROOF. From the definition of the different if follows immediately that D−1
L/K

is the maximal fractional ideal such that

TrL/K(D
−1
L/K) = OK .

Set δ = vL(DL/K) and e = e(L/K). Then

TrL/K(m
n
Lm
−r
K ) = TrL/K(m

n
Lm
−er
L )⊂ TrL/K(m

n−(δ+n)
L ) = TrL/K(D

−1
L/K) = OK ,

and therefore TrL/K(m
n
L) ⊂ mr

K . Conversely, TrL/K(m
n
L) is an ideal of OK , and we

can write in in the form TrL/K(m
n
L) =ma

K . Then TrL/K(m
n
Lm
−a
K ) = OK and therefore

mn
Lm
−a
K ⊂D−1

L/K . This implies that

n−ae ⩾−δ .

Therefore a ⩽
[

n+δ

e

]
= r and mr

K ⊂ TrL/K(m
n
L). The lemma is proved.

□

1.1.1. Assume that L/K is a totally ramified Galois extension of degree p.
Set G = Gal(L/K) and denote by t the maximal natural number such that Gt = G
(and therefore Gt+1 = {1}). Formula for the different from Proposition 4.9 reads
in our case:

(18) vL(DL/K) = (p−1)(t +1).

LEMMA 1.2. Then for any x ∈mn
L

NL/K(1+ x)≡ 1+NL/K(x)+TrL/K(x) (mod ms
K),

where s =
[
(p−1)(t+1)+2n

p

]
.

33
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PROOF. Set G = Gal(L/K) and for each 1 ⩽ n ⩽ p denote by Cn the set of all
n-subsets {g1, . . . ,gn} of G (note that gi ̸= g j if i ̸= j). Then

NL/K(1+ x) = ∏
g∈G

(1+g(x)) = 1+NL/K(x)+TrL/K(x)

+ ∑
{g1,g2}∈C2

g1(x)g2(x)+ · · ·+ ∑
{g1,...gp−1}∈Cp−1

g1(x) · · ·gp−1(x).

It’s clear that the rule

g⋆{g1, . . . ,gn}= {gg1, . . . ,ggn}
defines an action of G on Cn. Moreover, from the fact that |G| = p is a prime
number, it’s easy to see that all stabilizers are trivial, and therefore each orbit has
p elements. This implies that each sum

∑
{g1,...gn}∈Cn

g1(x) · · ·gn(x), 2 ⩽ n ⩽ p−1

can be written as the trace TrL/K(xn) of some xn ∈m2n
L . From (18) and Lemma 1.1

it follows that TrL/K(xn) ∈ms
K . The lemma is proved. □

LEMMA 1.3. For any x ∈mn
L

NL/K(1+ x)≡ 1+NL/K(x)+TrL/K(x) (mod ms
K),

where s =
[
(p−1)(t+1)+2n

p

]
.

PROOF. Set G = Gal(L/K) and for each 1 ⩽ n ⩽ p, denote by Cn the set of all
n-subsets {g1, . . . ,gn} of G (note that gi ̸= g j if i ̸= j). Then

NL/K(1+ x) = ∏
g∈G

(1+g(x)) = 1+NL/K(x)+TrL/K(x)

+ ∑
{g1,g2}∈C2

g1(x)g2(x)+ · · ·+ ∑
{g1,...gp−1}∈Cp−1

g1(x) · · ·gp−1(x).

It’s clear that the rule

g⋆{g1, . . . ,gn}= {gg1, . . . ,ggn}
defines an action of G on Cn. Moreover, from the fact that |G| = p is a prime
number, it’s easy to see that all stabilizers are trivial, and therefore each orbit has
p elements. This implies that each sum

∑
{g1,...gn}∈Cn

g1(x) · · ·gn(x), 2 ⩽ n ⩽ p−1

can be written as the trace TrL/K(xn) of some xn ∈m2n
L . From (18) and Lemma 1.1

it follows that TrL/K(xn) ∈ms
K . The lemma is proved. □

COROLLARY 1.4. Let L/K is a totally ramified Galois extension of degree p.
Then

vK(NL/K(1+ x)−1−NL/K(x))⩾
t(p−1)

p
.
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PROOF. From Lemmas 1.1 and 1.3 if follows that

vK(NL/K(1+ x)−1−NL/K(x))⩾
[
(p−1)(t +1)

p

]
,

and it’s easy to see that[
(p−1)(t +1)

p

]
=

[
(p−1)t

p
+1− 1

p

]
⩾

t(p−1)
p

.

□

2. Deeply ramified extensions

2.0.1. In this section, we review the theory of deeply ramified extensions of
Coates– Greenberg [6]. This theory goes back to the fundamental paper of Tate
[18], where the case of Zp-extensions was studied and applied to the proof of the
Hodge–Tate decomposition for p-divisible groups.

Let K be a local field of characteristic 0. In this section, we consider an infinite
algebraic extension K∞/K. Since for each m the number of algebraic extensions of
K of degree m is finite, we can always write K∞ in the form

K∞ =
∞

∪
n=0

Kn, K0 = K, Kn ⊂ Kn+1, [Kn : K]< ∞.

Following [7], we define the different of K∞/K as the intersection of differents of
its finite subextensions.

DEFINITION. The different of K∞/K is defined by

DK∞/K =
∞

∩
n=0

(DKn/KOK∞
),

where DKn/KOK∞
denotes the ideal in OK∞

generated by DKn/K .

Let L∞ be a finite extension of K∞. Then L∞ = K∞(α), where α is a root of
an irreducible polynomial f (X) ∈ K∞[X ]. The coefficients of f (X) lie in a finite
extension K f of K. Let

n0 = min
{

n ∈ N | f (X) ∈ Kn[X ]
}
.

Setting Ln = Kn(α) for all n ⩾ n0, we can write

L∞ =
∞

∪
n=n0

Ln.

In what follows we will assume that n0 = 0 without loss of generality. Note that
[Ln : Kn] = deg( f ) doesn’t depend on n ⩾ 0.

PROPOSITION 2.1. i) If m ⩾ n, then

DLn/KnOLm ⊂DLm/Km .

ii) One has

DL∞/K∞
=

∞

∪
n=0

(DLn/KnOL∞
).
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PROOF. i) We consider the bilinear form provided by the trace map (see Chap-
ter I, Section 3) :

tLn/Kn : Ln×Ln→ Kn, tLn/Kn(x,y) = TrLn/Kn(xy).

Let {ek}s
k=1 be a basis of OLn over OKn , and let {e∗k}s

k=1 denote the dual basis. Then

DLn/Kn = OLne∗1 + · · ·+OLne∗s .

Since {ek}s
k=1 is also a basis of Lm over Km, any x ∈D−1

Lm/Km
can be written as

x =
s

∑
k=1

ake∗k .

Then
ak = tLm/Km(x,ek) ∈ OKm , ∀1 ⩽ k ⩽ s,

and we have:
x ∈ OKme∗1 + · · ·+OKme∗s ⊂D−1

Ln/Kn
OLm .

Therefore D−1
Lm/Km

⊂D−1
Ln/Kn

OLm , and, by consequence, DLn/KnOLm ⊂DLm/Km .

ii) With the same argument as in the proof of i), we have
∞

∪
n=0

(DLn/KnOL∞
)⊂DL∞/K∞

.

We need to prove that DL∞/K∞
⊂

∞

∪
n=0

(DLn/KnOL∞
) or equivalently that

∞

∩
n=0

(D−1
Ln/Kn

OL∞
)⊂D−1

L∞/K∞
.

Let x∈
∞

∩
n=0

(D−1
Ln/Kn

OL∞
) and y∈OL∞

. Choosing n such that x∈D−1
Ln/Kn

and y∈OLn ,

we have
tL∞/K∞

(x,y) = tLn/Kn(x,y) ∈ OKn ⊂ OK∞
.

Hence x ∈D−1
L∞/K∞

, and the inclusion
∞

∩
n=0

(D−1
Ln/Kn

OL∞
)⊂D−1

L∞/K∞
is proved. □

DEFINITION. i) For any algebraic extension of local fields M/K (finite or in-
finite) we set

vK(DM/K) = inf{vK(x) | x ∈DM/K}.

ii) We say that M/K has finite conductor if there exists v ⩾ 0 such that M ⊂ K(v)
.

If that is the case, we call the conductor of M the number

c(M) = inf{v |M ⊂ K(v−1)}.

THEOREM 2.2 (Coates–Greenberg). Let K∞/K be an algebraic extension of
local fields. Then the following assertions are equivalent:

i) vK(DK∞/K) = +∞;
ii) K∞/K doesn’t have finite conductor;
iii) For any finite extension L∞/K∞ one has

vK(DL∞/K∞
) = 0;
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iv) For any finite extension L∞/K∞ one has

TrL∞/K∞
(mL∞

) =mK∞
.

Below we prove that
i)⇔ ii)⇒ iii)⇒ iv).

For further detail, see [6]. We start with an auxiliary lemma.

LEMMA 2.3. For any finite extension M/K, one has

c(M)

2
⩽ vK(DM/K)⩽ c(M).

PROOF. We have

[M : M∩K(v)
] = 1, for any v > c(M)−1,

[M : M∩K(v)
]⩾ 2, if −1 ⩽ v < c(M)−1.

Therefore

vK(DM/K) =
∫

∞

−1

(
1− 1

[M : M∩K(v)
]

)
dv ⩽

∫ c(M)−1

−1
dv = c(M),

and

vK(DM/K) =
∫

∞

−1

(
1− 1

[M : M∩K(v)
]

)
dv ⩾

1
2

∫ c(M)−1

−1
dv =

c(M)

2
.

The lemma is proved. □

2.3.1. We prove that i)⇔ ii). First assume that vK(DK∞/K) = +∞. For any
c> 0, there exists K ⊂M⊂K∞ such that vK(DM/K)⩾ c. By Lemma 2.3, c(M)⩾ c.
This shows that K∞/K doesn’t have finite conductor.

Conversely, assume that K∞/K doesn’t have finite conductor. Then for each
c > 0 there exists a nonzero element β ∈ K∞ such that β /∈ K(c)

. Let M = K(β ).
Then c(M)> c and vK(DM/K)⩾

c
2 by Lemma 2.3. Therefore vK(DK∞/K) = +∞.

2.3.2. For any algebraic extension M/K, set M(v) := MG(v)
K = M∩K(v)

.

LEMMA 2.4. Assume that w is such that L⊂ K(w)
. Then for any n ⩾ 0

[Ln : L(w)
n ] = [Kn : K(w)

n ].

PROOF. Recall that if M/F is a Galois extension and E/F is an arbitrary ex-
tension such that M∩E = F, then M and E are linearly disjoint over F.

Since G(w)
K is a normal subgroup of KK , the extension K(w)

/K is Galois. Hence
K(w)

/Kn ∩K(w) is also a Galois extension, and the fields K(w) an Kn are linearly
disjoint over K(w)

n = Kn ∩K(w)
. Since L(w)

n = K(w) ∩ Ln is a subfield of K(w)
, we

conclude that L(w)
n and Kn are linearly disjoint over K(w)

n . Therefore

(19) [Kn : K(w)
n ] = [KnL(w)

n : L(w)
n ].
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Clearly KnL(w)
n = Kn(K

(w) ∩ Ln) ⊂ Ln. On the other hand, since Ln = Kn · L and
L⊂ K(w)

, we have Ln ⊂ Kn(K
(w)∩Ln) = KnL(w)

n . Therefore

Ln = KnL(w)
n .

Together with (19), this proves the lemma. □

2.4.1. We prove that ii)⇒ iii). By the multiplicativity of the different, for
any n ⩾ 0 we have

vK(DLn/Kn) = vK(DLn/K)− vK(DKn/K).

Let w be such that L⊂ K(w)
. Using formula (11) and Lemma 2.4, we obtain that

vK(DLn/Kn) =
∫

∞

−1

(
1

[Kn : K(v)
n ]
− 1

[Ln : L(v)
n ]

)
dv =

∫ w

−1

(
1

[Kn : K(v)
n ]
− 1

[Ln : L(v)
n ]

)
dv ⩽

∫ w

−1

dv

[Kn : K(v)
n ]

.

Since [Kn : K(v)
n ] ⩾ [Kn : K(w)

n ] for any v ⩽ w, this gives the following estimate for
the different:

vK(DLn/Kn)⩽
w+1

[Kn : K(w)
n ]

=
w+1

[KnK(w) : K(w)
]
.

It’s clear that the sequence [KnK(w) : K(w)
] is increasing when n→+∞, and we only

need to show that it goes to infinity. We prove this by contradiction. Assume that
[KnK(w) : K(w)

] is bounded above. Then there exists n0 such that [KnK(w) : K(w)
]

is constant for n ⩾ n0. Hence KnK(w)
= Kn0K(w) for n ⩾ n0 and we conclude that

K∞K(w)
= Kn0K(w)

. Since Kn0/K is finite, there exists v ⩾ w such that Kn0 ⊂ K(v)
.

Then K∞ ⊂ Kn0K(w) ⊂ K(v)
. Therefore K∞/K has finite conductor, contrary to our

assumption.
2.4.2. We prove that iii)⇒ iv). We consider two cases.
a) First assume that the set {e(Kn/K) | n ⩾ 0} is bounded. Then there exists n0

such that e(Kn/Kn0) = 1 for any n ⩾ n0. Therefore e(Ln/Ln0) = 1 for any n ⩾ n0
and by the mutiplicativity of the different

DLn/Kn =DLn0/Kn0
OLn , ∀n ⩾ n0.

From Proposition 2.1 and assumption iii) it follows that DLn/Kn =OLn for all n⩾ n0.
Therefore Ln/Kn are unramified and Lemma 1.1 (or just the well known surjectivity
of the trace map in unramified extensions) gives:

TrLn/Kn(mLn) =mKn , for all n ⩾ n0.

Thus TrL∞/K∞
(mL∞

) =mK∞
.
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b) Now assume that the set {e(Kn/K) | n ⩾ 0} is unbounded. Let x ∈ mK∞
.

Then there exists n such that x ∈mKn . By Lemma 1.1,

TrLn/Kn(mLn) =mrn
Kn
, rn =

[
vLn(DLn/Kn)+1

e(Ln/Kn)

]
.

From our assumptions and Proposition 2.1 it follows that we can choose n such
that in addition

vK(DLn/Kn)+
1

e(Ln/K)
⩽ vK(x).

Then

rn ⩽
vLn(DLn/Kn)+1

e(Ln/Kn)
=

(
vK(DLn/Kn)+

1
e(Ln/K)

)
e(Kn/K)⩽ vKn(x).

Since TrLn/Kn(mLn) is an ideal in OKn , this implies that x ∈ TrLn/Kn(mLn), and the
inclusion mK∞

⊂ TrL∞/K∞
(mL∞

) is proved. Since the converse inclusion is trivial,
we have mK∞

= TrL∞/K∞
(mL∞

).

DEFINITION. We say that an extension F/K of a local field K of characteristic
0 is deeply ramified if it satisfies the equivalent conditions of Theorem 2.2.

Exercise 9. i) Show that G(0)
K = IK and that the wild ramification subgroup

Gal(K/Ktr) can be written as

Gal(K/Ktr) = ∪
ε>0

G(ε)
K

(topological closure of ∪
ε>0

G(ε)
K ).

ii) Show that Ktr/K has finite conductor and determine it.

3. Almost étale extensions

3.1. We introduce, in our very particular setting, the notion of almost etale
extension.

DEFINITION. A finite extension L/K of non archimedean fields is almost etale
if and only if

TrL/K(mL) =mK .

Examples. 1) An unramified extension of local fields is almost etale.
2) Assume that K∞ is a deeply ramified extension of a local field K of char-

acteristic 0. Then any finite extension of K∞ is almost etale. This was proved in
Theorem 2.2.

3.1.1.

THEOREM 3.2. Assume that F is a deeply ramified extension of a local field K
of characteristic 0. Then

CGF
K = F̂ .

Fix an absolute value | · |K on K. Recall (see Section 1) that | · |K extends in a
unique way to an absolute value on CK , which we denote again by | · |K .

We first prove the following lemma.
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LEMMA 3.3. Let L/F be a finite Galois extension of the deeply ramified ex-
tension F, and let G = Gal(L/F). Then for any α ∈ L and any c > 1 there exists
β ∈ F such that ∣∣α−β

∣∣
K < c ·max

g∈G

∣∣g(α)−α
∣∣
K .

PROOF. Let c > 1. By Theorem 2.2 iv), there exists x ∈ OE such that y =
TrL/F(x) satisfies

1/c < |y|K ⩽ 1.

Set β =
1
y ∑

g∈G
g(αx). Then

|α−β |K =

∣∣∣∣∣αy ∑
g∈G

g(x)− 1
y ∑

g∈G
g(αx)

∣∣∣∣∣
K

=

∣∣∣∣∣1y ∑
g∈G

g(x)(α−g(α))

∣∣∣∣∣
K

⩽
1
|y|K
·max

g∈G

∣∣g(α)−α
∣∣
K .

The lemma is proved. □

3.3.1. Proof of Theorem 3.2. Let α ∈ CGF
K . Choose a sequence (αn)n∈N of

elements αn ∈ K such that |αn−α|K < p−n. Then

|g(αn)−αn|K = |g(αn−α)− (αn−α)|K < p−n, ∀g ∈ GF .

By Lemma 3.3, for each n there exists βn ∈ F such that |βn−αn|K < p−n. Then

α = lim
n→+∞

βn ∈ F̂ .

The theorem is proved.
□

4. The normalized trace

4.1. In this section, K∞/K is a totally ramified Zp-extension. Fix a topologi-
cal generator γ of Γ. For any x ∈ Kn set

TK∞/K(x) =
1
pn TrKn/K(x).

It’s clear that this definition doesn’t depend on the choice of n. Therefore we have
a well defined homomorphism

TK∞/K : K∞→ K.

Note that TK∞/K(x)= x for x∈K. Our first goal is to prove that TK∞/K is continuous.
In this section, we denote by | · |K the absolute value on K normalized as fol-

lows

|x|K =
1

qvK(x)
, x ∈ K,

where q = |kK |. In particular, |p|K = 1/qeK , where eK = e(K/Qp). We extend this
absolute value to CK .
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PROPOSITION 4.2 (Tate). i) There exists a constant c > 0 such that

|TK∞/K(x)− x|K ⩽ c|γ(x)− x|K , ∀x ∈ K∞.

ii) The map TK∞/K is continuous and extends by continuity to K̂∞.

PROOF. First, we prove that i)⇒ ii). Let x ∈ K∞. Then

|TK∞/K(x)|K = |(TK∞/K(x)− x)+ x|K ⩽ max{|TK∞/K(x)− x|K , |x|K}.

If we assume i), then

|TK∞/K(x)− x|K ⩽ c|γ(x)− x|K ⩽ cmax{|γ(x)|K , |x|K}= c|x|K ,

and we obtain that

|TK∞/K(x)|K ⩽ A|x|K , A = max{1,c}.

Since TK∞/K is a K-linear map, this inequality implies that TK∞/K is continuous.
Now we prove i). We split the proof in several steps.
a) By Proposition 6.1, vK(DKn/K) = eKn+ an/pn, where the sequence an is

bounded. Therefore

vK(DKn/Kn−1) = vK(DKn/K)− vK(DKn−1/K) = eK +αn/pn−1.

where αn is bounded. Lemma 1.1 for the extension Kn/Kn−1 can be written in the
form

vKn−1(TrKn/Kn−1(x))⩾
[

vKn(x)+ vKn(DKn/Kn−1)

e(Kn/Kn−1)

]
⩾

vKn(x)+ vKn(DKn/Kn−1)

e(Kn/Kn−1)
−1.

Since vKn(·) = pnvK(·) and e(Kn/Kn−1) = p, we have:

vK(TrKn/Kn−1(x))⩾ vK(x)+ vK(DKn/Kn−1)−
1

pn−1 .

Taking into account the formula for the different, we obtain that

vK(TrKn/Kn−1(x))⩾ vK(x)+ eK(1−bn/pn−1)

for some bounded sequence bn. Choose b > 0 such that bn < b for all n. Then

vK(TrKn/Kn−1(x))⩾ vK(x)+ eK(1−b/pn−1).

Passing to absolute values, we can write this formula in the following form:

(20) |TrKn/Kn−1(x)|K ⩽ |p|1−b/pn−1

K |x|K , ∀x ∈ Kn.

b) Set γn = γ pn
. For any x ∈ Kn we have

TrKn/Kn−1(x) =
p−1

∑
k=0

γ
k
n−1(x).

Therefore

TrKn/Kn−1(x)− px =
p−1

∑
k=0

(γk
n−1(x)− x) =

p−1

∑
k=1

(1+ γn−1 + · · ·γk−1
n−1)(γn−1(x)− x).
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and we obtain that∣∣∣∣1pTrKn/Kn−1(x)− x
∣∣∣∣
K
⩽ |p|−1

K · |γn−1(x)− x|K , ∀x ∈ Kn.

Since γn−1(x)− x = (1+ γ + · · ·+ γ pn−1−1)(γ(x)− x), we also have

(21)
∣∣∣∣1pTrKn/Kn−1(x)− x

∣∣∣∣
K
⩽ |p|−1

K · |γ(x)− x|K , ∀x ∈ Kn.

c) We prove by induction on n that

(22)
∣∣TK∞/K(x)− x

∣∣
K ⩽ cn · |γ(x)− x|K , ∀x ∈ Kn,

where c1 = |p|K and cn = cn−1 · |p|−b/pn−1

K . For n = 1, this follows from (21). For
n ⩾ 2 and x ∈ Kn, we write

TK∞/K(x)− x =
(

1
p

TrKn/Kn−1(x)− x
)
+(TK∞/K(y)− y), y =

1
p

TrKn/Kn−1(x).

The first term can be bounded by (21). For the second term, we have

|TK∞/K(y)− y|K ⩽ cn−1|γ(y)− y|K = cn−1|p|−1
K |TrKn/Kn−1(γ(x)− x)|K

⩽ cn−1|p|−b/pn−1

K |γ(x)− x|K .
(Here the last inequality follows from (20)). This proves (22).

d) Set c = c1
∞

∏
n=2
|p|−b/pn−1

K = c1|p|−b/(p−1)
K . Then cn < c for all n ⩾ 1, and from

(22) we obtain that∣∣TK∞/K(x)− x
∣∣
K ⩽ c · |γ(x)− x|K , ∀x ∈ K∞,

This proves the first assertion of the proposition. The second assertion is immedi-
ate. □

DEFINITION. The map TK∞/K : K̂∞→ K is called the normalized trace.

4.2.1. Since TK∞/K is an idempotent map, we have a decomposition

K̂∞ = K⊕ K̂◦∞,

where K◦∞ = ker(TK∞/K).

THEOREM 4.3. i) The map λ − 1 is bijective, with a continuous inverse, on
K̂◦∞.

ii) For any λ ∈U (1)
K which is not a root of unity, the map γ−λ is bijective, with

a continuous inverse, on K̂∞.

PROOF. a) Write Kn = K⊕K◦n , where K◦n = ker(TK∞/K)∩Kn. Since γ − 1 is
injective on K◦n , and K◦n has finite dimension over K, γ−1 is bijective on K◦n and on
K◦∞ = ∪

n⩾0
K◦n . Let ρ : K◦∞→ K◦∞ denote its inverse. From Proposition 4.2 we have

that
|x|K ⩽ c|(γ−1)(x)|K , ∀x ∈ K◦∞,
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and therefore
|ρ(x)|K ⩽ c|x|K , ∀x ∈ K◦∞.

Thus ρ is continuous and extends to K̂◦∞. This proves the theorem for λ = 1.
b) Assume that λ ∈U (1)

K satisfies

|λ −1|K < c−1.

Then ρ(γ−λ ) = 1+(1−λ )ρ and the series

θ =
∞

∑
i=0

(λ −1)i
ρ

i

converges to an operator θ such that ρθ(γ −λ ) = 1. Thus γ −λ is invertible on
K̂◦∞. Since λ ̸= 1, it is also invertible on K and therefore invertible on K̂∞.

c) In the general case, we choose n such that |λ pn−1|K < c−1. Since λ pn ̸= 1,
then by part b), γ pn−λ pn

is invertible on K̂∞. Since

γ
pn−λ

pn
= (γ−λ )

pn−1

∑
i=0

γ
pn−i−1

λ
i,

γ−λ is invertible too. The theorem is proved. □

4.4. Let η : Γ→U (1)
K be a continuous character. We denote by K̂∞(η) the

K-vector space K̂∞ equipped with the η-twisted action of Γ, namely

g⋆ x = η(γ) · γ(x), ∀γ ∈ Γ, x ∈ K̂∞(η).

We will also consider η as the character

GK → Γ→U (1)
K

and denote by CK(η) the field CK equipped with the η-twisted action of GK .

THEOREM 4.5 (Tate). Let K∞/K be a totally ramified Γ-extension. Then the
following holds true:

i) K̂Γ
∞ = K and CGK

K = K.

ii) If η : Γ→U (1)
K is a character with infinite image η(Γ), then K̂∞(η)Γ = 0

and CK(η)GK = 0.

PROOF. We combine Theorems 3.2 and 4.3. Let γ be a topological generator
of Γ. Since τ = γ−1 is bijective on K̂◦∞, we have (K̂◦∞)

Γ = 0 and

K̂Γ
∞ = KΓ⊕ (K̂◦∞)

Γ = K.

Moreover,

CGK
K =

(
CGK∞

K

)Γ

= K̂Γ
∞ = K.

If η is a nontrivial character, set λ = η(γ). Then

K̂∞(η)Γ = {x ∈ K̂∞ | γ(x) = λ
−1x}
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Again by Theorem 4.3, K̂◦∞(η)Γ = 0. Since λ ̸= 1, we also have K(η)Γ = 0. Thus
K̂∞(η)Γ = 0. Finally

CK(η)GK =
(
CK(η)GK∞

)Γ
=
(

CGK∞

K (η)
)Γ

= K̂∞(η)Γ = 0.

□



CHAPTER 3

Perfectoid fields

1. Perfectoid fields

1.0.1. The notion of perfectoid field was introduced in Scholze’s fundamental
paper [16] as a far-reaching generalization of Fontaine’s constructions [9], [10].
Fix a prime number p. Let E be a field equipped with a non-archimedean absolute
value | · |E : E → R+ such that |p|E < 1. Note that we don’t exclude the case of
characteristic p, where the last condition holds automatically. We denote by OE
the ring of integers of E and by mE the maximal ideal of OE .

DEFINITION. Let E be a field equipped with an absolute value | · |E : E→R+

such that |p|E < 1. One says that E is perfectoid if the following holds true:
i) | · |E is nondiscrete;
ii) E is complete for | · |E;
iii) The Frobenius map

ϕ : OE/pOE → OE/pOE , ϕ(x) = xp

is surjective.

Example 1) Let K be a non archimedean field. The completion CK of its
algebraic closure is a perfectoid field.

2) Let K be a local field. Fix a uniformizer πK of K and set πn = π
1/pn

K . Then

the completion of the Kummer extension K[π
1/p∞

K ] =
∞

∪
n=1

K[πn] is a perfectoid field.

This follows from the congruence(
m

∑
i=0

[ai]π
m
n

)p

≡
m

∑
i=0

[ai]
p
π

m
n−1 (mod p).

3) Let Kn =Qp[ζpn ], where ζpn is a primitive root of unity, and K∞ = ∪
n⩾1

Kn. By

the same method, it is not difficult to show that the completion of K∞ is a perfectoid
field.

The following important result is a particilar case of [12, Proposition 6.6.6].

THEOREM 1.1 (Gabber–Ramero). Let K be a local field of characteristic 0. A
complete subfield K ⊂ E ⊂CK is a perfectoid field if and only if it is the completion
of a deeply ramified extension of K.

45
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2. Tilting

2.0.1. In this section, we describle the tilting construction, which functorially
associates to any perfectoid field of characteristic 0 a perfect field of characteristic
p. This construction first appeared in the pionnering paper of Fontaine [9].

2.0.2. Let E be a perfectoid field. Consider the projective limit

(23) OE♭ := lim←−
ϕ

OE/pOE = lim←−(OE/pOE
ϕ←− OE/pOE

ϕ←− ·· ·),

where ϕ(x) = xp is the absolute frobenius. It’s clear that OE♭ is equipped with a
natural ring structure. An element x of OE♭ is an infinite sequence x = (xn)n∈N of
elements xn ∈ OE/pOE such that xp

n+1 = xn. Below we summarize first properties
of the ring OE♭ :

1) If we choose, for all m ∈ N, a lift x̂m ∈ OE of xm, then for any fixed n the
sequence (x̂pm

n+m)m∈N converges to an element

x(n) = lim
m→∞

x̂pm

m+n ∈ OE

which does not depends on the choice of the lifts x̂m. In addition,
(
x(n)
)p

=

x(n−1) fol all n ⩾ 1.

PROOF. Since xp
m+n = xm+n−1, we have x̂p

m+n ≡ x̂m+n−1 (mod p), and an easy

induction shows that x̂pm

m+n≡ x̂pm−1

m+n−1 (mod pm). Therefore the sequence (x̂pm

n+m)m∈N
converges. Assume that x̃m ∈ OE are another lifts of xm, m ∈ N. Then x̃m ≡
x̂m (mod p) and therefore x̃pm

n+m ≡ x̂pm

n+m (mod pm+1). This implies that the limit
doesn’t depend on the choice of the lifts. □

2) For all x,y ∈ OE♭ one has

(24) (x+ y)(n) = lim
m→+∞

(
x(n+m)+ y(n+m)

)pm

, (xy)(n) = x(n)y(n).

PROOF. It’s easy to see that x(n) ∈OE is a lift of xn. Therefore x(n+m)+y(n+m) is
a lift of xn+m +yn+m, and the first formula follows from the definition of (x+y)(n).
The same argument proves the second formula. □

3) The map x 7→ (x(n))n⩾0 defines an isomorphism

(25) OE♭ ≃ lim←−
xp←x

OE ,

where the right hand side is equipped with the addition and multiplication
defined by (24).

PROOF. This follows from from 2). □

Define
| · |E♭ : OE♭ → R∪{+∞},

|x |E♭ = |x(0)|E .
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Exercise 10. Let y = (y0,y1, . . .) ∈ OE♭ . Show that

(26) yn = 0 ⇔ |y|E♭ ⩽ |p|p
n

E .

PROPOSITION 2.1. i) | · |E♭ is a non archimedean absolute value on OE♭ .
ii) OE♭ is a perfect complete valuation ring of characteristic p with maximal

ideal mE♭ = {x ∈ OE♭ | vE♭(x)> 0} and residue field kE .

iii) Let E♭ denote the field of fractions of OE♭ . Then |E♭|E♭ = |E|E .

PROOF. i) Let x,y ∈ OE♭ . It’s clear that

|xy|E♭ = |(xy)(0)|E = |x(0)y(0)|E = |x(0)| · |y(0)|E = |x|E♭ |y|E♭ .

Also,

|x+ y|E♭ = |(x+ y)(0)|E = | lim
m→+∞

(x(m)+ y(m))pm |E = lim
m→+∞

|x(m)+ y(m)|p
m

E

⩽ lim
m→+∞

max{|x(m)|E , |x(m)|E}pm
= lim

m→+∞
max

{∣∣(x(m))pm∣∣
E ,
∣∣(x(m))pm∣∣

E

}
= max

{∣∣(x(0))∣∣E , ∣∣(x(0))∣∣E}= max
{
|x|E♭ , |y|E♭

}
.

This proves that | · |E♭ is an non archimedean absolute value.
ii) We prove the completeness of OE♭ . Let (xn)n∈N be a Cauchy sequence in

OE♭ . Then for any M > 0 there exist N such that for all n,m ⩾ N

|xn− xm|E♭ ⩽ |p|p
M

E .

Writing xn = (xn,0,xn,1, . . .),xm = (xm,0,xm,1, . . .) and using (26), we obtain that for
all n,m ⩾ N

xn,i = xm,i for all 0 ⩽ i ⩽ M.
This shows that for each i ⩾ 0 the sequence (xn,i)n∈N is stationary. Set ai =
limn→+∞ xn,i. Then a = (a0,a1, . . .) ∈OE♭ , and it’s easy to check that limn→+∞ xn =
a.

We prove the perfectness of OE♭ . Set A := lim←−xp←x
OE . Then we have a com-

mutative diagram

(27) OE♭
∼ //

ϕ

��

A

ψ

��
OE♭

∼ // A,

where the horizontal maps are the isomorphisms (25), and the map ψ is given by

ψ(a0,a1,a2, . . .) = (ap
0 ,a

p
1 ,a

p
2 , . . .).

It’s clear that ker(ψ) = {0}, and therefore ψ is injective. From the formula

ψ(a1,a2,a3, . . .) = ψ(a0,a1,a2, . . .)

it follows that ψ is surjective. Therefore ϕ is an isomorphism.
The proof of the other assertions is left as an exercise.

□

Exercise 11. Complete the proof of Proposition 2.1.
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DEFINITION. The field E♭ will be called the tilt of E.

PROPOSITION 2.2. A perfectoid field E is algebraically closed if and only if
E♭ is.

PROOF. The proposition can be proved by successive approximation. See [8,
Proposition 2.1.11] for the proof that E♭ is algebraically closed and [8, Proposi-
tion 2.2.19, Corollary 3.1.10] for two different proofs of the converse statement.
Scholze’s original proof can be found in [16, Proposition 3.8]. See also Kedlaya’s
proof in [2]. □

3. Witt vectors

3.1. In this section, we review the theory of Witt vectors. Consider the se-
quence of polynomials w0(x0),w1(x0,x1), . . . defined by

w0(x0) = x0,

w1(x0,x1) = xp
0 + px1,

w2(x0,x1,x2) = xp2

0 + pxp
1 + p2x2,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

wn(x0,x1, . . .xn) = xpn

0 + pxpn−1

1 + p2xpn−2

2 + · · ·+ pnxn,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
PROPOSITION 3.2. Let F(x,y) ∈ Z[x,y] be a polynomial with coefficients in Z

such that F(0,0) = 0. Then there exists a unique sequence of polynomials

Φ0(x0,y0) ∈ Z[x0,y0],

Φ1(x0,y0,x1,y1) ∈ Z[x0,y0,x1,y1],

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Φn(x0,y0,x1,y1, . . . ,xn,yn) ∈ Z[x0,y0,x1,y1, . . . ,xn,yn],

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
such that
(28)
wn(Φ0,Φ1, . . . ,Φn) = F(wn(x0,x1, . . . ,xn),wn(y0,y1, . . . ,yn)), for all n ⩾ 0.

To prove this proposition, we need the following elementary lemma.

LEMMA 3.3. Let f ∈ Z[x0, . . . ,xn]. Then

f pm
(x0, . . . ,xn)≡ f pm−1

(xp
0 , . . . ,x

p
n) (mod pm), for all m ⩾ 1.

PROOF. The proof is left to the reader. □

PROOF OF PROPOSITION 3.2. The proposition could be easily proved by in-
duction on n. For n= 0 we have Φ0(x0,y0)=F(x0,y0). Assume that Φ0,Φ1, . . . ,Φn−1
are constructed. From (28) it follows that
(29)

Φn =
1
pn

(
F(wn(x0,x1, . . . ,xn),wn(y0,y1, . . . ,yn))− (Φpn

0 + · · ·+ pn−1
Φ

p
n−1)

)
.
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This proves the uniqueness. It remains to prove that Φn has coefficients in Z. Since

wn(x0, . . . ,xn−1,xn)≡ wn−1(x
p
0 , . . . ,x

p
n−1) (mod pn),

we have:

(30) F(wn(x0, . . . ,xn−1,xn),wn(y0, . . . ,yn−1,yn))

≡ F(wn−1(x
p
0 , . . . ,x

p
n−1),wn−1(y

p
0 , . . . ,y

p
n−1)) (mod pn).

On the other hand, applying Lemma 3.3 and the induction hypothesis we have

(31) Φ
pn

0 + · · ·+ pn−1
Φ

p
n−1 ≡ wn−1

(
Φ0(x

p
0 ,y

p
0), . . . ,Φn−1(x

p
0 ,y

p
0 , . . . ,x

p
n−1,y

p
n−1)

)
≡ F(wn−1(x

p
0 , . . . ,x

p
n−1),wn−1(y

p
0 , . . . ,y

p
n−1)) (mod pn).

From (30) and (31) we obtain that

F(wn(x0, . . . ,xn−1,xn),wn(y0, . . . ,yn−1,yn))≡Φ
pn

0 + · · ·+ pn−1
Φ

p
n−1 (mod pn).

Together with (29), this shows that Φn has coeffiients in Z. The proposition is
proved. □

3.3.1. Let ( fn)n⩾0 denote the polynomials (Φn)n⩾0 for F(x,y) = x+ y and
(gn)n⩾0 denote the polynomials (Φn)n⩾0 for F(x,y) = xy. In particular,

f0(x0,y0) = x0 + y0, f1(x0,y0,x1,y1) = x1 + y1 +
xp

0 + yp
0 − (x0 + y0)

p

p
,

g0(x0,y0) = x0y0, g1(x0,y0,x1,y1) = xp
0y1 + x1yp

0 + px1y1.

3.4. For any commutative unitary ring A, we denote by W (A) the set of in-
finite vectors a = (a0,a1, . . .) ∈ AN equipped with the addition and multiplication
defined by the formulas:

a+b = ( f0(a0,b0), f1(a0,b0,a1,b1), . . .),

a ·b = (g0(a0,b0),g1(a0,b0,a1,b1), . . .).

THEOREM 3.5 (Witt). With addition and multiplication defined as above, W (A)
is a commutative unitary ring with

1 = (1,0,0, . . .).

PROOF. a) We show the associativity of addition. From construction it’s clear
that there exist polynomials with integer coefficients (un)n⩾0, and (vn)n⩾0 such that
un,vn ∈ Z[x0,y0,z0, . . . ,xn,yn,zn] and for any a,b,c ∈W (A)

(a+b)+ c = (u0(a0,b0,c0), . . . ,un(a0,b0,c0, . . . ,an,bn,cn), . . .),

a+(b+ c) = (v0(a0,b0,c0), . . . ,vn(a0,b0,c0, . . . ,an,bn,cn), . . .).

Moreover

wn(u0, . . . ,un) = wn( f0(x0,y0), f1(x0,y0,x1,y1), . . .)+wn(z0, . . . ,zn)

= wn(x0, . . . ,xn)+wn(y0, . . . ,yn)+wn(z0, . . . ,zn)
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and

wn(v0, . . . ,vn) = wn(x0, . . . ,xn)+wn( f0(y0,z0), f1(y0,z0,y1,z1), . . .)

= wn(x0, . . . ,xn)+wn(y0, . . . ,yn)+wn(z0, . . . ,zn).

Therefore
wn(u0, . . . ,un) = wn(v0, . . . ,vn), for all n ⩾ 0,

and an easy induction shows that un = vn for all n. This shows the associativity of
addition.

b) We will show the formula

(32) (x0,x1,x2, . . .) · (y0,0,0, . . .) = (x0y0,x1yp
0 ,x1yp2

0 , . . .)

In particular, it implies that 1 = (1,0,0, . . .) is the unity of W (A). We have

(x0,x1,x2, . . .) · (y0,0,0, . . .) = (h0,h1, . . .),

where h0,h1, . . . are some polynomials in y0,x0,x1 · · · . We prove by induction that
hn = xnyn

0. For n = 0 we have h0 = g0(x0,y0) = x0y0. Assume that the formula is
proved for all i ⩽ n−1. We have

wn(h0,h1, . . . ,hn) = wn(x0,x1, . . . ,xn)wn(y0,0, . . . ,0x).

Thus

hpn

0 + phpn−1

1 + · · ·+ pn−1h1 + pnhn = (xpn

0 + pxpn−1

1 + · · ·+ pn−1x1 + pnxn)y
pn

0 .

By induction hypothesis, hi = xiy
pi

0 for 0 ⩽ i ⩽ n− 1. Then hn = xnypn

0 , and the
statement is proved.

Other properties can be proved by the same method. □

3.6. We assemble below some properties of the ring W (A):
1) Any morphism of rings ψ : A→ B induces

W (A)→W (B), ψ(a0,a1, . . .) = (ψ(a0),ψ(a1), . . .).

2) If p is invertible in A, then there exists an isomorphism of rings W (A)≃
AN.

PROOF. The map

w : W (A)→ AN, w(a0,a1, . . .) = (w0(a0),w1(a0,a1),w2(a0,a1,a2), · · ·)
is an homomorphism by the definition of the addition and multiplication
in W (A). If p is invertible, then for any (b0,b1,b2, . . .) the system of equa-
tions

w0(x0) = b0, w1(x0,x1) = b1, w2(x0,x1,x2) = b2, . . .

has a unique solution in A. Therefore w is an isomorphism. □

3) For any a ∈ A, define its Teichmüller lift [a] ∈W (A) by

[a] = (a,0,0, . . .).

Then [ab] = [a][b] for all a,b ∈ A.
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PROOF. This follows from (32). □

4) The shift map (Verschiebung)

V : W (A)→W (A), (a0,a1,0, . . .) 7→ (0,a0,a1, . . .),

is additive, i.e. V (a+b) =V (a)+V (b).

PROOF. Can be proved by the method used in the proof of Theorem 3.5. □

5) For any n ⩾ 0 define

In(A) =
{
(a0,a1, . . .) ∈W (A) | ai = 0 for all 0 ⩽ i ⩽ n

}
.

It’s easy to see that (In(A))n⩾0 is a descending chain of ideals which de-
fines a separable filtration on W (A). Set

Wn(A) :=W (A)/In(A).

Then
W (A) = lim←−W (A)/In(A).

We equip W (A)/In(A) with the discrete topology and define the standard
topology on W (A) as the topology of the projective limit. It is clearly
Hausdorff. This topology coincides with the topology of the direct prod-
uct on W (A):

W (A) = A×A×A×·· · ,
where each copy of A is equipped with the discrete topology. The ideals
In(A) form a base of neighborhoods at 0 (each open neighborhood of 0
contains In(A) for some n).

6) For any a = (a0,a1, . . .) ∈W (A), one has

(a0,a1,a2, . . .) =
∞

∑
n=0

V n[an].

PROOF. Can be proved by the method used in the proof of Theorem 3.5. □

Assume that A is a ring of characteristic p, i.e. that p ·1A = 0A in A. Then A is
equipped with the absolute Frobenius endomorphism

ϕ : A→ A, ϕ(x) = xp.

7) If A is a ring of characteristic p, then the map (which we denote again by
ϕ)

ϕ : W (A)→W (A), (a0,a1, . . .) 7→ (ap
0 ,a

p
1 , . . .),

is a ring endomomorphism. In addition

ϕV =V ϕ = p.
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PROOF. We should show that

p(a0,a1, . . .) = (0,ap
0 ,a

p
1 , . . .).

By definition of Witt vectors, the multiplication by p is given by

p(a0,a1, . . .) = (h̄0(a0), h̄1(a0,a1), . . .),

where h̄n(x0,x1, . . . ,xn) is the reduction mod p of the polynomials de-
fined by

wn(h0,h1, . . . ,hn) = pwn(x0,x1, . . . ,xn), n ⩾ 0.

An easy induction shows that hn ≡ xp
n−1 (mod p), and 4) is proved. □

DEFINITION. Let A be a ring of charactersitic p. We say that A is perfect if ϕ

is an isomorphism.

PROPOSITION 3.7. Assume that A is an integral perfect ring of characteristic
p. The following holds true:

i) pn+1W (A) = In(A).
ii) The standard topology on W (A) coincides with the p-adic topology.
iii) Each a = (a0,a1, . . .) ∈W (A) can be written as

(a0,a1,a2, . . .) =
∞

∑
n=0

[ap−n

n ]pn.

PROOF. i) Since ϕ is bijective on A (and therefore on W (A)), we can write

pn+1W (A) =V n+1
ϕ
−(n+1)W (A) =V n+1W (A) = In(A).

ii) Follows directly from i). Namely, the p-adic topology is determined by the
property that (pnW (A))n⩾0 is asystem of neighborhoods at 0.

iii) One has

(a0,a1,a2, . . .) =
∞

∑
n=0

V n([an]) =
∞

∑
n=0

pn
ϕ
−n([an]) =

∞

∑
n=0

[ap−n

n ]pn.

□

THEOREM 3.8. i) Let A be a perfect integral domain (i.e. has no nonzero zero
divisors) of characteristic p. Then there exists a unique, up to an isomorphism,
ring R such that

a) R is integral of characteristic 0;
b) R/pR≃ A;
c) R is complete for the p-adic topology, namely

R≃ lim←−
n

R/pnR.

ii) The ring W (A) satisfies properties a-c).

PROOF. i) See [17, Chapitre II, Théorème 3].
ii) This follows from Proposition 3.7. □
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3.9. Examples. 1) W (Fp)≃ Zp.

2) Let Fp be the algebraic closure of Fp. Then W (Fp) is isomorphic to the ring
of integers of Q̂ur

p .

4. The tilting equivalence

4.1. The ring Ainf(E). Let E be a perfectoid field.

DEFINITION. The ring

Ainf(E) :=W (O♭
E).

is called the infinitesimal thickening of OE♭ .

Each element of Ainf(E) is an infinite vector

a = (a0,a1,a2, . . .), an ∈ O♭
E ,

which also can be written in the form

a =
∞

∑
n=0

[
ap−n

n
]
pn.

PROPOSITION 4.2 (Fontaine, Fargues–Fontaine). i) The map

θE : Ainf(E)→ OE

given by

θE

(
∞

∑
n=0

[an]pn

)
=

∞

∑
n=0

a(0)n pn

is a surjective ring homomorphism.

ii) ker(θE) is a principal ideal. An element
∞

∑
n=0

[an]pn ∈ ker(θE) is a generator

of ker(θE) if and only if vE♭(a0) = vE(p).

PROOF. i) For any ring A set Wn(A) = W (A)/In(A). Directly from the defini-
tion of Witt vectors it follows that for any n ⩾ 0 the map

wn : Wn(OE)→ OE ,

wn(a0,a1, . . . ,an) = apn

0 + papn−1

1 + · · ·+ pnan

is a ring homomorphism. Consider the map

ηn : Wn(OE/pOE)→ OE/pn+1OE ,

ηn(a0,a1, . . . ,an) = âpn

0 + pâpn−1

1 + · · ·+ pnân,

where âi denotes any lift of ai in OE . It’s easy to see that the definition of ηn doesn’t
depend on the choice of these lifts. Moreover, the diagram

Wn(OE)

��

wn // OE

��
Wn(OE/pOE)

ηn // OE/pn+1OE
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commutes by the functoriality of the Witt vectors functor. This shows, that ηn is a
ring homomorphism. Let θE,n : Wn+1(O♭

E)→ OE/pn+1OE denote the reduction of
θE modulo pn+1.

Claim. From the definitions of our maps, it follows that θE,n coincides with the
composition

Wn(O♭
E)

ϕ−n

−−→Wn(O♭
E)

pr−→Wn(OE/pOE)
ηn−→ OE/pn+1OE ,

where the map pr is induced by the projection

O♭
E → OE/pOE , (y0,y1, . . .) 7→ y0.

The proof is left as an exercise (see below).
The claim shows that θE,n is a ring homomorphism for all n ⩾ 0. Therefore θE

is a ring homomorphism.
ii) We omit the proof. See [9, Proposition 2.4] and [8, Proposition 3.1.9].
The surjectivity of θE follows from the surjectivity of the map

θE,0 : O♭
E → OE/pOE .

□

Exercise 12. 1) Let y = (y0,y1, . . .) ∈ OE♭ . Show that

(ϕ(y))(m) = y(m−1), ∀m ⩾ 1.

2) Show that
(ϕ−n(y))(0) = y(n), ∀n ⩾ 0.

3) Let a = (a0,a1, . . .) ∈ Ainf(E), ai ∈ OE♭ . Show that the map ηn ◦ pr ◦ϕ−n

sends a to
a(0)0 + pa(1)1 + · · ·+ pna(n)n .

4) Deduce the claim from 3).

Example. Let E = Cp be the completion of an algebraic closure of Qp. Take a
compatible system p1/pm

of pmth roots of p, i.e. such that (p1/pm
)p = p1/pm−1

and
set am = p1/pm

mod p. Then a = (am)m⩾0 ∈O♭
Cp

and a(0) = p. By Proposition 4.2,
the element ξ = [a]− p is a generator of ker(θCp).

4.3. The untilt. We continue to assume that E is a perfectoid field. Fix an
algebraic closure E of E and denote by CE its completion. By Proposition 2.2,
C♭

E is algebraically closed and we denote by E♭ the separable closure of E♭ in C♭
E .

Let CE♭ := Ê♭ denote the p-adic completion of E♭. By construction, CE♭ ⊂ C♭
E . In

proposition 4.5 below we will prove that CE♭ ⊂ C♭
E .

We have the following picture

CE
♭ // C♭

E

E ♭ // E♭
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Let F be a complete perfect intermediate field

E♭ ⊂ F⊂ C♭
E .

Fix a generator ξ of ker(θE). Consider the diagram, where OF♯ := θCE (W (OF)) :

0 // ξ Ainf(E) //
� _

��

Ainf(E)� _

��

θE // OE� _

��

// 0

0 // ξW (OF) //
� _

��

W (OF)� _

��

// OF♯
� _

��

// 0

0 // ξ Ainf(CE) // Ainf(CE)
θCE // OCE

// 0

We remark that
OF♯ =W (OF)/ξW (OF).

Set F♯ = OF♯ [1/p] (field of fractions of OF♯).

PROPOSITION 4.4. F♯ is a perfectoid field and (F♯)♭ = F.

PROOF. We omit the proof that F♯ is complete with the ring of integers OF♯ .
If ξ = ∑

n⩾0
[an]pn, then from Proposition 4.2 ii) we have a0 ∈mE♭ . Thus

ξ mod p = a0 ∈mE♭ .

Then
OF♯/pOF♯ ≃ OF/a0OF.

Since OF is perfect, the Frobenius map in surjective on OF/a0OF Therefore ϕ :
OF♯/pOF♯ → OF♯/pOF♯ is surjective, and we proved that F♯ is a perfectoid field.

The exercise below shows that (F♯)♭ = F. □

Exercise 13. Let F be a perfect complete non-archimedean field of character-
istic p. Let α ∈mF. Then

lim←−
ϕ

OF/αOF ≃ OF.

The isomorphism is given by the maps

lim←−
ϕ

OF/αOF→ OF, (xn)n⩾0 7→ lim
n→+∞

x̂pn

n ,

OF→ lim←−
ϕ

OF/αOF, x 7→ (ϕ−n(x) mod αOF)n⩾0,

This exercise shows that

lim←−
ϕ

OF♯/pOF♯ = lim←−
ϕ

OF/a0OF ≃ OF,

i.e. that (F♯)♭ = F.

PROPOSITION 4.5. One has C♭
E = CE♭ .
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PROOF. Since E♭ ⊂ C♭
E and C♭

E is complete and algebraically closed, we have
CE♭ ⊂ C♭

E . Set F := CE♭ . By the claim, (F♯)♭ = F. Since F is complete and alge-
braically closed, F♯ is complete and algebraically closed by Proposition 2.2. Since
F♯ ⊂ CE , we have F♯ ⊂ CE . Therefore

F= (F♯)♭ = C♭
E .

The proposition is proved. □

Now we can prove the main result of this section.

THEOREM 4.6 (Scholze, Fargues–Fontaine). Let E be a perfectoid field of
characteristic 0. Then the following holds true:

i) Each finite extension of E is a perfectoid field.
ii) The tilt functor F 7→ F♭ induces an equivalence between the categories of

finite extensions of E and E♭ respectively.
iii) The functor

F 7→ F♯, F♯ := (W (OF)/ξW (OF)) [1/p]

is a quasi inverse to the tilt functor.

PROOF. (See Fargues–Fontaine [8, Theorem 3.2.1].)
a) Let Aut(CE/E) denote the group of continuous automorphisms of CE/E.

The Galois group GE = Gal(E/E) acts on E continuously. Therefore it acts on
CE , and GE = Aut(CE/E). The same argument shows that GE♭ = Aut(CE♭/E♭),

where GE♭ = Gal(E♭
/E♭) and Aut(CE♭/E♭) denotes the group of continuous auto-

morphisms of CE♭/E♭.

By Proposition 4.5, C♭
E = CE♭ . The action of Aut(CE/E) on OCE induces an

action of GE on OCE/pOCE and, therefore, on O♭
CE

:= lim←−OCE/pOCE . This pro-
vides a natural morphism of groups Aut(CE/E)→ Aut(C♭

E/E♭). Hence, we have
a chain of morphisms:

(33) GE → Aut(C♭
E/E♭)

∼−→ Aut(CE♭/E♭)
∼−→ GE♭ .

Conversely, again by Proposition 4.5, we have an isomorphism

(34) W (OCE♭
)/ξW (OCE♭

)≃ OCE .

The action of Aut(CE♭/E♭) on CE♭ induces an action of Aut(CE♭/E♭) on W (OCE♭
).

Since ξ ∈W (OE♭), the group Aut(CE♭/E♭) acts trivially on ξ , and the above iso-
morphism defines a continuous action of Aut(CE♭/E♭) on OCE . This provides a
morphism Aut(CE♭/E♭)→ Aut(CE/E). Therefore, we have a chain of morphisms

GE♭
∼−→ Aut(CE♭/E♭)→ Aut(CE/E) ∼−→ GE .

It’s easy to see that the maps (33) and (34) are inverse to each other. Therefore

GE ≃ GE♭ ,

and by Galois theory we have a one-to-one correspondence

(35)
{

finite extensions of E
}
↔
{

finite extensions of E♭
}
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b) Using the isomorphism GE ≃ GE♭ , we can consider subgroups of GE♭ as
subgroups of GE and vice-versa. Let F/E♭ be a finite extension. Since E♭ is perfect,
F is also perfect. Then

(36) F♯ = (W (OF)/ξW (OF)) [1/p)]⊂ CGF

E .

We omit the proof that the above inclusion is, in fact, an equality:

F♯ = CGF

E .

This shows that the Galois correspondence

(37)
{

finite extensions of E♭
}
→
{

finite extensions of E
}

is given by the untilting F 7→ F♯. Moreover, by the claim F♯ is perfectoid and
(F♯)♭ = F.

c) We will use the fact that CGF
E = F for any finite extension F/E. Below, we

give a proof only in the case E ⊂CK , where K is a local field of characteristic 0. By
Theorem 1.1, E = L̂, where L/K is deeply ramified. Write F = E[α], where α is
a root of an irreducible polynomial with coefficients in E. From Krasner’s lemma
it follows that there exists an algebraic element β over L such that E[α] = E[β ].
Therefore F = M̂, where M = K[β ]. Since the Galois group GM = Gal(K/M) acts
continuously, we have GM = Aut(CE/M̂) = GF . Since CE = CK , we have

CGF
E = CGM

K = M̂ = F

(here we used Theorem 3.2 of Chapter 2!).
d) Let F be a finite extension of E. Set F =

(
E♭
)GF . Then GF = GF and F =

CGF

E by part c). From part b), we have

CGF

E = F♯.

By Proposition 4.4, F♯ is a perfectoid field. Therefore F = F♯ is a perfectoid field,
and the assertion i) is proved.

e) We have

(38) F♭ =
(
F♯
)♭

= F=
(
E♭
)GF .

Formulas (38) shows that the inverse of the correspondence (37) is given by F 7→
F♭. The theorem is proved. □





CHAPTER 4

p-adic representations of local fields

1. p-adic representationss

1.1. Let E be a field equipped with a Hausdorff topology and let V be a
finite dimensional E-vector space. Each choice of a basis of V fixes topological
isomorphisms V ≃ En and Aut(V ) ≃ GLn(E) where n = dimL(E). Note that V is
equipped with the induced topology.

DEFINITION. A representation of a topological group G on V is a continuous
homomorphism

ρ : G→ Aut(V ).

Fixing a basis of V we can view a representation of G as a continuous homomor-
phism G→ GLn(E).

Let K be a field and let K be a separable closure of K. We denote by GK
the absolute Galois group Gal(K/K) of K. Recall that GK is equipped with the
inverse limit topology and therefore is a compact and totally disconnected topolog-
ical group.

1.2. Example. Equip E with the discrete topology. Let ρ : GK → GLn(E)
be a representation of GK . Then H := ρ−1{1} is an open normal subgroup in
GK . Since any open subgroup of GK has a finite index, (GK : H) < +∞. Set
L :=KH

. Then L/K is a finite extension, Gal(L/K) =GK/H, and ρ factors through
Gal(L/K) :

GK //

$$

GLn(E)

Gal(L/K).

OO

DEFINITION. Let ℓ be a prime number.
i)An ℓ-adic Galois representation is a representation of GK on a finite dimen-

sional Qℓ-vector space.
ii) An Zℓ-adic representation is of GK is a free Zℓ-module T of finite rank

equipped with a continuous homomorphism ρ : GK → AutZℓ
(T ).

Sometimes it is convenient to consider representations with coefficients with a
finite extension E of Qℓ.

If ρ : GK → AutQℓ
(V ) is an ℓ-adic representation, we will write

g(x) := ρ(g)(x), ∀g ∈ GK ,x ∈V.

59
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1.3. A morphism of ℓ-adic representations is a linear map f : V1→ V2 such
that

f (g(x)) = g f (x), ∀g ∈ GK , x ∈V1.

We denote by RepQℓ
(GK) the category of p-adic representations of the absolute

Galois group of a field K. Below we assemble some basic properties of this cate-
gory.

1.3.1. RepQℓ
(GK) is an abelian category.

1.3.2. RepQℓ
(GK) is equipped with the internal Hom:

HomQℓ
(V1,V2).

Namely, HomQℓ
(V1,V2) is the Qℓ-vector space of all Qℓ-linear maps f : V1→ V2

equipped with the following linear action of GK :

(g f )(x) := g( f (g−1(x)), ∀g ∈ GK , x ∈V1.

This induces a structure of an ℓ-adic representation on HomQℓ
(V1,V2).

1.3.3. For each V, we have the dual representation V ∗ = HomQℓ
(V,Qℓ). The

action of GK on V ∗ is given by (g f )(x) = f (g−1(x)).
1.3.4. RepQℓ

(GK) is equipped with ⊗. Namely, if V1 and V2 are ℓ-adic repre-
sentations, the structure of an ℓ-adic representation on the tensor product V1⊗E V2
is given by

g(x1⊗ x2) = g(x1)⊗g(x2), g ∈ GK .

PROPOSITION 1.4. For any ℓ-adic representation V , there exists a Zℓ-lattice
stable under the action of GK .

REMARK 1.5. The proposition shows that the functor

RepZℓ
(GK)→ RepQℓ

(GK),

T 7→ T ⊗Zℓ
Qℓ

is essentially surjective.

PROOF. Let {e1, . . . ,en} be a basis of V and

T ′ = Zℓe1 + · · ·+Zℓen

the associated lattice. The group

U = AutZℓ
(T ′)≃ GLn(Zℓ)⊂ GLn(Qℓ)≃ AutQℓ

(V )

is open in AutQℓ
(V ). Therefore H := ρ−1(U) ⊂ GK is open and (GK : H) < +∞.

Replacing H by ∩
g

gHg−1, where g runs the representatives of left cosets of H, one

can assume that H is normal in G. Write G =
m
∪

i=1
giH and set

T = g1(T ′)+ · · ·+gm(T ′).

Then T is a lattice in V , which is stable under the action of GK . □

Below we give some examples of ℓ-adic representations.
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1.5.1. Roots of unity. Let ℓ ̸= char(K). The group GK acts on the groups µℓn

of ℓn-th roots of unity via the cyclotomic character χℓ : GK → Z∗ℓ

g(ζ ) = ζ
χℓ(g), if g ∈ GK , ζ ∈ µℓn .

Set Zℓ(1) = lim←−n
µℓn and Qℓ(1) = Zℓ(1)⊗Zℓ

Qℓ. Then Qℓ(1) is a one dimensional
Qℓ-vector space equipped with a continuous action of GK . The homomorphism
GK → Aut(Qℓ(1))≃Q∗ℓ concides with χℓ.

1.5.2. Elliptic curves. Let E be an elliptic curve over a field K of character-
istic 0. The group A[ℓn] of ℓn-torsion points of E(K) is a Galois module which is
isomorphic (not canonically) to (Z/ℓnZ)2d as an abstract group. The ℓ-adic Tate
module of A is defined as the projective limit

Tℓ(E) = lim←−
n

E[ℓn],

with respect to the multiplication-by-ℓ maps E[ℓn+1]→ E[ℓn]. This is a free Zℓ-
module of rank d equipped with a continuous action of GK . The associated vector
space Vℓ(A) = Tℓ(A)⊗Zℓ

Qℓ gives rise to an ℓ-adic representation

ρE,ℓ : GK → Aut(Vℓ(E)).

Note that Tℓ(E) is a canonical GK -lattice of Vℓ(E). The reduction of Tℓ(E) modulo
ℓ is isomorphic to E[ℓ].

2. Admissible representations

2.1. General approach. p-adic representations arising in algebraic geometry
have very special properties and form some natural subcategories of RepQp

(GK).
As was first observed by Grothendieck, it should be possible to classify them in
terms of some objects of semi-linear algebra. We review Fontaine’s general ap-
proach to this problem.

In this section, K is a local field. As usual, we denote by K its separable closure
and set GK = Gal(K/K).

Let B be a commutative Qp-algebra without zero divisors, equipped with a
Qp-linear action of GK , namely

• g(b1 +b2) = g(b1)+g(b2), g ∈ GK , b1,b2 ∈ B;
• g(b1b2) = g(b1)g(b2), g ∈ GK , b1,b2 ∈ B;
• g(λb) = λg(b), g ∈ GK , λ ∈Qp, b ∈ B.

Let C denote the field of fractions of B. the action of GK extends to C by the formula
g(b1/b2) = g(b1)/g(b2). Set E = BGK := {b ∈ B | g(b) = b,∀g ∈ GK}.

DEFINITION. The algebra B is GK-regular if it satisfies the following condi-
tions:

i) BGK =CGK ;
ii) Each non-zero b ∈ B such that the line Qpb, is stable under the action of

GK , is invertible in B.

If B is a field, these conditions are satisfied automatically.
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2.2. In the remainder of this section, we assume that B is GK-regular. From
the condition ii), it follows that E is a field. For any p-adic representation V of GK
we consider the E-module

DB(V ) = (V ⊗Qp B)GK .

Consider the map

(V ⊗Qp B)⊗E B→V ⊗Qp B, (v⊗b1)⊗b2 7→ v⊗b1b2.

Since DB(V )⊂V ⊗Qp B, it induces a map

αB : DB(V )⊗E B→V ⊗Qp B.

PROPOSITION 2.3. i) The map αB is injective for all V ∈ RepQp
(GK).

ii) dimE DB(V )⩽ dimQp V.

PROOF. See [4, Theorem 5.2.1]. Set DC(V ) = (V⊗Qp C)GK . Since BGK =CGK ,
DC(V ) is an E-vector space, and we have the following diagram with injective
vertical maps:

DB(V )

��

αB // V ⊗Qp B

��
DC(V )

αC // V ⊗Qp B.

Therefore it is sufficient to prove that αC is injective. We prove it applying Artin’s
trick. Assume that ker(αC) ̸= 0 and choose a non-zero element

x =
m

∑
i=1

di⊗ ci ∈ ker(αC)

of the shortest length m. It is clear that in this formula, di ∈ DC(V ) are linearly
independent. Moreover, since C is a field, one can assume that cm = 1. Then for all
g ∈ GK

g(x)− x =
m−1

∑
i=1

di⊗ (g(ci)− ci) ∈ ker(αC).

This shows that g(x) = x for all g ∈ GK , and therefore that ci ∈ CGK = E for all
1 ⩽ i ⩽ m. Thus x ∈ DC(V ). From the definition of αC, it follows that αC(x) = x,
hence x = 0. □

DEFINITION. A p-adic representation V is called B-admissible if

dimE DB(V ) = dimQp V.

PROPOSITION 2.4. If V is admissible, then the map αB is an isomorphism.

PROOF. See [11, Proposition 1.4.2]. Let v = {vi}n
i=1 and d = {di}n

i=1 be ar-
bitrary bases of V and DB(V ) respectively. Then v = Ad for some matrix A with
coefficients in B. The bases x =

∧n
i=1 di ∈

∧n DB(V ) and y =
∧n

i=1 vi ∈
∧nV are re-

lated by x= det(A)y. Since
∧nV is one dimensional, GK acts on it by g(y) = η(g)y,

where η : GK → Z∗p is a character. Taking into account that x is stable under the
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action of the Galois group, we obtain that g(det(A)g(y) = det(A)y and therefore
that g(det(A)) = η(g)−1 det(A). Hence the Qp-vector space generated by det(A)
is stable under the action of GK . Hence det(A) ∈ B is invertible, the matrix A is
invertible, and αB is an isomorphism. □

2.4.1. We denote by RepB(GK) the category of B-admissible representations.
The following proposition summarizes some properties of this category.

PROPOSITION 2.5. The following holds true:
i) If in an exact sequence

0→V ′→V →V ′′→ 0

V is B-admissible, then V ′ and V ′′ are B-admissible.
ii) If V ′ and V ′′ are B-admissible, then V ′⊗Qp V ′′ and Hom(V ′,V ′′)=HomQp(V

′,V ′′)
are B-admissible.

iii) V is B-admissible if and only if the dual representation V ∗ is B-admissible,
and in that case DB(V ∗) = DB(V )∗.

iv) The functor
DB : RepB(GK)→ VectE

to the category of finite dimensional E-vector spaces, is exact and faithful.

PROOF. See [11, Proposition 1.5.2]. i) Since V , V ′ and V ′′ are Qp-vector
spaces, the sequence

0→V ′⊗Qp B→V ⊗Qp B→V ′′⊗Qp B→ 0

is an exact sequence of GK-modules. Passing to Galois invariants, we obtain that

0→ (V ′⊗Qp B)GK → (V ⊗Qp B)GK → (V ′′⊗Qp B)GK

is exact. Tautologically, the last exact sequence reads:

0→ DB(V ′)→ DB(V )→ DB(V ′′).

From the exact sequence we have that

dimE DB(V )⩽ dimE DB(V ′)+dimE DB(V ′′).

Moreover dimE DB(V ′)⩽ dimQp(V
′), dimE DB(V )⩽ dimQp(V ) and dimE DB(V ′′)⩽

dimQp(V
′′) by Proposition 2.3. If V is B-admissible, dimE DB(V ) = dimQp(V ), and

we obtain that

dimQp(V ) = dimQp(V
′)+dimQp(V

′′)⩽ dimE DB(V ′)+dimE DB(V ′′).

Therefore dimE DB(V ′) = dimQp(V
′), dimE DB(V ′′) ⩽ dimQp(V

′′), and we proved
that V ′ and V ′′ are B-admissible. In addition, in that case the sequence

0→ DB(V ′)→ DB(V )→ DB(V ′′)→ 0

is exact.
ii) Assume that V ′ and V ′′ are B-admissible. Then we have isomorphisms

DB(V ′)⊗E B→V ′⊗Qp B, DB(V ′′)⊗E B→V ′′⊗Qp B.
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Taking the tensor product of these isomorphisms over B, we obtain

(DB(V ′)⊗E B)⊗B (DB(V ′′)⊗E B)≃ (V ′⊗Qp B)⊗B (V ′′⊗Qp B).

Since

(DB(V ′)⊗E B)⊗B (DB(V ′′)⊗E B)≃ (DB(V ′)⊗E DB(V ′′))⊗E B

and
(V ′⊗Qp B)⊗B (V ′′⊗Qp B)≃ (V ′⊗Qp V ′′)⊗Qp B,

we have
(DB(V ′)⊗E DB(V ′′))⊗E B≃ (V ′⊗Qp V ′′)⊗Qp B.

Taking Galois invariants in the both sides, we obtain

DB(V ′)⊗E DB(V ′′)≃ DB(V ′⊗Qp V ′′).

In particular,

dimE DB(V ′⊗Qp V ′′) = dimE DB(V ′) ·dimE DB(V ′′)

= dimQp(V
′) ·dimQp(V

′′) = dimQp(V
′⊗Qp V ′′).

This shows that V ′⊗Qp V ′′ is B-admissible. In addition, in that case

DB(V ′⊗Qp V ′′)≃ DB(V ′)⊗E DB(V ′′).

iii) We prove that the dual V ∗ of an admissible representation V is admissible.
This follows from the following isomorphisms:

DB(V ∗) = (HomQp(V,Qp)⊗Qp B)GK ≃HomQp(V,B)
GK ≃HomB(V ⊗Qp B,B)GK

≃ Hom(DB(V )⊗E B,B)GK ≃ HomE(DB(V ),B)GK ≃ HomE(DB(V ),E).

Therefore dimE DB(V ∗)= dimE HomE(DB(V ),E)= dimE DB(V )= dimQp(V ). This
implies that V ∗ is admissible. In addition, in that case

DB(V ∗)≃ HomE(DB(V ),E).

Assume now that V ′ and V ′′ are B-admissible, Since

HomQp(V
′,V ′′)≃ HomQp(V

′,Qp)⊗Qp V ′′,

the admissibility of HomQp(V
′,V ′′) follows from the admissibility of the dual rep-

resentation and the tensor product.
iv) Let HomGK (V

′,V ′′) denote the vector space of morphisms V ′→V ′′.

HomGK (V
′,V ′′) ↪→ HomGK (V

′⊗Qp B,V ′′⊗Qp B)

≃ HomGK (DB(V ′)⊗E B,DB(V ′′)⊗E B)≃ HomE(DB(V ′),DB(V ′′)).

Therefore the map HomGK (V
′,V ′′)→HomE(DB(V ′),DB(V ′′)) is injective, and the

functor DB is faithful. □



2. ADMISSIBLE REPRESENTATIONS 65

2.5.1. We can also work with the contravariant version of the functor DB :

D∗B(V ) = HomGK (V,B).

From definitions, it is clear that

D∗B(V ) = DB(V ∗).

In particular, if V (and therefore V ∗) is admissible, then

D∗B(V ) = DB(V )∗ := HomE(DB(V ),E).

The last isomorphism shows that the covariant and contravariant theories are equiv-
alent. For an admissible V , we have the canonical non-degenerate pairing

⟨ , ⟩ : V ×D∗B(V )→ B, ⟨v, f ⟩= f (v),

which can be seen as an abstract p-adic version of the canonical duality between
singular homology and de Rham cohomology of a complex variety.

2.6. Examples.
2.6.1. B = K, where K is of characteristic 0. One has BGK = K. The following

proposition describes K-admissible representations.

PROPOSITION 2.7. ρ : GK → AutQpV is K-admissible if and only if Im(ρ) is
finite.

PROOF. a) Assume that Im(ρ) is finite. The group GK acts semi-linearly on
K⊗Qp V :

g(a⊗ v) = g(a)⊗g(v), g ∈ GK .

Since Im(ρ) is finite, for each x ∈ K⊗Qp V there exists a subgroup H ⊂ GK of
finite index such that H acts trivially on x. This implies that GK acts on K⊗Qp V
continuously (here K⊗Qp V is equipped with the discrete topology !).

THEOREM 2.8 (Hilbert’s theorem 90). Let W be a finite dimensional K-vector
space of dimension n equipped with a semilinear action of GK , namely

• g(w1 +w2) = g(w1)+g(w2), g ∈ GK , w1,w2 ∈W ;
• g(λw) = g(λ )g(w), g ∈ GK , λ ∈ K, w ∈W.

Assume that this action is continuous in the discrete topology on W. Then W GK :=
{w ∈W | g(w) = w,∀g ∈ GK} is an n-dimensional K-vector space and the natural
map

K⊗K W GK →W, λ ⊗w 7→ λw

is an isomorphism.

PROOF. The proof is omitted. See, for example, [15, Chapter 2, §2]. □

By Hilbert’s theorem 90, one has:

dimK DB(V ) := dimK(K⊗Qp V )GK = dimQp V.

Therefore V is K-admissible.
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b) Assume that V is K-admissible. Fix a basis {v j}n
j=1 of V and a basis {di}n

i=1
of DB(V ) = (K⊗Qp V )GK . Then:

di =
n

∑
j=1

ai j⊗ v j, ai j ∈ K, 1 ⩽ i ⩽ n.

There exists a finite extension L/K such that GL acts trivially on all ai j. Since
GL acts trivially on {di}n

i=1, and A = (ai j)1⩽i, j⩽n is invertible, GL acts trivially on
{v j}n

j=1. Therefore GL acts trivially on V, and Im(ρ) is finite. □

2.8.1. B = CK , where K is of characteristic 0. One has CGK
K = K by Theo-

rem 4.5, Chapter II.

THEOREM 2.9 (Sen). ρ is CK-admissible if and only if ρ(IK) is finite.

Example. Take V = Qp(1). Then

DCK (Qp(1)) = (CK⊗Qp Qp(1))GK = (CK(χK))
GK = 0

again by Theorem 4.5, Chapter II. Therefore Qp(1) is not CK-admissible.

3. Hodge–Tate representations

3.1. We maintain notation and conventions of Section 2.1. The notion of a
Hodge–Tate representation was introduced in Tate’s paper [?]. We use the formal-
ism of admissible representations. Let K be a local field of characteristic 0. Let

BHT = CK [t, t−1]

denote the ring of polynomials in the variable t with integer exponents and coeffi-
cients in CK . We equip BHT with the action of GK given by

g
(
∑ait i)= ∑g(ai)χ

i
K(g) t i, g ∈ GK ,

where χK denotes the cyclotomic character. Therefore GK acts naturally on CK ,
and t can be viewed as the ”p-adic 2πi” – the p-adic period of the multiplicative
group Gm. For any p-adic representation V of GK , we set:

DHT(V ) = (V ⊗Qp BHT)
GK .

PROPOSITION 3.2. The ring BHT is GK-regular and BGK
HT = K.

PROOF. a) The field of fractions Fr(BHT) of BHT is isomorphic to the field of
rational functions CK(t). Embedding it in the field of Laurent power series CK((t)),
we have:

BGK
HT ⊂ Fr(BHT)

GK ⊂ CK((t))GK .

From Theorem 4.5, Chapter II, it follows that (CKt i)GK =K if i= 0, and (CKt i)GK =

0 otherwise. Hence BGK
HT = CK((t))GK = K. Therefore

Fr(BHT)
GK = BGK

HT = K.

b) Let b ∈ BHT \{0}. Assume that Qpb is stable under the action of GK . This
means that

(39) g(b) = η(g)b, ∀g ∈ GK
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for some character η : GK → Z∗p. Write b in the form

b = ∑
i

ait i.

We will prove by contradiction that all, except one monomials in this sum are zero.
From formula (39), if follows that for all i one has:

g(ai)χ
i
K(g) = aiη(g), g ∈ GK .

Assume that ai and a j are both non-zero for some i ̸= j. Then

g(ai)χ
i
K(g)

ai
=

g(a j)χ
j

K(g)
a j

, ∀g ∈ GK .

Set c = ai/a j and m = i− j ̸= 0. Then c is a non-zero element of CK such that

g(c)χm
K (g) = c, ∀g ∈ GK .

This is in contradiction with the fact that CK(χ
m
K )

GK = 0 if m ̸= 0.
Therefore b = ait i for some i ∈ Z and ai ̸= 0. This implies that b is invertible

in BHT. The proposition is proved. □

3.2.1. A graded vector space over K is a K-vector space D equipped with a
decomposition into a direct sum of subspaces Di, i ∈ Z :

G =
⊕
i∈Z

Di.

We will often write gri(D) := Di and G =
⊕
i∈Z

gri(D). A morphism of graded spaces

f : D′→ D′′ is a K-linear map preserving the grading :

f (gri(D′))⊂ gri(D′′), ∀i ∈ Z.

Let GradK denote the category of finite-dimensional graded K-vector spaces. We
remark that DHT(V ) has a natural structure of a graded K-vector space:

DHT(V ) = ⊕
i∈Z

griDHT(V ), griDHT(V ) =
(
V ⊗Qp CKt i)GK .

Therefore we have a functor

DHT : RepQp
(GK)→GradK .

Note that this functor is clearly left exact but not right exact.

DEFINITION. A p-adic representation V is a Hodge–Tate representation if it
is BHT-admissible.

We denote by RepHT(GK) the category of Hodge–Tate representations. From
the general formalism of B-admissible representations, it follows that the restriction
of DHT on RepHT(GK) is exact and faithful.
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3.3. Set:

V (i) = {x ∈V ⊗Qp CK | g(x) = χK(g)ix, ∀g ∈ GK}, i ∈ Z,

V{i}=V (i)⊗K CK .

It is clear that
V (i) ≃ gr−iDHT(V ), x↔ xt−i

is an isomorphism of K-vector spaces. Therefore

V (i) ≃ gr−iDHT(V )⊗K Kt i, x↔ (xt−i)⊗ t i

is an isomorphism of GK-modules (GK acts on the both sides as the multiplication
by χ i

K). Set:
V{i} :=V (i)⊗K CK .

From the above isomorphism, it follows that

V{i} ≃ gr−iDHT(V )⊗K CKt i, i ∈ Z.

Set:

gr0 (DHT(V )⊗K BHT) =
⊕
i∈Z

(
gr−iDHT(V )⊗K CKt i)⊂ DHT(V )⊗K BHT.

We have a commutative diagram

⊕
i∈Z

V{i}

≃
��

// V ⊗Qp CK

=

��
gr0 (DHT(V )⊗K BHT)� _

��

// V ⊗Qp CK� _

��
DHT(V )⊗K BHT

αHT // V ⊗Qp BHT.

The upper map in this diagram

(40) ⊕
i∈Z

V{i}→V ⊗Qp CK

is induced by the maps:

V{i}=V (i)⊗K CK →V ⊗Qp CK ,(
∑
k

vk⊗ak

)
⊗λ 7→∑

k
vk⊗akλ ,

where ∑
k

vk⊗ak ∈V (i), λ ∈ CK .

The following proposition shows that our definition of a Hodge–Tate represen-
tation coincides with Tate’s original definition:

PROPOSITION 3.4. i) For any representation V, the map (40) is injective.
ii) V is a Hodge–Tate if and only if (40) is an isomorphism.
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PROOF. i) By Proposition 2.3, for any p-adic representation V, the map

αHT : DHT(V )⊗K BHT→V ⊗Qp BHT

is injective. The restriction of αHT on the homogeneous subspaces of degree 0
coincides with the map (40). Therefore (40) is injective.

ii) By Proposition 2.4, V is a Hodge–Tate if and only if αHT is an isomorphism.
We remark that αHT is an isomorphism if and only if the map (40) is. Now ii)
follows from the above diagram (exercise). This proves the proposition. □

DEFINITION. Let V be a Hodge–Tate representation. The isomorphism

V ⊗Qp CK ≃ ⊕
i∈Z

V{i}

is called the Hodge–Tate decomposition of V. If V{i} ≠ 0, one says that the integer
i is a Hodge–Tate weight of V, and that mi = dimCK V{i} is the multiplicity of i.

We will use the standard notation CK(i) = CK(χ
i
K) for the cyclotomic twists

of CK . Then V{i}= CK(i)mi as a Galois module. The Hodge–Tate decomposition
of V can be written in the following form:

V ⊗Qp CK = ⊕
i∈Z

CK(i)mi .

4. De Rham representations

4.1. The field BdR. In this section, we define Fontaine’s field of p-adic periods
BdR. For proofs and more detail, we refer the reader to [9] and [10].

Let K be a local field of characteristic 0. Recall that the ring of integers of the
tilt C♭

K of CK was defined as the projective limit

O♭
CK

= lim←−
ϕ

OCK/pOCK , ϕ(x) = xp

(see Section 2). By Propositions 2.1 and 2.2, Chapter III, O♭
CK

is a complete perfect
valuation ring of characteristic p with residue field kK . The field C♭

K is a complete
algebraically closed field of characteristic p.

4.1.1. We will denote by Ainf the ring of Witt vectors

Ainf =W (O♭
CK

).

Recall that Ainf is equipped with the surjective ring homomorphism θ : Ainf→OCK

(see Proposition 4.2, Chapter III, where it is denoted by θE). The kernel of θ is the

principal ideal generated by any element ξ =
∞

∑
n=0

[an]pn ∈ ker(θ) such that a1 is a

unit in O♭
CK

. A useful choice is:

– ξ = [p̃]− p, where p̃ = (p1/pn
)n⩾0.

Exercise 14. Let ε = (ζpn)n⩾0 be a compatible system of primitive pnth roots
of unity, i.e. ζ1 = 1 and ζ

p
pn = ζpn−1 . We consider ε as an element of O♭

CK
iden-

tifying ε with (ζpn mod p)n⩾0. Show that ω =
p−1
∑

i=0
[ε]i/p ∈ Ainf is a generator of
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ker(θ).

Let K0 denote the maximal unramified subextension of K. Then OK0 =W (kK)⊂
Ainf. Let Ainf,K = Ainf⊗OK0

K. Then θ extends by linearity to a sujective homomor-
phism

θK : Ainf,K → CK , θK(x⊗λ ) = λθ(x), x ∈ Ainf,λ ∈ K.

More explicitly, each element of K can be written in the form

∑
n≫−∞

[an]π
n
K , an ∈ kK ,

where [an] denotes the Teichmüller lift of an in OK0 =W (kK)⊂Ainf and the number
of terms of negative degree in finite (see Corollary 2.6). In particular, p can be
written in this form. Therefore every element of Ainf,K =Ainf⊗OK0

K can be written
in the form

∑
n≫−∞

[xn]π
n
K , xn ∈ O♭

CK
.

Then

θK

(
∑

n≫−∞

[xn]π
n
K

)
= ∑

n≫−∞

x(0)n π
n
K ,

where x(0)n are defined in Chapter III.
Set JK := ker(θK).

PROPOSITION 4.2. The kernel JK is a principal ideal. An element

ξ = ∑
n≫−∞

[xn]π
n
K ∈ ker(θK)

generates JK if and only if vC♭
K
(x0) = vK(πK). In particular, let π̃K = (π

1/pn

K )n⩾0

be a compatible system of pnth roots of πK , viewed as an element of O♭
CK

. Then
[π̃K ]−πK is a generator of JK .

PROOF. See [9, Proposition 2.4]. □

We denote by B+
dR,K the completion of Ainf,K for the JK-adic topology, namely

B+
dR,K = lim←−

n
Ainf,K/Jn

K .

From the definition of θK , it follows easily that the map θK : Ainf,K → CK is a
morphism of Galois modules, namely

g(θK(x)) = θK(g(x)), g ∈ GK , x ∈ Ainf,K .

This implies that θK(g(x)) = 0 if θK(x) = 0, i.e. that JK is stable under the action
of GK . Therefore the action of GK extends to B+

dR,K , and we can consider B+
dR,K as

a GK-module.
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PROPOSITION 4.3. i) B+
dR,K is a complete discrete valuation ring with maximal

ideal
mdR,K = JKB+

dR,K .

The residue field B+
dR,K/mdR,K is isomorphic to CK as a Galois module.

ii) If L/K is a finite extension, then the natural map B+
dR,K → B+

dR,L is an iso-
morphism. In particular, B+

dR,K depends only on the algebraic closure K of K.

We use the following well-known result:

LEMMA 4.4. Let A be a commutative domain and m a maximal principal ideal
of A such that ∩

n⩾1
mn = {0}. Set Â = lim←−n

A/mn. Then

i) The natural map ι : A→ Â is injective.
ii) Â is a complete discrete valuation ring with residue field A/m.

PROOF. i) The map ι is given by ι(a) = (an)n⩾1, where an = a mod mn.
Therefore the injectivity of ι follows from the assumption ∩

n⩾1
mn = {0}.

ii) Let ξ be a generator of m. Using the map ι , we identify A with a subring of
Â.

a) We first show that ξ Â is the unique maximal ideal of Â. For this, it is suf-
ficient to prove that any a ∈ Â \ ξ Â is invertible. Let a = (an)n⩾1 ∈ Â, where
an ∈ A/mn. By, induction, we will construct b = (bn)n⩾1 such that anbn = 1 in
A/mn. This will prove that ab = 1. Since a /∈ ξ Â, a1 ∈ A/m is nonzero, and there
exists b1 ∈ A/m such that a1b1 = 1. (A/m is a field.) Now assume that bn is
constructed. Let denote by ân ∈ A, b̂n ∈ A and ân+1 ∈ A any lifts of an, bn and
an+1. Note that ân+1 ≡ ân (mod mn). We want to prove that there exists b̂n+1 ≡ b̂n
(mod mn) such that

ân+1b̂n+1 ≡ 1 (mod mn+1).

Writing ânb̂n = 1+ ξ nv, ân+1 = ân + ξ nu and b̂n+1 = b̂n + ξ nx, we can write this
congruence in the form

ânx≡ v−ubn (mod m).

Since ân /∈m, this congruence has a solution x and setting bn+1 = b̂n+1 mod mn+1,

we obtain that an+1bn+1 = 1. This shows that ξ Â is the unique maximal ideal of Â.
b) Since Â is the completion of A with respect to the topology induced by the

ideal m (by definition,this means that (mn)n⩾1 form a neighborhood base in 0), the
ring Â is complete.

c) We prove that Â is a discrete valuation ring. Let a = (an)n⩾1 be a nonzero
element of Â. Let n0 be the biggest n such that an = 0 in A/mn. Then for all n > n0
one has an = ξ n0cn with cn /∈ m, and setting c = (cn)n⩾1, one has a = ξ n0c where
c ∈ Â∗ is invertible. Therefore Â is a DVR. □

PROOF OF PROPOSITION 4.3. i) From the above lemma, it follows immedi-
ately that B+

dR,K is a discrete valuation ring with the maximal ideal mdR,K = ξ B+
dR,K ,
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where ξ is any generator of JK . Moreover,

B+
dR,K/mdR,K = Ainf,K/ker(θK)≃ CK .

ii) Let L/K be a finite extension. If L/K is unramified, then from construction it
is clear that Ainf,K =Ainf,L and B+

dR,K =B+
dR,L. Therefore we can assume that L/K is

totally ramified. Since L/K is a free K-vector space, the inclusion K ⊂ L, induces
an inclusion Ainf,K ⊂ Ainf,L = Ainf,K ⊗K L. Moreover since JK = JL ∩Ainf,K , we
have inclusions Ainf,K/Ji

K ⊂ Ainf,L/Ji
L. Passing to projective limits, we obtain that

B+
dR,K ⊂B+

dR,L, and we want to prove that this inclusion is an equality. If necessary,
we can replace L by a bigger extension and assume that L/K is a finite Galois
extension of degree e with the Galois group G. Let f (X)= ∏

g∈G
(X−g(πL))∈OK [X ]

be the minimal polynomial of πL over K (this is an Eisenstein polynomial). Then

f ([π̃L]) = ∏
g∈G

([π̃L]−g(πL)) ∈ Ainf,K ∈ Ainf,K .

Since π̃L]−πL divides f ([π̃L]), we obtain that f ([π̃L]) ∈ JK . Moreover, if we write
f ([π̃L]) in the form

∑
n≫−∞

[xn]π
n
K ,

then x0 = π̃e
L. Therefore

vC♭
K
(x0) = evC♭

K
(π̃L) = vC♭

L
((π̃L) = vL(πL) = vK(πK).

By Proposition 4.2, this implies that f ([π̃L]) is a generator of JK . On the other
hand, for any g ∈ G\{e}, we have θL([π̃L]−g(πL)) = πL−g(πL) ̸= 0. Therefore
f ([π̃L]) /∈ J2

L and we conclude that the extension of complete discrete valuation
rings B+

dR,K ⊂ B+
dR,L is unramified. Moreover, the residue fields of B+

dR,K and B+
dR,L

coincide. Hence B+
dR,K = B+

dR,L.
□

The above proposition shows that B+
dR,K depends only on the residual charac-

teristic of the local field K. By this reason, we will omit K from notation and write
B+

dR := B+
dR,K .

DEFINITION. The field of p-adic periods BdR is defined to be the field of frac-
tions of B+

dR.

The field BdR is equipped with the filtration (Bi
dR)i∈Z provided by the discrete

valuation on BdR, namely
Bi

dR = ξ
iB+

dR,

where ξ is any uniformizer of B+
dR. Set gri(BdR) = Bi

dR/Bi+1
dR for all i ∈ Z and

gr•(BdR) := ⊕
i∈Z

gri(BdR).

THEOREM 4.5. i) The series

t = log([ε]) =
∞

∑
n=1

(−1)n−1 ([ε]−1)n

n
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converges in the topology induced by the discrete valuation on B+
dR,K to a uni-

formizer of B+
dR,K , and the Galois group acts on t as follows:

g(t) = χK(g)t, g ∈ GK .

(Here χK denotes the cyclotomic character.)
ii) Bi

dR = t iB+
dR and gri(BdR)≃ CK(χ

i
K) as GK-modules.

iii) gr•(BdR)≃ BHT as GK-algebras.
iv) There exists a natural GK-equivariant embedding of K in BdR, and

BGK
dR = K.

PROOF. i) [ε]−1=([ε]1/p−1)ω, where ω =
p−1
∑

i=0
[ε]i/p ∈Ainf. Since θ([ε]1/p−

1) = ζp− 1 and ω is a generator of ker(θ) by Exercise 14, we obtain that [ε]− 1
is a uniformizer of B+

dR,Qp
. Since t ≡ [ε]− 1 (mod m2

dR,Qp
), we conclude that t is

a uniformizer. Moreover, for any g ∈ GK ,

g(t) = g(log[ε]) = log(g([ε])) = log
(
[ε]χK(g)

)
= χK(g) log([ε]) = χK(g)t.

ii) Since t is a uniformizer of BdR, we can write Bi
dR = t iB+

dR. Hence gri(BdR) =

t i(B+
dR/tB+

dR)≃ CKt i. From part i) it follows that CKt i is isomorphic to CK(χ
i
K) as

GK-module.
iii) Immediately follows from ii) and the definition of BHT.
iv) Since for any L/K, BdR = BdR,L contains L, we have a natural inclusion

K ⊂ BdR. Then is clear that
K = KGK ⊂ BGK

dR .

Conversely, assume that x∈BGK
dR . Let i∈Z be the unique integer such that x∈Bi

dR\
Bi+1

dR . Let x ∈ gri(BdR) denote the class of x modulo Bi+1
dR . Then x ∈ CK(χ

i
K)

GK .

Since CK(χ
m
K )

GK = 0 for m ̸= 0, we obtain that i = 0. Taking Galois invariants in
the exact sequence

0→ B1
dR→ B+

dR→ CK → 0,

we obtain that (B1
dR)

GK = 0 and (B+
dR)

GK ⊂ CGK
K = K by Tate’s theorem. Hence

x ∈ K, and we proved that BGK
dR ⊂ K. □

4.6. Filtered vector spaces. A filtered vector space over K is a finite dimen-
sional K-vector space ∆ equipped with an exhaustive separated decreasing filtration
by K-subspaces (Fili∆)i∈Z:

. . .⊃ Fili−1
∆⊃ F i

∆⊃ F i+1
∆⊃ . . . , ∩

i∈Z
Fili∆ = {0}, ∪

i∈Z
Fili∆ = ∆.

A morphism of filtered spaces is a linear map f : ∆′→ ∆′′ which is compatible
with filtrations i.e. such that f (Fili∆′) = Fili∆′′ for all i ∈ Z. If ∆′ and ∆′′ are two
filtered spaces, one defines the filtered space ∆′⊗K ∆′′ as the tensor product of ∆′

and ∆′′ equipped with the filtration

Fili(∆′⊗K ∆
′′) = ∑

i′+i′′=i
Fili

′
∆
′⊗K Fili

′′
∆
′′.
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The one-dimensional vector space 1K = K with the filtration

F i1K =

{
K if i ⩽ 0
0 if i > 0

is a unit object with respect to the tensor product defined above, namely

∆⊗K 1K ≃ ∆

for any filtered module ∆.
One defines the filtered space HomK(∆

′,∆′′) as the vector space of K-linear
maps f : ∆′→ ∆′′ equipped with the filtration

Fili
(
HomK(∆

′,∆′′)
)
=

{ f ∈ HomK(∆
′,∆′′) | f (Fil j

∆
′)⊂ Fil j+i(∆′′) for all j ∈ Z}.

In particular we consider the dual space ∆∗ = HomK(∆,1K) as a filtered vector
space.

We denote by MFK the category of filtered vector spaces over K.

4.7. The functor DdR. Let V be a p-adic representation of GK . For each p-
adic representation V of GK define:

DdR(V ) := (V ⊗Qp BdR)
GK .

Since BGK
dR = K, from Proposition 2.3 it follows that DdR(V ) is a K-vector space of

dimension dimK DdR(V )⩽ dimQp(V ). Moreover, it is equipped with the decreasing
filtration defined by

FiliDdR(V ) = (V ⊗Qp FiliBdR)
GK .

Therefore the mapping which assigns DdR(V ) to each V defines a functor

DdR : RepQp
(GK)→MFK .

DEFINITION. A p-adic representation V is a de Rham representation if it BdR-
admissible, i.e. if dimK DdR(V ) = dimQp(V ). We denote by RepdR(GK) the cate-
gory of de Rham representations.

PROPOSITION 4.8. Every de Rham representation V is Hodge–Tate. In that
case

DHT(V )≃ gr•DdR(V ).

PROOF. Tensoring the exact sequence

0→ Bi+1
dR → Bi

dR→ CKt i→ 0

with V , we obtain an exact sequence

0→ Bi+1
dR ⊗Qp V → Bi

dR⊗Qp V → CKt i⊗Qp V → 0.

Taking Galois invariants, we obtain an exact sequence

0→ Fili+1DdR(V )→ FiliDdR(V )→ (CKt i⊗Qp V )GK .
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Therefore for each i we have an injection griDdR(V ) ↪→ (CKt i⊗Qp V )GK . Since
DHT(V ) = ⊕

i∈Z
(CKt i⊗Qp V )GK , this implies that

gr•DdR(V ) ↪→ DHT(V ).

Assume that V is de Rham. Then

dimQp(V ) = dimK DdR(V ) = dimK gr•DdR(V )⩽ dimK DHT(V )⩽ dimQp(V ).

Therefore dimK DHT(V ) = dimQp(V ) and gr•DdR(V ) = DHT(V ). The proposition
is proved. □

5. Crystalline representations

5.1. The ring Ainf[(ξ/p]]. Recall that Ainf = W (O♭
CK

). Fix a generator ξ of
ker(θ : Ainf→ OCK ) and consider the set

Ainf[(ξ/p]] =

{
∞

∑
i=0

ai(ξ/p)i | ai ∈ Ainf

}
⊂ B+

dR.

(We remark that
∞

∑
i=0

ai(ξ/p)i converges in the topology induced by the discrete

valuation on B+
dR.) To simplify notation, set S := Ainf[(ξ/p]]. Note that S doesn’

depend on the choice of the generator ξ . The map θ extends to S by the formula

θ

(
∞

∑
i=0

ai(ξ/p)i
)
= θ(a0). Note that this map is just the composition S ⊂ B+

dR→

B+
dR/B1

dR ≃ CK .

LEMMA 5.2. The ring S is separated and complete for the p-adic topology (i.e.
for the topology induced by the ideal pS.)

PROOF. a) To prove that S is separated, we need to check that
∞

∩
n=1

pnS = {0}.

Assume that x ∈
∞

∩
n=1

pnS. Then for each n ⩾ 1, we can write x in the form

x = pn
∞

∑
i=0

ani(ξ/p)i, ani ∈ Ainf.

Therefore θ(x) = pnθ(an,0) ∈ pnOCK for each n, and we obtain that vK(θ(x))→
+∞ when n→+∞. Hence x ∈ ker(θ), and we can write x in the form x = y(ξ/p)
for some y ∈ S. Applying the same argument to y, we obtain that y ∈ ker(θ) and so
on. By induction, we prove that x is divisible by ξ m for any m, and therefore x = 0.

b) We prove that S is complete for the p-adic topology. It is sufficient to show

that the series
∞

∑
n=0

xn converges if xn ∈ pnS. Let

xn = pn
∞

∑
i=0

ani(ξ/p)i, ani ∈ Ainf.
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Then it’s easy to see that

∞

∑
n=0

xn =
∞

∑
n=0

pn
∞

∑
i=0

ani(ξ/p)i =
∞

∑
i=0

(
∞

∑
n=0

pnani

)
(ξ/p)i.

Here each sum
∞

∑
n=0

pnani converges in the p-adic topology of Ainf by Theorem 3.8

ic). □

5.3. The ring Bcris. Let A0
cris denote the Ainf-submodule of B+

dR generated by
the elements ξ n/n!, n ⩾ 1:

A0
cris = Ainf

[
ξ n

n!
| n ⩾ 1

]
.

Below, we record some properties of A0
cris.

1) A0
cris is a ring. Indeed

ξ n

n!
ξ m

m!
=

(
n+m

n

)
ξ n+m

(n+m)!
,

where
(n+m

n

)
∈ Z, and each element of A0

cris can be written as a finite sum

∑
n∈Z

an
ξ n

n!
, an ∈ Ainf.

2) The Frobenius operator ϕ on Ainf extends to A0
cris.

Indeed, since ξ ∈ Ainf, the action of ϕ on ξ is well defined. Define

ϕ

(
∑
n∈Z

an
ξ n

n!

)
:= ∑

n∈Z
ϕ(an)

ϕ(ξ )n

n!
.

We need to show that the right hand side of this formula belongs to A0
cris.

First note that ϕ(ξ ) = ξ p + pη for some η ∈ Ainf. Hence

ϕ

(
ξ n

n!

)
=

1
n!

(
ξ p

p!
· p!+ pη

)n

=
pm

m!

(
ξ p

p!
· (p−1)!+η

)n

.

Since A0
cris is a ring, this expression belongs to A0

cris, and we are done.
3) A0

cris is equipped with a natural action of GK . It’s clear because ker(θ) is
stable under the action of GK .

We denote by Acris the p-adic completion of A0
cris:

Acris := lim←−
n

A0
cris/pnA0

cris.

Since A0
cris ⊂ S, where S is p-adically complete, we have natural inclusions Acris ⊂

S⊂B+
dR. In particular, Acris can be viewed as a subring of B+

dR. The action of ϕ and
GK extends by continuity to Acris. Since

([ε]−1)n

n
= (n−1)! · ([ε]−1)n

n!
,
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where (n−1)!→ 0 when n→+∞ in the p-adic topology, we obtain that the series

t = log([ε]) =
∞

∑
n=1

(−1)n−1 ([ε]−1)n

n

converges p-adically in Acris. In addition

ϕ(t) = log(ϕ([ε])) = log([ε]p) = p log([ε]) = pt.

DEFINITION. Set B+
cris = Acris⊗Zp Qp and Bcris = B+

cris[1/t]. The ring Bcris is
called the ring of crystalline periods.

It is easy to see that the rings B+
cris and Bcris are stable under the action of GK .

The actions of GK and ϕ on Bcris commute to each other. The inclusion Bcris ⊂BdR
induces a filtration on Bcris which we denote by FiliBcris. Note that B+

cris ⊂ Fil0Bcris
but the latter space is much bigger. Also the action of ϕ on Bcris is not compatible
with filtration i.e. ϕ(FiliBcris) ̸⊂ FiliBcris. We summarize some properties of Bcris
in the following proposition.

PROPOSITION 5.4. Let K0 denote the maximal unramified subextension of K.
i) The map

K⊗K0 Bcris→ BdR, λ ⊗ x→ λx

is injective.
ii) BGK

cris = K0.
iii) (Fundamental exact sequence). The sequence

(41) 0→Qp→ Bϕ=1
cris

pr−→ BdR/B+
dR→ 0,

where the map pr is the composition of the inclusion Bϕ=1
cris ↪→ BdR with the canon-

ical projection BdR→ BdR/B+
dR, is exact.

iv) Bcris is GK-regular.

PROOF. i) See [10, Section 4].
ii) We deduce ii) from i). Since K0 ⊂Bcris, the inclusion K0 ⊂BGK

cris is clear. On
the other hand, from i) we have

K⊗K0 BGK
cris ⊂ BGK

dR = K,

and an easy dimension argument shows that BGK
cris = K0.

iii) See [10, Section 5.3.7] and [3].
iv) See [11, Proposition 5.1.2]. □

5.5. Filtered ϕ-modules. We denote by σ the absolute Frobenius on K0. Namely
σ is induced by the p-power map on the residue field kK of K.

A ϕ-module over K0 is a finite dimensional K0-vector space D equipped with
a σ -semi-linear bijective map ϕ : D→ D, namely

ϕ(d1 +d2) = ϕ(d1)+ϕ(d2), d1,d2 ∈ D,

ϕ(λd) = σ(λ )ϕ(d), λ ∈ K0,d ∈ D.
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If D′ and D′′ are two ϕ-modules, we define a structure of ϕ-module on D′⊗K0

D′′ setting
ϕ(d′⊗d′′) = ϕ(d′)⊗ϕ(d′′).

A morphism of ϕ-modules is a K0-linear map f : D′→ D′′ such that f (ϕ(d′)) =
ϕ( f (d′)) for all d′ ∈ D′.

DEFINITION. i) A filtered ϕ-module over K is a ϕ-module D over K0 together
with a structure of filtered K-vector space on DK = D⊗K0 K.

ii) A morphism of filtered ϕ-modules is a morphism of ϕ-modules f : D′→D′′

such that the induced K-linear map

fK : D′K → D′′K , fK(λ ⊗d′) = λ ⊗ f (d′), λ ∈ K,d′ ∈ D′

is a morphism of filtered K-vector spaces.

If D′ and D′′ are filtered ϕ-modules, then D′⊗K0 D′′ has a natural structure of
a ϕ-module.

We denote by MFϕ

K the category of filtered K-modules.

5.6. The functor Dcris. For any p-adic representation V of GK define:

Dcris(V ) := (V ⊗Qp Bcris)
GK .

Then Dcris(V ) is a K0-vector space of dimension dimK0 Dcris(V ) ⩽ dimQp(V ). The
map ϕ(v⊗b) = v⊗ϕ(b) on VotimesQpBcris is injective and induces a σ -semilinear
injective map ϕ on Dcris(V ). By dimension argument, ϕ is bijective. Moreover, the
inclusion K⊗K0 Bcris ↪→ BdR induces an injective K-linear map

Dcris(V )K := K⊗K0 Dcris(V ) = (K⊗K0 Bcris⊗V )GK ↪→ (BdR⊗V )GK = DdR(V ).

Therefore Dcris(V )K is equipped with the induced filtration

FiliDcris(V )K = Dcris(V )K ∩FiliDdR(V ).

To sum up, Dcris(V ) has a natural structure of filtered ϕ-module, and we have a
functor

Dcris : RepQp
(GK)→MFϕ

K .

DEFINITION. A p-adic representation is called crystalline if it is Bcris-admissible,
namely if dimK0 Dcris(V ) = dimQp(V ).

PROPOSITION 5.7. i) Every crystalline representation V is de Rham. In that
case

DdR(V )≃ Dcris(V )K .

ii) Assume that V is crystalline. Then we have an isomorphism of GK-modules

V ≃ (Dcris(V )⊗K0 Bcris)
ϕ=1∩Fil0(DdR(V )⊗K BdR),

where the intersection is taken in DdR(V )⊗K BdR. In particular, V can be recovered
from Dcris(V ).



5. CRYSTALLINE REPRESENTATIONS 79

PROOF. i) The inclusion Dcris(V )K ↪→ DdR(V ) implies that

dimK0 Dcris(V ) = dimK Dcris(V )K ⩽ DdR(V )⩽ dimQp(V ).

If V is crystalline, then dimK0 Dcris(V ) = dimQp(V ), and the inequality in the above
formula is an equality, and V is de Rham.

ii) The fundamental exact sequence (41) induces an exact sequence

0→V → Bϕ=1
cris ⊗V

pr−→ (BdR⊗V )/(B+
dR⊗V )→ 0.

Therefore V = (Bϕ=1
cris ⊗V )∩ (B+

dR⊗V ), where the intersection is taken in BdR⊗Qp

V. From the isomorphisms αcris : Dcris(V )⊗K0 Bcris≃Bcris⊗Qp V and αdR : DdR(V )⊗K
BdR ≃ BdR⊗Qp V, we have

Bϕ=1
cris ⊗V ≃ (Dcris(V )⊗K0 Bcris)

ϕ=1, B+
dR⊗V ≃ Fil0(DdR(V )⊗K BdR).

This implies part ii). □

Example. Let V =Qp(m). Fix a basis vm of V. Then dm = t−m⊗vm ∈Qp(m)⊗Qp

Bcris is invariant under the action of GK , and Dcris(Qp(m)) = K0dm. We have

ϕ(dm) = ϕ(t)−m⊗ vm = p−mdm.

In addition, DdR(Qp(m)) = Kdm, and

FiliDdR(Qp(m)) =

{
DdR(Qp(m)), if i ⩽−m,

0, if i >−m.
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