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CHAPTER 1

Preliminaries

1. Non-archimedean fields
1.1. We recall basic definitions and facts about non-archimedean fields.

DEFINITION. A non-archimedean field is a field K equipped a non-archimedean
absolute value that is, an absolute value | - |k satisfying the ultrametric trinagle in-
equality

|x+y|K<max{|x|K,|y|K}, Vx,y € K.
We will say that K is complete if it is complete for the topology induced by | - |.

To any non-archimedean field K can associate its ring of integers

Ok ={xeK||x[x <1}.
The ring Ok is local, with the maximal ideal
mK:{xGK] ‘X‘K< 1}.
The group of units of O is
UK:{X€K| |x]K:1}
The residue field of K is defined as
kK = 0[( / mg.

THEOREM 1.2. Let K be a complete non-archimedean field and let L/K be a
finite extension of degree n = [L : K|. Then the absolute value | - |k has a unique
continuation | - | to L, which is given by

1/n
lx|L = |Np ke (x) 1(/ :

where Ny jk is the norm map.

PROOF. See [1, Ch. 2, Thm 7]. Another proof (valid only for locally compact
fields) can be found in [5, Chapter II, section 10]. O

This theorem allows to extend | - | to the algebraic closure of K. In particular,
we have a unique extension of | - | to the separable closure K of K.

PROPOSITION 1.3 (Krasner’s lemma). Let K be a complete non-archimedean
field. Let ¢ € K and let 0 = o, 0, . .., Q, denote the conjugates of o over K. Set

dy, :min{]a—(xi\x | 2§i<n}.
If B € K is such that |a — B| < dg, then K(a) C K(B).

5



6 1. PRELIMINARIES

PROOF. We recall the proof. Assume that @ ¢ K(f). Then K(ct,)/K(B)
is a non-trivial extension, and there exists an embedding o : K(a,f)/K(B) —
K/K(B) such that @; := o () # o.. Hence

B —ailk =[0(B—a)|x =B —alxk <du

and

o —ailx =[(a—B) + (B — &) |x < max{|a—Blk.|B —ailx} < da-
This gives a contradiction. (]

We give an application of Krasner’s lemma. Let K be an algebraic closure of
K. By Theorem 1.2} the absolute value |- |x extends in a unique way to an absolute
value on K, which we will again denote by | - |- Let Ck denote the completion of
K with respect to | - |-

PROPOSITION 1.4. Assume that K is a complete non-archimedean field of
characteristic 0. Then the field Ck is algebraically closed.

PROOF. Proof by contradiction. Let f(X) =X"+a, 1 X" ' +---+ap € Oc, [X]
be an irreducible monic polynomial of degree > 2, and let C denotes its splitting
field. By Theorem|[1.2] the absolute value |- | extends to C. Let o, 0, - , 0, be
the roots of f(X) in C. Set

d:= min |0 —ojlg >0.
I<i# j<n

Choose a monic polynomial g(X) := X" + b, X" ! +---+ by € K[X] such that
|bi —ai|lg < d", forall 0<i<n—1.
Let B € K be aroot of g(X). Since

n—1

f(X)—g(X) =) (ai—bi)X',

i=0
and B € Og, we have:

(Bl =1f(B) —8(B)lx < max |b;—ailx <d".

0<i<n—1

On the other hand, f(B) = [1(B — ;). Hence

n
i=1
n
H‘ﬁ — OC,"K <d".
i=1
Therefore, there exists iy such that |3 — o, |x < d. Taking into account the defini-
tion of d, we obtain that
B — oty |k < min|ot — |k
i1
By Krasner’s lemma, this implies that Cx(o,) C Ck(B) = Ck. Therefore o, €

Ck, and we conclude that f(X) has aroot in Cg. This contradicts the irreductibility

of f(X). O
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PROPOSITION 1.5 (Hensel’s lemma). Let K be a complete non-archimedean
field. Let f(X) € Ok[X] be a monic polynomial such that

a) the reduction f(X) € kx[X] of f(X) modulo mg has a root & € kg;

b) 7/(&) #0.

Then there exists a unique o, € Ok such that f(a) =0 and & = ¢ (mod m).
PROOF. See, for example [14, Chapter 2, §2]. O

1.6. Recall that a valuation on K is a function vg : K — RU {0} satisfying

the following properties:

1) vi(xy) =vk(x) +vk(y), Vx,y € K*;

2) vk(x+y) = min{vg(x), vk (y)}, Vx,y € K*;

3) vg(x) =05 x=0.
For any p €]0, 1[, the function |x|, = p"¥*) defines an ultrametric absolute value on
K. Conversely, if | - |g is an ultrametric absolute value, then for any ¢ the function
ve(x) = log, |x|k is a valuation on K. This establishes a one to one correspondence
between equivalence classes of non-archimedean absolute values and equivalence
classes of valuations on K.

Exercise 1. Let K be a field of characteristic p with algebraically closed
residue field. Consider the polynomial f(X) := X” — X — ¢. Show that if ¢ € Ok,
then f(X) splits in K.

2. Local fields

2.1. In this section we review the basic theory of local fields.

DEFINITION. A discrete valuation field is a field K equipped with a valuation
vk such that vg(K*) is a discrete subgroup of R. Equivalently, K is a discrete
valuation field if it is equipped with an absolute value | - |k such that |K*|x C R4
is discrete.

Let K be a discrete valuation field. In the equivalence class of discrete val-
uations on K we can choose the unique valuation vg such that vg(K*) = Z. An
element g € K such that vg(7mx) = 1 is called a uniformizer of K. Every x € K*

can be written in the form x = ﬂ[V(K )

u with u € Uk, and one has:
K" ~ <77:K> x Ug, mg = (71'[()
We adopt the following convention.

DEFINITION. A local field is a complete discrete valuation field K whose
residue field kg is finite.

Note that many (but not all) results and constructions of the theory are valid
under the weaker assumption that the residue field kg is perfect.
We will always assume that the discrete valuation

vk : K— ZU{+ew}

is surjective.
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PROPOSITION 2.2. Let K be a local field. Then the groups Ok, my and Uk
are compact.

PROOF. One can easily prove the sequential compacteness of Ok considering
finite sets Og/m%. Since mg = mxOk and Ugx C Ok is closed, this proves the
lemma. ([

2.3. If L/K is a finite extension of local fields, we define the ramification
index e(L/K) and the inertia degree f(L/K) of L/K by
e(L/K) =vi(mk),  f(L/K)=T[ke: kg].
Recall the fundamental formula
f(L/K)e(L/K) = [L: K]
(see, for example, |1, Ch. 3, Thm 6] ).
2.4. LetK be alocal field, g = |kg|.

PROPOSITION 2.5. i) For any x € kg there exists a unique x| such that x = x|
mod g and [x]? = [x].

ii) The multiplicative group of K contains the subgroup U, of (q — 1)th roots
of unity and the map

[-] kk = Hg-1,
X [x]

is an isomorphism.

iii) If char(K) = p, then [-] gives an inclusion of fields kg — K.

PROOF. The statements i-ii) follow easily from Hensel’s lemma, applied to the
polynomial X7 —X.
iii) If char(K) = p then for any x,y € kg

(DD = W+ )7 = [+ D]
(use binomial expansion). By unicity, this implies that [x+y] = [x] 4 [y]. O

COROLLARY 2.6. Every x € Ok can be written by a unique way in the form

x=Y laim.
i=0
Exercise 2. Let x € kg and let X € Ok be any lift of x under the map Og — kg.
a) Show that the sequence (¥7'),cn converges to an element of Og which
doesn’t depend on the choice of x.
b) Show that [x] = lim,,_, ;o X7 .

THEOREM 2.7. Let K be a local field and p = char(kg).

i) If char(K) = p, then K is isomorphic to the field kx((X)) of Laurent power
series, where ki is the residue field of K and X is transcendental over k. The dis-
crete valuation on K is given by

vk (f(X)) = ordy f(X) := min{i € Z | a; # 0},
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where f(X) = Y, a;X'. Note that X is a uniformizer of K and Ok ~ kg[[X]].
i>—oo
ii) If char(K) = 0, then K is isomorphic to a finite extension of the field of p-
adic numbers Q,,. The absolute value on K is the extension of the p-adic absolute
value

a _
Epk‘ =p*  plab.
P

PROOF. i) Assume that char(K) = p. By Corollary we have a bijection

K — kx ((X)),
x—x=Y aX', where x = Y [a;] .
i=0 i=0

By Proposition [2.5]iv), this map is an isomorphism.

ii) Assume that char(K) = 0. Then Q C K. The absolute value |- |¢ induces
an absolute value on Q. By Ostrowski theorem, any non archimedean absolute
value on Q is equivalent to the p-adic absolute value for some prime p. Since K is
complete, this implies that Q,, C K. Since kg is finite, [kg : F)] < 4-eo. Since v is
discrete, ¢(K/Q)) = vg(p) < +eo. This implies that [K : Q] < +-oo.

O

2.8. The group of units Uk is equipped with the exhaustive descending filtra-
tion
vl =1+mox,  n>0.
PROPOSITION 2.9. i) The map
Uk — kg, x—x:=x (mod mg)
induces an isomorphism Uk /U I((l) ~ k.
ii) For any n > 1, the map
U S ke, 14 mpxe i
induces an isomorphism U I((n) /U I((nﬂ) ~ k.
PROOF. The proof is left as an exercise. ]

DEFINITION 2.10. One says that L/K is
i) unramified if e(L/K) = 1 (and therefore f(L/K) = [L: K]);
ii) totally ramified if e(L/K) = [L : K| (and therefore f(L/K) = 1).

2.10.1. The unramified extensions can be described entirely in terms of the
residue field kx. Namely, there exists a one-to-one correspondence

{finite extensions of kg } «+— {finite unramified extensions of K}

which can be explicitly described as follows. Let k/kg be a finite extension of
kk. Write k = kg (o) and denote by f(X) € kx[X] the minimal polynomial of a.

~

Let f(X) € Ok[X] denote any lift of f(X). Then we associate to k the extension
L =K(a), where @ is the unique root of f(X) whose reduction modulo my, is a.
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An easy argument using Hensel’s lemma shows that L doesn’t depend on the choice
of the lift f(X).

Unramified extensions form distinguished classes of extensions in the sense
of [13]. In particular, for any finite extension L/K one can define its maximal
unramified subextension Ly, as the compositum of all its unramified subextensions.
Then one has

f(L/K) =Ly : K], e(L/K)=L: Ly].
The extension L/Ly; is totally ramified.

2.10.2. Assume that L/K is totally ramified of degree n. Let 7, be any uni-

formizer of L and let

fX)=X"+a, 1 X" "+ +ar1X +a € Og[X]
be the minimal polynomial of 7r;. Then f(X) is an Eisenstein polynomial, namely
vi(a;j) > 1 for0 <i<n—1,and vg(ap) = 1.

Conversely, if « is a root of an Eisenstein polynomial of degree n over K, then
K(a)/K is totally ramified of degree n, and « is an uniformizer of K(ct).

DEFINITION 2.11. One says that an extension L/K is
i) tamely ramified, if e(L/K) is coprime to p.
ii) totally tamely ramified, if it is totally ramified and e(L/K) is coprime to p.

Using Krasner’s lemma, it is easy to give an explicit description of totally
tamely ramified extensions.

PROPOSITION 2.12. If L/K is totally tamely ramified of degree n, then there
exists a uniformizer g € K such that

L=K(n), ;) = mk.

PROOF. Assume that L/K is totally tamely ramified of degree n. Let IT be a
uniformizer of L and f(X) = X"+ --- 4+ a1X + ap its minimal polynomial. Then
f(X) is Eisenstein, and 7 := —ao is a uniformizer of K. Let o; € K (1 <i < n)
denote the roots of g(X) := X" 4+ ag. Then

lg(ID)|x = [¢(IT) — f(IT)[x < max |alT'[x < |7k|k
1<i<n—1

n n
Since |g(IT)|x = [T (IT— o) and IT = (—1)" [] oy;, we have
i=1 i=1

n n

H’H*Oﬂ[( < H|(X,'|K.

i=1 i=1
Therefore there exists iy such that

(1) T — @iy |k <[k |-
Set 77, = a;,. Then

[T — o) =g (m) = nm "
iio
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Since (n,p) = 1 and |m, — o]k < |7z|k, the previous equality implies that

dﬂ:L = mln\nL — OCi’K = ’ﬂL|K~
i#io

Together with (T, this gives that
‘H— aiO‘K < d;-;L.

Applying Krasner’s lemma we find that K(7;) C L. Since [L: K] = [K(7.) : K] =n,
we obtain that L = K(7;.), and the proposition is proved.
O

Exercise 3. Show that Q,( \/—p) = Q,({,), where {, is a primitive pth root
of unity.

Exercise 4. Let K be a local field and g and n}( be two uniformizers of K.
Show that

K"(/mg) = K" ({/ mg), for any (n,p) = 1.

Deduce that the compositum of two tamely ramified extensions is tamely ramified.

Exercise 5. ( See[14, Chapter 2, Proposition 14]). Let K be a local field
of characteristic 0. Show that for any n > 1 there exists only a finite number of
extensions of K of degree n.

Exercise 6. Show that a local field of characteristic p has infinitely many sepa-
rable extensions of degree p. This could be proved using Artin—Schreier extensions
(see for example [13, Chapter VI,§6] for basic results of Artin—Schreier theory).

3. The different

3.1. The Dedekind different. In this subsection, A denotes a Dedekind ring
with fraction field K. Let L/K be a finite separable extention and B the integral
closure of A in L. We consider the map

tL/K LXL— K,
11k (x,y) = Trp g (xp).
PROPOSITION 3.2. 1k is a non-degenerate symmetric K-bilinear form on L.

PROOF. We have:
trk (01 +x2,y) = Trp g ((x1 +x2)y) = Trp g (x1y +x2y) =
Trp x (x1y) + Trp e (x2y) =tk (x1,y) + 12k (%2, ).
If a € K, then for any z € L on has Tr; x(az) = aTr; x(z), and therefore

(ax,y) = TrL/K(CUCY) = aTrL/K(XY) =a(x,y).
This shows that 7; /x is a K-bilinear form. Moreover, it is clear that it is sym-
metric. From the general theory of field extensions, it is known that the sepa-
rability of L/K implies that for any basis {@;}” | of L over K, the determinant

det (tL k(@5 @) 1<, jgn) is non-zero. Therefore the form 77 /x is non-degenarate.
g
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If M C Lis afinitely generated A-module, we define its complementary module
M as
M’ = {x € L|t;/k(x,y) € Aforally € M}.
It is easy to see that M’ is an A-module and that M C N implies N' C M'.
Let i,...,®, be abase of L/K and let o], ..., @, denote the dual base, i.e.

1, ifi=j,
tL/K(w"’w;):{o ifi  j

fM=Aw;+...+Aw,, then M' = Aw| +--- +Aw),.
We study the complementary module B’ of the Dedekind ring B. Note that, in
general, B is not free over A.

PROPOSITION 3.3. i) There exist free A-modules M|,M, C L such that
M, C BC M,.

ii) B' is a fractional ideal of Band B C B'.

iii) The inverse (B')~' of B' is an ideal of B.

PROOF. i) Let {®;}} | be abasis of L/K. There exists a € A such thatawy,...,aw,
are integral over A. Let M| denote the A-module generated by a®,...,am,. Then
M is A-free, and M C B.

ii) By definition, B’ is an A-module. If x,y € B, then

trk(%,y) = Try g (xy) € A.
Hence B C B'. To show that B’ is a fractional ideal, we only should find b # 0 such
that bB' C B. Let x1,...,x, be a basis of M, over A. Then there exists b € B such
that bxy,...,bx, € B. Hence bB' C bM, € B.
iii) By definition, the inverse (B')~! of B’ is the fractional ideal defined by
(B)'={xeL|xB CB}
Letx € (B')~!. Since B C B', we have x € xB C xB' C B. This proves that (B') ™! C
B. [l
DEFINITION. The ideal Dp;, := (B')~!is called the different of B over A.

THEOREM 3.4. Let K C L C M be a tower of separable extensions. Let B and
C denote the integral closure of A in L and M respectively. Then
QC/A = QC/BQB/A-
Here ®¢/pDp s denotes the ideal of C generated by the products xy, x € D¢/p,
yEDp JA-
PROOF. We will prove the theorem in the equivalent form

—1 —1 -1
QC/A = QC/BQB/A'

First prove that

—1 -1 -1
2 Dc/595/a € Deja-
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The ideal © / B@ BJA is generated by the products xy x € ©

Then Try;/; (xz) € B, and

C/B,yEQB/A LetzeC.
Try/x ((xy)z) = Ty x (YTrayg . (x2)) € A.

therefore xy € © -/, , and the inclusion is proved.

C/A’

Now assume that x € ®_,,. Then for all y € C one has

C/A
Try/x (xy) € A.
Since Try;/x = Tryjx o Try /1, we obtain that for all b € B

TTL/K(TTM/L(X)’)b) = Tryx (x(yb)) € A

Hence, Try; . (xy) € ©,,. This implies that for all z € Dg/4 one has

B/A
TTM/L((XZ))’) = ZTry L (xy) € B,

and we obtain that xz € © -, .. Therefore we proved that

C/B
—1 —1
Dc/a®p/a CDc/ps
i.e. that
1
33c/A C QB/AQC/B
Together with (2)), this gives the theorem. U

Now we compute the different in the important case of simple extensions of
Dedekind rings.

THEOREM 3.5. Assume that B = A[o], where o is some element integral over
A. Then D4 coincides with the principal ideal generated by fla):

Dpa = (f'()).
PROOF. Let f(X) =ap+a1X +---+a, 1 X" ' + X" € A[X] denote the mini-

mal monic polynomial of & over K. Then {1, &, a?,...,a" '} is a basis of B over
A. In particular, B is free of rank n over A.
Let oy, ..., &, denote the roots of f(X) in some algebraic closure of K contain-

ing B. We claim that

(3)

= X — o; f/((X,')
for all r = 0, 1, .,n— 1. To prove this formula, it is sufficient to remark that X"
and Y. are both polynomials of degree < n— 1 taking the same values

i= 1X af’( i)
at a,...o,. Namely,

f(X) )0, if i # j,
X—ai)|y_g, |f(ey), ifi=j.
and therefore

L (¢ arem)

xeo L o)
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Now we prove the theorem using formula (3)).
For any polynomial g(X) = co+c1X + - - - +cxX* with coefficients in L, define:

k
Try/k(8(X)) = ; Try k(i) X'

Then formula (3) reads:
) @ N,
T (e e )
Set
f(X) n—1
ASLVA X todb, X"
Y —a bo+b1 X+ +by_

From the Euclidean division, it follows that all b; € B. We have:

bi 0, ifi#r
Tr —— o) =< ’
LK (f’(a) ) {1, ifi=r.
Therefore the elements b;/f'(a), 0 <i < n— 1 form the dual basis of the basis
l,o,...,0""!. Hence

_ 1
Dya = 7@ (boA+b1A+---+by_1A).

To complete the proof, we only need to show that
4) boA +biA+ - +by_1A = Alal].
Since b; € B the inclusion
boA+bA+---+b, 1ACB
is clear. On the other hand from the identity
FX) = (bo+biX 4+ +b 1 X" )(X — )
we obtain, by induction that

b,1=1 = A=b, 1A
bpo—a=a,1 = Q=byr—a,-1 €EA+by A,

by3s—0by y=a, 2 = OFCA+b, 2A+b, 3A,

Therefore A[ct] C bpA+b1A+---+b,_1A, and (@) is proved. It implies that DE/IA =

f'(a)~'B, and we are done. O
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3.6. The case of local fields. Let L/K be a finite separable extension of local
fields. In that case, ©;  is a principal ideal and therefore ©; /x = my for some
s > 0. Set

ve(Dp/k) :=s=inf{v (x) [x € Dp/k}.

PROPOSITION 3.7. Let L/K be a finite separable extension of local fields and
e = e(L/K) the ramification index. The following assertions hold true:

i) If O = Okla], and f(X) € Ok[X] is the minimal polynomial of ¢, then
Dk = (f'(a)).

ii) Ok = O if and only if L/K is unramified.

iii) VL(QL/K) Ze—1.

) vi(Dy k) = e— Lifand only if L/K is tamely ramified.

PROOF. The first statement is a particular case of Theorem[3.5] We prove ii-iv)
(see also [[14, Chapter 3, Proposition 8] for more detail).

a) Let L/K be an unramified extension of degree n. Write k;, = kg (&) for some
@ € kr. Let f(X) € kg[X] denote the minimal polynomial of &. Then deg(f) = n.
Take any lift f(X) € Ok[X] of f(X) of degree n. By Proposition (Hensel’s
lemma) there exists a unique root @ € Oy, of f(X) such that & = o¢ (mod mg). It’s
easy to see that Oy = Ok|at]. Since f(X) is separable, f'(&) # 0, and therefore
f'(a) € Ur. Applying i), we obtain that

Dk = (f'(a)) = Or.

Therefore ©; /x = Oy, if L/K is unramified.

b) Assume that L/K is totally ramified. Then Oy = Ok[m.], where 7 is any
uniformizer of Or. Let f(X) = X¢+a, 11X ' +---+a1X + ap be the minimal
polynomial of ,i;. Then

f/(TL'L) = eﬂ:z*l +(e— l)ae_ln'i*2+..._|_al.

Since f(X) is Eisenstein, v7(a;) > e, and an easy estimation shows that vy, (f'(7.)) >
e—1. Thus

vi(Dp/x) =vi(f' (@) Z e~ 1.

This proves iii). Moreover, v, (f'(¢)) = e —1 if and only if (e,p) = 1 i.e. if and
only if L/K is tamely ramified. This proves iv).

¢) Assume that ©; /x = Or. Then v, (D k) = 0. Let Ly, denote the maximal
unramified subextension of L/K. By (2??), a) and b) we have

ve(®px) =vi(®pr,) Ze—1.

Thus e = 1, and we showed that each extension L/K such that ©; sk = OL 1s un-
ramified. Together with a), this proves i). O

Exercise 7. Let L/K be a finite extension of local fields. Show that Or, = Ok[(]
for some a € Op. Hint: take o0 = [&] + 7, where k, = kg (&).
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4. Ramification filtration
4.1. In this section, we determine Galois groups of unramified extensions.

PROPOSITION 4.2. Let L/K be a finite unramified extension. Then L/K is a
Galois extension and the natural homomorphism
r: Gal(L/K) — Gal(ky /kk)
is an isomorphism.

PROOF. a) Write k;, = kg (&) and denote by f(X) the minimal polynomial of
E. Let f(X) € Ok[X] be a lift of f(X). Then Oy = OK[E] where fA(g) =0 and
&= E (mod ;) Since k1. /kg is a Galois extension, all roots &i,...,&, of f(X) lie
in k7. By Hensel’s lemma, there exists unique roots 21,...,8,, € Oy of f(X ) such
that & = E, (mod 7). This shows that L/K is a Galois extension.

b) Let g; € Gal(L/K) be such that gi(g) = El Then r(g;)(&) = &;. This shows
that r is an isomorphism. (]

Recall that Gal(kz/kk) is the cyclic group generated by the automorphism of
Frobenius:
ka/kK (x) =x1, Vx € ky.

DEFINITION. We denote by Fy x and call the Frobenius automorphism of L/IK
the pre-image of fi, j, in Gal(L/K). Thus Fy  is the unique automorphism such
that

FL/K(X) = x1 (mOd ﬂL).

4.3. Let L/K be a arbitrary finite Galois extension, and let L, denote its
maximal unramified subextension. Then we have an exact sequence
{1} = I )x — Gal(L/K) — Gal(Ly/K) — {1}
The subgroup I; /x = Gal(L/Ly;) is called the inertia subgroup of Gal(L/K).

4.4. Let L/K be a finite Galois extension of local fields. Set G = Gal(L/K).
For any integer i > —1 define

Gi={geG|ve(gx)—x)=i+1, VxeO.}.
DEFINITION. The subgroups G; are called ramification subgroups.
We have a descending chain

G=G_1D0GyDG;D--DG,={1}

called the ramification filtration on G (in low numbering). Below we collect some
basic properties of these subgroups.

1) Gfl =G and G() = IL/K'
PROOF. We have
g€Goegx)=x (mod my) < g € Iy k-
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2) G; are normal subgroups of G.
PROOF. Let g € G; and s € G. Then

(s gs(x) —x) = vi (s~ gs () — s s(x)) = v (gs(x) — s(v)).

O

3) For each i > 0 one has
G,-:{gEG\vL<l—g(n7ZL)> >i}.
PROOF. We have
g(nf) —nf = (g(m)) —nf = (¢(m) —m)a,  a€Op
Since g acts trivially on Teichmiiller lifts, this implies that
g€G &v(g(m)—m) =i+ 1.
This implies the assertion. (]

PROPOSITION 4.5. i) For alli > 0, the map
) si: Gi/Giy1— UL(i)/UL(iH)7

which sends g = g mod Giy| to s/(g) = L’ZL) (mod UL(i+l>), is a well defined

T,
monomorphism which doesn’t depend on the choice of the uniformizer mty, of L.

ii) The composition of s; with the maps gives monomorphisms
(6) & : Go/G1 — k", 8 : Gi/Giy1 — kT, foralli>1.

PROOF. The proof is straightforward. See [17, Chapitre IV, Propositions 5-
7]. (]

COROLLARY 4.6. The Galois group G is solvable for any Galois extension.

4.7. For our study of the ramification filtration, it is convenient to introduce
the function

ik * G — LU {+oo}, ir/k(g) = min{g(x) —x|x € OL}.

Below, we summarize basic properties of this function:
1) If O = Okla], then

irx(g) =vi(g(a) —a).

Note that for any finite extension of local fields L/K, there exists ¢t € L
such that Oy, = Ok[] (see Exercise 7).

PROOF. We only need to show that for any x € Oy,

vr(g(x) —x) = vi(g(a) — ).
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n—1
Since x = ¥, aza for some a; € Ok, this follows from the computation
k=0

n—1 n—1 n—1
gla)—a= Zakg((xk) - Zakak = Zak(é’(a)k - ak)
k=0 k=0 k=1

and the identity

k—1
g(a)f — o = (g(a) — ) <Zz)g(a)"_j_‘a"> :
=

2) Forall g1,82 € G,
ir/k(8182) = min{iz x(81),ir/k(82)}
PROOF. For any x € Oy, one has
8182(x) —x = g1(g2(x) —x) + (g1 (x) — x).
Since vi.(g(y)) = vi(y) for any y € L and g € G, we obtain that
vL(g182(x) —x) = min{v (g1(g2(x) —x)),ve(g1(x) —x)}
= min{v,(g2(x) —x),vr(g1(x) —x)},

and we are done. ([

3) Forall g1, € G,
ink(8y'8281) = irjx(g2)-

PROOEF. Let Op = Ok[«]. Since g; : Op — Oy is a bijection, one has

OL = Oklgy " ()] and iz x(g) = vi(gg; " (@) — g7 ' (@) for any g € G.
Hence

ik (g7 ' 8281) = vi(g7 8281 (g1 (@) — g7 ' (@) = vilg; 'ga(a) — gy ' (ax)
=g ' (g2() — @) = vi(ga () — ) = iy (82).-
0

4) Forany g € G,
iL/K(g_l) = iL/K(g)-

PROOF. This property follows immediately from the following com-
putation:

ve(g™ () —x) = vr(g(g™ ' (x) —x)) = vi(x — g(x)).

5) g € G;ifand only if if jx(g) =i+ 1.

PROOF. This property is clear. (]
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4.8. The different ©; /k of a finite Galois extension can be computed in terms
of the ramification subgroups.

PROPOSITION 4.9. Let L/K be a finite Galois extension of local fields. Then

33L/K ZIL/K Z |Gi| —1).
§#l1

PROOF. Let Op = Ok|a] and let f(X) be the minimal polynomial of o. Since

fl(a)=T](a—sg(a)),

g#1
we have
VL(@L/K)ZVL(f’(OC)):ZV ZIL/K Z i+1)(|Gi| —|Gis1])
g#!1 g#1 =0
= (D610 = (Gl = 1) = B (16| 1)

O

4.10. Our next goal is to understand the behavior of the ramification filtration
in towers of local fields. We will consider a tower

(N L

"
F
K

where G := Gal(L/K) and H := Gal(L/F). From the definition of the ramifiaction
subgroups it follows immediately that

Hi=HNG;, i>-1.

G

COROLLARY 4.11. One has
e(L/F)vp( @F/K Z lL/K

g€G\H
PROOF. Write Proposition 4.9| for the extension L/F:
VL(QL/F) = Z iL/F(h)

heH\{e}
Taking into account that i; /(1) = iz /x(h) and G = (G\H) UH, we have
(3 vi(@px) —ve@pr) =Y, iryr(g
geG\H

On the other hand, from Theorem [3.4, we have
) vi®rk) =vi(®rr) +vi(Dp k) = vi(Drjr) +e(L/F)vi(Dp k).
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(Here we use the formula vy (x) = e(L/F)vg(x) for x € F.) Comparing formulas
and (9), we obtain the corollary. U

From now one, we assume that F /K is a Galois extension. Note that in that
case Gal(F /K)=G/H.1f g € Gand s € G/H, we will write g — s if s is the image
of g under the canonical projection G — G/H.

PROPOSITION 4.12. Forall s € G/H
e(L/F) lF/K Z lL/K

g—s

PROOF. If s = e, the both sides of the formula are equal to 4. Assume that
s # e. Write Oy, = O[] and denote by f(X) € Op[X] the minimal polynomial of
o over F. Let sf(X) € Op[X] denote the polynomial obtained acting s on the coef-
ficients of f(X) (so, s acts trivially on the variable X). Directly from the definition
of ip /k, one has

/) ~1(3) =0 (mod mjf/<).

lF/K

Hence (sf)(a)

=0 (mod my ) On the other hand, acting on the both sides of
the formula f(X) =

[T (X — h()) by any lift of s in G, we obtain

heH
sfX) =] - ().

g—s

Therefore, (sf)(c) = [] (¢ —g(@)), and

gs
H(a—g(a)) =0 (mod mF/K( )).

Taking the valuations of the both sides, we obtain the inequality

ZZL/K L/F)IF/K( 5).

g—s

To show that this inequality is in fact equality, we take the sum over all s # ¢ and
use Corollary .11}

e(L/F) ZlF/K ZZlL/K Z iL/K(g):e(L/F)ZiF/K(S)

s#e sF£eg—rs geG\H s#e

Therefore e(L/F )ir/x(s) = ¥ i/k(g) for all s, and the proposition is proved. [J
g

For any s € G/H, define

J(s) :=max{ipx(g) | g s}.
Then there exists & — s such that j(s) = iz k(). Then any g such that g — s can
be written in the form g = gh for some & € H. Hence

ik (g) = min{i k(&) ip/k (M)}
On the other hand, writing 7 = §~'g we have
ik (h) > min{iL/K(g_l)a ik (&)} = min{iz /k(8),ir/k(8)} = ir/k(8)-
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Therefore
ir/k(g) = min{i /x(8),ir/k(h)},
and we can write Proposition 4.12]in the following form:

COROLLARY 4.13. Forall s € G/H
e(L/F)ip/x(s) =Y, min{j(s),ir/x(h)}.
heH

4.14. Let L/K en a finite Galois extension of local fields. For any real x > —1
set G, := G,,, where m is the unique integer such that m < x < m+ 1. The Hasse—
Herbrand function varphiy /i is defined as follows

u if —1 <u<0,

(10) P/ () = /udx ifu>0
o (Go:Gy)

From definition it follows that @ x is a continuous strictly increasing piecewise
linear function. More explicitly, if we set g, := |G,,| for all integer m > —1, then

1
(pL/K(u):5(g1+...+gm+(u—m)gm+1), if m<u<m+l1.

In particular ¢ /x : [—1,+oo[— [—1,+0co[ is a bijection, and we denote by y; /k its
inverse function:

vk (v) = QDE/IK(V)-
LEMMA 4.15. The following formula holds true:
Ok (u Z min{iyk(g),u+1}—1.
80 gze

PROOF. a) The both sides of this formula are continuous functions. In addi-
tion, because iz /x(g) > 0, for any u € [—1,0] one has
s 0, if g ¢ Go,
min{i u+1
linjk(g) ut 1} = {u+1 if g € Gy.
Therefore, if u € [—1, O] then

1
RHS (u Zmln{zL/K )u—l—l}—lzm—l:u,

80 gZe 80
and RHS(u) = @ /x (1) on [—~1.0].
b) Assume that m < u < m+ 1 for some integer m > 0. Then
s ir/k(8), if g ¢ Gmir,
min{ i Ju+1p= .
{L/K<g) } {u+ 1, if g€ Gyl

and therefore

RHS'(u) = 2% = 9] (u).

This implies that RHS' (1) = (pL/K(u) if u ¢ Z. Hence RHS(u) = @ /x(u), and the
lemma is proved. (|
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LEMMA 4.16. Let K C F C L be a tower of finite Galois extensions. We keep
notation of diagram (7). Then

ir/k(s) = @rr(i(s) — 1) +1, s€G/H.

PROOF. From Lemma it follows that

¢L/F(j(s)_1)+1_ };mm{lL/K h),j(s)}-

On the other hand, Corollary @] can be written in the form
lF/K |H | Z min{;(s) lL/K(h)}-
he

Here we remark that e(L/F) = |Hp|. These formulas imply the lemma. O

We are now in position to prove the central results of the ramification theory
of Hasse-Herbrand.

THEOREM 4.17. i) For anyu > 0

GMH/H (G/H)(PL/F Ll)

it) Ok = Pr/x © Pr/r and Yk = Yr/Fr © Yr /K-
PROOF. i) The first statement follows from the equivalences

. !
s € (G/H)g, () < ir/k(s) 2 @ryr(u) +1 emgle @yr(i(s) = 1) = op/r(u)
< j(s) > u+1< g s, such that g € G,.

1) We deduce ii) from i). We have

1

(¢F/KO¢L/F)/(M) = ‘PJIF/K((PL/F(”))(Pi/F(”) = ((G/H)o:(G/H)g, () - (Ho: Hy)
Al i

and

(G/H) g, () = GuHl/H = G,/ (HNG,) = G, /H,.

O F (u
This implies that

((G/H)o : (G/H)%/f w) = (Go : Gu)/(Ho : Hy),
and therefore

((PF/KO (PL/F>/(”) = m = ‘Pi/K(”)

This implies ii). (|
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4.18. In order to define the ramification filtration for infinite extensions, we
introduce the so-called upper numbering of ramification subgroups.

DEFINITION. The ramification subgroups in upper numbering are defined as
follows:

G =Gy e
or equivalently Gk = G,
THEOREM 4.19.
(G/H)") =G /G nH,  w>0.
PROOF. We have (G/H)") = (G/H)y, (v) and

M/GYNH =Gy, )/G NH.

‘I/L/K WL/K

Setting x = Yy /k(v), we have
™ /GYNH = G,/G.NH

and (G/H)") = (G/H) g, (x)- By Theorem L (G/H) g, (x) = Gx/GxNH, and
we are done. ]

PROPOSITION 4.20. One has
% if —1 <v<0,
WL/K(V) = / (G(O) . G(x))dx lfM 0.
0

PROOF. Since yy /x(v) = q}L_/lK(v)7 we have

=(Go:Gy) = (G(O) . G(@L/K(”))).

lVJL/K((pL/K(u)) = ‘Pi/K(”)

Setting x = ¢ /x (1), we obtain that y; Ik (x) = (G : GW). This proves the propo-

sition. O

4.21. Hasse-Hebrand theory allows to define the ramification filtration for
infinite Galois extensions. Namely, for any (finite or infinite) Galois extension of
local fields M /K define

Gal(M/K)" = lim Gal(L/K)"
L/K finite

In particular, we can consider the ramification filtration on the absolute Galois
group Gk of K. This filtration contains fundamental information about the field K.

Exercise 8. 1) Let {,» be a p"th primitive root of unity. Set K = Q,({,») and
G = Gal(K/Q,). We have the isomorphism

Yo G=(Z/PL),  g(Gp) = 5%
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Set I'=(Z/p"Z)*. Let F ={ae€ (Z/p"2)" |a=1 (mod p™)} (in particular
1% =(z/p"Z)* and T" {1})
a) Show that

%(G;)) =T"™_ where m is the unique integer such that p" ' <i < p™.

b) Give Hasse—Herbrand’s functions ¢k /q, and ¥k q,-
c) Set

r® =gt where m is the smallest integer > v.
Show that the upper ramifiation filtration on G is given by
2n(GY))y =T,

2) Let (&, )n>1 denote a system of p"th primitive roots of unity such that C P =
Con1. Set Ky = Qp(Epr), Ko = = UK, and Go, = Gal(K./Q)). LetUq, = Z,, be the

group of units of Q,. We have the isomorphism:

X:G~Ug,  g(G)=¢HY, vn>1.
For any v > 0 set
U((;p) = Ug:), where m is the smallest integer > v
Show that
X(G(v)) = U&?, Yy > 0.

4.22. Formula (4.9) can be written in terms of upper ramification subgroups:

THEOREM 4.23. Let L/K be a finite Galois extension. Then

© 1
VK(@L/K):[I <1_|(;(v)|> dv.

PROOF. We start with the computation of the derivative of y; k. From the
identity wy /x 0 @y )k (1) = u, we have ‘I’i/K((PL/K(M)) (pi/K(u) = 1. Since (pi/K(u) =
1/(Go : Gy), this implies that

%/K((PL/K(”)) = (Go : Gy).
Setting v = @ /x (1), we obtain the formula
%/K(V) = (Go: Gw/x(v)) = (Go: G(v)) = (G(O) . G(V)).

We pass to the proof of the theorem. By (#.9), we have

VL /}DL K
VK(QL/K) (L/I/( = |GO|/ |G |
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Setting u = y /k (v) and taking into accout that y; y (V)= (G : GM) we can
write:

1 °° v
w(®ux) = ior | 1601 Dw v)ay

1 © 0 1
— d”—lG@mWH1:/ 1-—— )a
Gol /_1(’ =1 =\ g ) ¢

The theorem is proved. U
The above theorem can be generalized to arbitrary (not necessarily Galois)
finite extensions as follows. For any v > 0 define

T <

THEOREM 4.24. For any finite extension L/K one has

o 1
(11) VK(@L/K) :/ 1—77(‘)) dV
-1 [L:LNK"]
PROOF. See [6, Lemma 2.1]). O

5. Galois groups of local fields

5.1. The maximal unramified extension. In this section, we review the struc-
ture of Galois groups of local fields. Let K be a local field. Fix a separable clo-
sure K of K and set Gk = Gal(K/K). Since the compositum of two unramified
(respectively tamely ramified) extensions of K is unramified (respectively tamely
ramified) we have the well defined notions of the maximal unramified (respectively
maximal tamely ramified) extension of K. We denote these extension by K" and
K" respectively.

For each n there exists a unique unramified Galois extension K, of degree
n, and we have a canonical isomorphism Gal(K,/K) ~ Z/nZ which sends the
Frobenius automorphism Frg, /x onto 1 mod nZ. If n | m, the diagram

Gal(K,,/K) — Z/mZ

l l

Gal(K,/K) —— Z/nZ
commutes. Passing to projective limits, we obtain an isomorphism

Gal(K*"/K) = limGal(K, /K) = Z,

where Z = l'gln Z /nZ. To sum up, the maximal unramified extension K" of K is
procyclic and its Galois group is generated by the Frobenius automorphism Frg:

Gal(K"/K) —5 Z,
Frg <— 1.
Frg(x) =x%  (mod 7mg), Vx € Ogur.
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Exercise 9. 1) Let £ be a prime number. Show that lim, Z /07~ Z,.
2) Show that Z ~ []Z.
‘

Exercise 10. Let K be a local field with residue field of characteristic p. Show
that

K= U K(,).
ws (Cn)

5.2. The maximal tamely ramified extension. Let L/K be a finite Galois
extension with the Galois group G. Recall that Gy coincides with the inertia sub-
group Ir /g of G and Lo := LY is the maximal unramified subextension of L/K. Set
Ly :=L% . Then Gal(L,/Lo) ~ Gy/G; and Gal(L/L;) = G;. From Propositions
and it follows that L, is the maximal tamely ramified subextension Ly of L/K.
To sup up, we have the tower of extensions

(12) L

Gy
Go| Ly
Go/Gy
Ly
G/Gy

K

DEFINITION 5.3. The group Pk := G\ is called the wild inertia subgroup.

We remark that Pk is a p-group (its order is a power of p).
Passing to direct limit in the above diagram (12, we have:

(13) K
Px
)% KU‘
Kur
Z
K
Consider the exact sequence
(14) 1 — Gal(K"/K") — Gal(K" /K) — Gal(K"/K) — 1.

Here Gal(K""/K) ~ Z. From the explicit description of tamely ramified extensions
(see also Exercise 4), it follows that K' is generated over K*' by the roots 71'11(/ "
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(n,p) = 1 of any uniformizer mx of K. Since
Gal(K‘“(n,](/ ")/K"™) ~Z/nZ (not canonically)
this immediately implies that
Gal(K"/K"™) ~ im Z/nZ ~ HZl'
(n,p)=1 t#p
REMARK 5.4. It is not difficult to discribe the group Gal(K" /K) in terms of

generators and relations.

5.5. Local class field theory. We say that a Galois extension L/K is abelian if
Gal(L/K) is an abelian group. It’s easy to see that the compositum of two abelian
extensions is abelian. Denote by K?° the compositum of all abelian extensions of
K and by G¥ := Gal(K®/K) its Galois group. Local class field theory gives an
explicit description of Gf}‘{b in terms of K.

THEOREM 5.6. There exists a canonical group homomorphism (called the
reciprocity map) with dense image
OK K — G?{b
such that
i) For any finite abelian extension L/K, the homomorphism Ok induces an
isomorphism
6.k : K* /Ny k(L") = Gal(L/K),

where Ny g : L — K is the norm map.

i) If K" /K is the maximal unramified extension of K, then for any uni-
formizer g € K* the restriction of the automorphism Ok (7y) on K** co-
incides with the Frobenius Fry jx, and we have a commutative diagram

Ok

K* G®
n
Z — Gal(K“/K),

where the bottom map sends 1 to Frx. Equivalently, for any x € K*, the
automorphism O (x) acts on K" by

Ok (1) | o = Frig™.

REMARK 5.7. Local class field theory was developed by Hasse. The modern
approach is based on the cohomology of finite groups (see [17] or [S, Chapter VI],
written by Serre).

It can be shown, that the reciprocity map is compatible with the ramification

(n)

filtration in the following sense. For any real v > 0, set U I((v) = Kn
smallest integer > v. Then

(15) Ok (U}J)) — (G, w0

, Where n is the
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For the classical proof of this result, see [17, Chapter XV].
5.8. Ramification jumps.

DEFINITION. Let L/K be a Galois extension of local fields (finite or infinite).
We say that v > —1 is a ramification jump of L/K if

Gal(L/K)"*®) £ Gal(L/K)"™, Ve >0.

From (15 it follows that the ramification jumps of K% /K are the integers —1,
0, 1,.... Under the reciprocity map, the inertia subgroup /g /g of G'}‘}’ is isomor-
phic to Uk and the wild ramification subgroup Py /x of Igw /i is isomorphic to

U ,((1). Therefore, for the maximal abelian tamely ramified extension K> we have
Gal(K*™" /K™ ~ U /U ~ k.

If L/K is an abelian extension with Galois group G, then by Galois theory,

G = G®/H for some closed subgroup H C G%. From Herbrand’s theorem we

have G = (G®)) /H N (G)). Therefore from it follows that the jumps

of the ramification filtration on G are integers (theorem of Hasse-Arf). Assume, in

addition, that L/K is wildly ramified i.e. totally ramified of degree power of p. The
canonical projection of G}*}’ onto G induces a diagram

0 — Pyu jx — G — Gal(K**""/K) ——0

]

O PL/K G G/PL/K%O

Since L/K is wildly ramified, G = Pk, and one has
G ZPKab/K/(HmPKab/K).
Therefore
~ p¥) ()
G(V) - PKab/K/(HmPKab/K)7
We can write this property in terms of the group of units Ugx. Namely, let N de-

v>1.

note the subgroup of U, I((l) that corresponds to H M Py x under the isomorphism

1
PKab/K:U[(()

. Then we have an isomorphism
p:G~UYN.

From the description of the ramification in terms of the reciprocity map (13), we
obtain that

(16) p(G<V>) ~u /N, vl

Let denote by vy < v; < v, < ... the ramification jumps of L/K. Since the quotients

U ,((i) JU ,(f) are p-elementary abelian groups (each non trivial element has order p),
we conclude that all quotients G / Gi+1) are p-elementary. This also can be



6. RAMIFICATION IN Z,-EXTENSIONS 29

proved directly using Proposition |4.5| without any reference to the reciprocity map
Ok.

6. Ramification in Z ,-extensions

We illustrate the ramification theory of infinite extensions on the example of
Z,-extensions.

DEFINITION. A Z,-extension is a Galois extension L/K with Galois group
isomorphic to Z,,.

In this section, we assume that K../K is a totally ramified Z,-extension of
local fields of characteristic 0 and set I' = Gal(K../K). For any n, p"Z, is the
unique open subgroup of Z,, of index p" and we denote by I'(n) the corresponding

subgroup of I'. Set K,, = LX) Then K, is the unique subextension of K../K of
degree p" over K. We have

K., = glK"’ Gal(K,/K)~Z/p"Z.
Note that K../K is abelian by definition. Let (v;);>o denote the increasing

sequence of ramification jumps of L/K. Since I~ Z, and all quotients () / i)
are p-elementary, we obtain that

e =p'z, Vil

THEOREM 6.1 (Tate [18]). Let K be a finite extension of Q) and let K../K
be totally ramified Z,-extension. Let (v;)i>1 denote the increasing sequence of
ramification jumps of K« /K. Then

i) There exists iy such that

viyl = Vi t+ek, Vi > ip.
ii) There exists a constant ¢ such that for all n > 1
v (D, k) = exn+c+anp™",
where (ay)n>1 is bounded.

We first prove the following auxiliary lemma:

LEMMA 6.2. Let K/Q,, be a finite extension and let ex = e(K/Q),). Then the
following holds true:
i) The series

oo

x"
log Z m+1
m=1
converges for all x € mg.
ii) The series
e xm
)= Y o
m=0

converges for all x such that vk (x) > ;.
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iii) For any integer n > % we have isomorphisms

log: UY > ml,  exp:mp— U
which are inverse to each other.

PROOF. We have
vk (m) < exlog,(m),

and
vielmt) = e (Im/p] + b p?] +-0) < 5L
This implies the convergence of the series. Other assertions can be proved by
routine computations. U
COROLLARY 6.3. For any integer n > %
(UI((n)>P _ ylrren),
PROOF. (U [((")>p and U, ,(("Jre’( ) have the same image under log. U

PROOF OF THE THEOREM.
i) We apply the arguments of Section [5.§]to our setting with L = K., and G =T
Write I’ = G% /H with some closed subgroup H of G}b. Let N denote the subgroup

of U ,((1) that corresponds to Pga /¢ M H under the reciprocity map. Set
v =vV/NnUly, w1
Then the isomorphism (16]) reads
PN~y >

Let v be a topological generator of I'. Then 7, = ¥”" is a topological generator
of I'(n). Let ip be an integer such that

p (%) € %™,

with some integer mgy > %. Fix such iy and assume that, for this fixed iy, mg is

the biggest integer satisfying these conditions. Since ¥;, generates I'(io), this means
that

p(T(io)) = 2™, but  p(D(ig)) # % MY,
Therefore my is the ip-th ramification jump for K../K, i.e.

mo = Vi,

We can write p(¥;,) =X, where X =x (mod (NN UI((mO))) and x € UI({mo) \UI((mOH).
By Corollary[6.3]

xpn € U[((m0+ekn) \Ul((m0+€[(n+l), Vn > 0.
Since p(¥,+n) =*"" and ¥, generates I'(mq + n), this implies that

p(F(i0+n)) :%(moJrneK) but p(r‘(i0+n)) #%(mo+nel<+l)'
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This shows that for each integer n > O the ramification filtration has a jump at
mo + neg and
rimotnex) — (i 4-n).
In other terms, for any real v > v;, = my we have
IV =T(ip+n+1) if vy 4nex <V <v,+(n+1)ex

This shows that v, = v;, +egn for all n > 0, and the assertion 1) is proved.

ii) We prove ii) applying Theorem For any n > 0, set G(n) =I'/I'(n).

We have |
D :/ l— —— | dv.
VK( Kn/K) . ( \G(n)(v)\> v

By Herbrand’s theorem, G(1n)") = ") /(I'(n) N\T™). Since T*") = I'(n), the ram-

ification jumps of G(n) are vg,vy,...,v,_1, and we have
ity <v<y;
(17) ‘G(H)(‘})‘ — V4 ) . i—1 x Vi
1, ifv>v,_
(for i = 0 we set v;_; := 0 to uniformize notation). Assume that n > iy. Then

Vn—1 1
Dy k) =A / 1———)av,
(D) =AY [ ( rG<n><v>r) "

Vi 1
where A = / " (1— ——— ) dv. We evaluate the second integral
1 G(n) ) |

1 (=)=

0
n—1

F o (1 )= B

i=ip+1 i=ip+1

(here we use i) and (T7). An easy computation gives

n—1
1 eK 1
ex [ 1— .):eK(n—io—l)—i— <1— )
,-:%1 ( P p—1 prho!

Setting c = A —ex(ip+1) + %, we see that for n > iy
1
VK(:DKH/K) =c+egn— W

The theorem is proved.






CHAPTER 2

Almost étale extensions

1. Norms and traces

1.0.1. The results proved in this section are technical by the nature, but they
play a crucial role in our discussion of deeply ramified extensions and the field of
norms functor. They can be seen as a first manifestation of a deep relation between
characteristic 0 and characteristic p cases. In this section, we assume that L/K is a
finite extension of local fields of characteristic O.

LEMMA 1.1. One has

TrL/K(mZ) = m;ﬁ

VL(@L/K>+ni|

where r = { (L/K)

-1

PROOF. From the definition of the different if follows immediately that D, K

is the maximal fractional ideal such that
TI'L/K(CDZ/IK) = OK.
Set 6 = v, (D k) and e = ¢(L/K). Then
n,..—r —er —(6 -

Tryx (mimg") = Try g (mfm; ") C Trp g (m] ( +")) = TrL/K(BDL/lK) = Ok,
and therefore Try /x(m}) C my. Conversely, Tr; /x(m7) is an ideal of Ok, and we
can write in in the form Tr; x (m} ) = m%. Then Try /g (mjm;“) = Ok and therefore
mjmg? C @L_/IK. This implies that

n—ae> —90.

Therefore a < {@} = rand mj C Try /x(m}). The lemma is proved.

O

1.1.1.  Assume that L/K is a totally ramified Galois extension of degree p.
Set G = Gal(L/K) and denote by ¢ the maximal natural number such that G, = G
(and therefore G;;; = {1}). Formula for the different from Proposition [4.9| reads
in our case:
(18) vi(®p/k) = (p— 1)t +1).

LEMMA 1.2. Then for any x € m}

Npk(14x) = 14N g (x) +Try g (x)  (mod my),

(p—l)(t+1)+2n} '

where s =
| =t

33
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PROOF. Set G = Gal(L/K) and for each 1 < n < p denote by C, the set of all
n-subsets {g1,...,8,} of G (note that g; # g; if i # j). Then

Npk(1+x) = H(l +8(x)) = 1+ Ny /k(x) + Trp g (x)
geG

+ )Y @) +-+ ) g1(x)---gp-1(x).
{g1,82}€C {g1,--8p-1}€Cp1

It’s clear that the rule

gx{g1,--- &} ={881,-.-,88n}

defines an action of G on C,. Moreover, from the fact that |G| = p is a prime
number, it’s easy to see that all stabilizers are trivial, and therefore each orbit has
p elements. This implies that each sum

Y si)oal),  2<n<p-l
{g1,---gn}€C,
can be written as the trace Try /x(x,) of some x, € m?". From and Lemma
it follows that Try /x(x,) € m}. The lemma is proved. O
LEMMA 1.3. For any x € mj
Npg(1+x) =14 Npjg(x) + Trp g (x)  (mod my),

(pfl)(t+1)+2n] .

where s =
e

PROOF. Set G = Gal(L/K) and for each 1 < n < p, denote by C, the set of all
n-subsets {g1,...,8,} of G (note that g; # g; if i # j). Then

Ny (1+x) = H(l +g(x)) = 1+ Ny /g (x) +Trp k (x)
geG

+ Y a®ea)+---+ Y  gai@)gpa).
{g1,82}€C2 {g1,--&p-1}€Cp_1
It’s clear that the rule

g*x{g1,---,gn} = {881,-,88n}

defines an action of G on C,. Moreover, from the fact that |G| = p is a prime
number, it’s easy to see that all stabilizers are trivial, and therefore each orbit has
p elements. This implies that each sum

Z gl(x)”'gn(x), 2<n<<p—1
{8g1,---8n}€Cu

can be written as the trace Try /x(x,) of some x, € m%". From and Lemma
it follows that Try /x(x,) € mj. The lemma is proved. O

COROLLARY 1.4. Let L/K is a totally ramified Galois extension of degree p.

Then
t(p—1)
P

vk (N (14x) = 1= Ny g (x)) 2
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PROOF. From Lemmas and[L3]if follows that

Va1~ 1= Ny) > | LD
and it’s easy to see that
[(p—l)(ﬂrl)} _ [(p—l)t 1] )

» P .

2. Deeply ramified extensions

2.0.1. In this section, we review the theory of deeply ramified extensions of
Coates— Greenberg [6]]. This theory goes back to the fundamental paper of Tate
(18], where the case of Z,-extensions was studied and applied to the proof of the
Hodge-Tate decomposition for p-divisible groups.

Let K be a local field of characteristic 0. In this section, we consider an infinite
algebraic extension K../K. Since for each m the number of algebraic extensions of
K of degree m is finite, we can always write K. in the form

KW:C'JOK,,, Ko=K, K,CKu 1, [Kp:K]<oo.
n—=

Following [7]], we define the different of K../K as the intersection of differents of
its finite subextensions.

DEFINITION. The different of K- /K is defined by
Dk/x = 0 (Dk,/kOk..),
where D Ok, denotes the ideal in Ok, generated by D, .

Let L. be a finite extension of K. Then L. = K.(t), where « is a root of
an irreducible polynomial f(X) € K.[X]. The coefficients of f(X) lie in a finite
extension K¢ of K. Let

np=min{n € N| f(X) € K,[X]}.
Setting L, = K, () for all n > np, we can write

L.= UL,

n=ng

In what follows we will assume that nyp = 0 without loss of generality. Note that
[L, : K] = deg(f) doesn’t depend on n > 0.

PROPOSITION 2.1. i) If m > n, then

Or1,/%,0L, C D1, /K,-
ii) One has
Or./k. = nL:JO(@Ln /K, OL..)-
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PROOF. i) We consider the bilinear form provided by the trace map (see Chap-
ter I, Section[3) :

IL,/K, * Ln X Ly — Ky, t,/k, (%, y) = Try, /g, (xXy).
Let {ex};_, be abasis of Oy, over Ok, , and let {e };_, denote the dual basis. Then
Dr./k, = Or,e1+ -+ Op,e;.

Since {ex};_, is also a basis of L,, over K, any x € D, / can be written as

s
x=) ae;.
k=1

Kn

Then
ax =1y, /x, (%, ex) € Ok, V1 <k<s,
and we have:
x€0K€1+ +0K€YC©L/K0L'

Therefore ©, ,,,/K - 9_/1( Oy,,, and, by consequence, D; /x Or,, C Dy, k. -
ii) With the same argument as in the proof of i), we have

ngo(@Ln /k,0L..) C D1 /K.
We need to prove that ;g C E_j (Dr,/k,0L..) or equivalently that

(33 I/K 0..)C @;:/Kw.

n=

Letx e ﬂ (@Z /K r..) and y € Oy . Choosing n such that x € @L /K, andye Oy,
we have

1. k. (%,Y) =11, /k,(x,y) € Ok, C Ok...
Hence x € @L /k.,» and the inclusion N (’DL I/K Or.) C QL_:/KN is proved. O

=0
DEFINITION. i) For any algebraic extension of local fields M /K (finite or in-

finite) we set

v (D) = inf{vg (x) | x € Dpyx}-

ii) We say that M /K has finite conductor if there exists v > 0 such that M C K ",
If that is the case, we call the conductor of M the number

(M) =inf{v | M c K"V}

THEOREM 2.2 (Coates—Greenberg). Let K../K be an algebraic extension of
local fields. Then the following assertions are equivalent:

i) vk (Dk../x) = +oo;

i) K. / K doesn’t have finite conductor;

iii) For any finite extension Lo /K one has

vk(Dr_k.) =0;
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iv) For any finite extension L. /K. one has
Try, k. (mz,) = mg, .
Below we prove that
i) < ii) = iii) = iv).
For further detail, see [6]. We start with an auxiliary lemma.
LEMMA 2.3. For any finite extension M /K, one has
c(M)
2

< v (D) < (M),
PROOF. We have
M : Mﬁf(v)] =1, foranyv>c(M)—1,
M:MAKY) =2, if—1<v<cM)—1.

Therefore

oo 1 c(M)—1
VK(QM/K):/ = —— d"</ dv=c(M),
-1 M : MK -1

and

e 1 1 -1 c(M)
VK(@M/K)—/_I (1—[(‘})]> dV> 5 dv = 3 .

The lemma is proved. U

2.3.1. We prove that i) <> ii). First assume that vg(Dg_/x) = -+oo. For any
¢ > 0, there exists K C M C K., such that vg (D /k) > c. By Lemma c(M) >c.
This shows that K../K doesn’t have finite conductor.

Conversely, assume that K../K doesn’t have finite conductor. Then for each

¢ > 0 there exists a nonzero element 8 € K., such that § ¢ K9 LetM =k (B).
Then c(M) > ¢ and vg (D) > § by Lemma 2.3] Therefore vg (D, k) = +oe.

2.3.2. For any algebraic extension M /K, set MU = MG? —mnk".
LEMMA 2.4. Assume that w is such that L C E(W). Then for anyn > 0
Lo: L) = [Ky K.

PROOF. Recall that if M/F is a Galois extension and E/F is an arbitrary ex-
tension such that M NE = F, then M and E are linearly disjoint over F.

Since GE{W) is a normal subgroup of Kk, the extension " /K is Galois. Hence
& /K, NK™ is also a Galois extension, and the fields &™) an K, are linearly
disjoint over K,(,W) =K, NK™. Since L,Sw) —gW N L, is a subfield of F(W), we
conclude that L,EW) and K,, are linearly disjoint over K,(,W). Therefore

(19) K, K] = (KLY - L0,
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Clearly KnL,(IW) =K, (F(W) NL,) C L,. On the other hand, since L, = K, - L and
LC F(w), we have L, C K, (F(W) NL,) = KnLE,W). Therefore

L,=K,L".
Together with (19), this proves the lemma. O

2.4.1. We prove that ii) = iii). By the multiplicativity of the different, for
any n > 0 we have

vk(Dr,/k,) = vk(®Dr,/x) — vk (Dk,/k)-

Let w be such that L C ", Using formula and Lemma [2.4} we obtain that

oo 1 1
v (D, /k,) = / O on |4V =
-1 [Kn 1 K, ] [Ln 1Ly ]

w 1 1 w dv
/ W ) dvg/ o
I\ [K,: K] [Ln: Ly 1K, : Ky ]

Since [K, : K,(,v)] > K : K,EW)] for any v < w, this gives the following estimate for
the different:

w1 w—+1
VK(Q " n) < = — — .
BTN K kD) E™ ')

It’s clear that the sequence [K,,E(w) : f(w)] is increasing when n — 4-c0, and we only
need to show that it goes to infinity. We prove this by contradiction. Assume that
[an(w) : f(w)] is bounded above. Then there exists ng such that [an(w) : ?(W)]
is constant for n > ny. Hence an(w) = Knof(w) for n > np and we conclude that
K.K" = Knof(w). Since K, /K is finite, there exists v > w such that K, C Y.
Then K., C Knof(w) c B Therefore K../K has finite conductor, contrary to our
assumption.

2.4.2. We prove that iii) = iv). We consider two cases.

a) First assume that the set {¢(K,/K) | n > 0} is bounded. Then there exists ng
such that e(K, /K,,) = 1 for any n > ng. Therefore e(L,/Ly,) = 1 for any n > ny
and by the mutiplicativity of the different

:DLn/K,, ::DLnO/KnOOL'l’ Vn}no.

From Proposition and assumption iii) it follows that ©; k. = Oy, for all n > no.
Therefore L, /K, are unramified and Lemma/[1.1|(or just the well known surjectivity
of the trace map in unramified extensions) gives:

Tan/Kn (an) = mKn’ fOI' all n 2 ngp.

Thus Try_ k. (mz,) = mg,,.
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b) Now assume that the set {e¢(K,/K) | n > 0} is unbounded. Let x € mg._.
Then there exists n such that x € mg,. By Lemmal[L.1}
v, (Dr,/x,) + 1}
e(Ly/Kn) .
From our assumptions and Proposition [2.1] it follows that we can choose n such
that in addition

— 7 p—
Ty, /k, (M1,) = my Fp = {

1
D ———— < .
vk (Dp,/k,) + e(L/K) vk (x)
Then
ve,(Dg,/x,) +1 1
< ALK T ——e(K,/K) < .
S LK) KPR g i ) (R <)
Since Try, /g, (myz,) is an ideal in Ok,, this implies that x € Tr;, /x (mz,), and the
inclusion mg,, C Tr;_/k_(myz,) is proved. Since the converse inclusion is trivial,

we have mg, = Try_/x_(my..).

DEFINITION. We say that an extension F /K of a local field K of characteristic
0 is deeply ramified if it satisfies the equivalent conditions of Theorem 2.2}

Exercise 9. i) Show that GE?) = I and that the wild ramification subgroup
Gal(K/K"™) can be written as

Gal(K/Ky) = egon,f)

(topological closure of UOGEf)).
>

ii) Show that K" /K has finite conductor and determine it.

3. Almost étale extensions

3.1. We introduce, in our very particular setting, the notion of almost etale
extension.

DEFINITION. A finite extension L/K of non archimedean fields is almost etale
if and only if
TrL/K(mL) =mg.

Examples. 1) An unramified extension of local fields is almost etale.

2) Assume that K., is a deeply ramified extension of a local field K of char-
acteristic 0. Then any finite extension of K. is almost etale. This was proved in
Theorem 2.2

3.1.1.

THEOREM 3.2. Assume that F is a deeply ramified extension of a local field K
of characteristic 0. Then
CcYr =F.

Fix an absolute value | - [ on K. Recall (see Section|[I) that | - | extends in a
unique way to an absolute value on Cg, which we denote again by | - k.
We first prove the following lemma.
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LEMMA 3.3. Let L/F be a finite Galois extension of the deeply ramified ex-
tension F, and let G = Gal(L/F). Then for any a € L and any c > 1 there exists
B € F such that

}a—B{K<c-r§16ag‘g(a)—a‘K.

PROOF. Let ¢ > 1. By Theorem iv), there exists x € Og such that y =
Tryp(x) satisfies

/e <|ylg < 1.
1
Set B = — Zg((xx). Then
geG
o 1 1
la—Bly=|~ Y g)— =Y glax)| = |-} g(x)(a—g(a))
Y ¢eG Y geG x |YseG K
1
< — max|g(a) — o ..
vk 86 lg(e) —
The lemma is proved. U

3.3.1. Proof of Theorem Let o € CgF . Choose a sequence (Q)nen of
elements o, € K such that |, — ot|x < p~". Then

g(atn) —anlk = |g(0n — @) — (n— ) [k <p™",  Vg€EGp.
By Lemma for each n there exists 3, € F such that |, — a,|x < p~". Then

o= lim B, eF.
n—r+-o0

The theorem is proved.

4. The normalized trace

4.1. In this section, K.,/K is a totally ramified Z,-extension. Fix a topologi-
cal generator y of I'. For any x € K, set

1
Tk /k(x) = ETrKn/K (x).

It’s clear that this definition doesn’t depend on the choice of n. Therefore we have
a well defined homomorphism

TKw/K . Koo —>K

Note that Ty_ /x(x) = x for x € K. Our first goal is to prove that T_ /x is continuous.
In this section, we denote by | - |k the absolute value on K normalized as fol-
lows

x|k = , xeKk,

qv;((x)
where g = |kg|. In particular, |p|x = 1/¢°%, where ex = ¢(K/Q,). We extend this
absolute value to Cg.
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PROPOSITION 4.2 (Tate). i) There exists a constant ¢ > 0 such that
ITk./k(x) — x|k < c]y(x) —x|x, Vx € K.
ii) The map Tk_ g is continuous and extends by continuity to K.
PROOF. First, we prove that i) = ii). Let x € K. Then
Tx../x (%) |k = [(Tk.. & (x) —x) + x| < max{|Tg_/k(x) —xlk, x|k}
If we assume 1), then
| Tk../x (%) = x|k < efy(x) — x|k < emax{[y(x)[x, [x[x } = c|xlk,
and we obtain that
Tk /x(x)|x <Alx|k, A =max{l,c}.

Since Tx_/k is a K-linear map, this inequality implies that Tx_/k is continuous.
Now we prove i). We split the proof in several steps.
a) By Proposition vk (Dk, k) = exn+a,/p", where the sequence a,, is
bounded. Therefore

v (Dk,/x, 1) = vk (Dk, k) — vk (Dk, k) = ex +0/p" .

where o, is bounded. Lemma for the extension K, /K, can be written in the
form

vk, (x) +vk,(Dk, /k, ) VK, (x) +vk,(Dk,/x,_,)
e(Kn/Kn—l) - e(Kn/[(n—l)

Since vk, (-) = p"vk(-) and e(K,/K,—1) = p, we have:

-1

vanl (TrKn/anl (x)) 2

1

prt

Taking into account the formula for the different, we obtain that
vi(Trg, k, (%) 2 vie(x) +ex (1= ba/p"")

for some bounded sequence b,,. Choose b > 0 such that b, < b for all n. Then
vk (Trg, k(X)) = v (x) +ex (1 =b/p"").

Passing to absolute values, we can write this formula in the following form:

vi (Trg, k(X)) = vi(x) + vk (D, k) —

1-b n—1
(20) ITrg, ik, (ke < Iplg 77 g, VxeK.

b) Set ¥, = y”". For any x € K,, we have

Trg, /x, ,(x) = Y, Vo1 (x).

Therefore
p—1 p—1

Trg, ki, () = px =Y (1 (x) =x) = ) (1 + Y1+ %, 71) (a1 (6) — ).

k=0 k=1
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and we obtain that

1 _
;TrK,,/Kn,l(x)_x < ’p‘l(l"'}/n—l(x)_x’l(a Vx € Ky.

K

Since %, 1(x) —x = (1+y+---+ 9" ~1)(y(x) —x), we also have

1) <Iplg' - |v(x) —xlx,  Vx €K,

K
¢) We prove by induction on # that

(22) Tk x(x) —x| <cu-|¥(x) —xlx,  VxeKk,,

I'r X X
p Ky /Kn—1

_ n—1
where ¢; = |p|g and ¢, = ¢;—1 |p|Kb/p . For n = 1, this follows from 1) For
n > 2 and x € K,,, we write

1 1
T ) == (T, 09— + (T ) =) 3= Tog (0
The first term can be bounded by 2I)). For the second term, we have

’TKW/K(y) =Yk <ena|¥(y) =yl = cu1 |P’1}1 ’Trk,,/l(,,,l (v(x) —x)|k
<antlpl”” @)~ xle.

(Here the last inequality follows from (20)). This proves ([22).

d) Setc=c¢; ﬁ ]p\lzb/pM =c ]p\l_(b/(p_w. Then ¢, < ¢ forall n > 1, and from
(22) we obtain thr;i:t2

}TKM/K(x)—x‘K<c-|}/(x)—x|1<, Vx € K.,

This proves the first assertion of the proposition. The second assertion is immedi-
ate. ([

DEFINITION. The map Tk_/k : K.. — K is called the normalized trace.

4.2.1. Since Tg_/k is an idempotent map, we have a decomposition

K.=K®KZ,

where K¢, = ker(Tk_ k).

THEOREM 4.3. i) The map A — 1 is bijective, with a continuous inverse, on
K.

ii) Forany A € UI((I) which is not a root of unity, the map y— A is bijective, with
a continuous inverse, on K.
PROOF. a) Write K, = K © K], where K, = ker(Tg_/x) N K. Since y— 1 is

injective on K, and K, has finite dimension over K, y— 1 is bijective on K, and on
K2 = UOK,Z’ .Let p : K2 — K¢ denote its inverse. From Proposition we have
nz

that
xlx <cl(Yy—1D)|k,  Vx€KS,
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and therefore
lp(%)|x < c|x|k, Vx € K.
Thus p is continuous and extends to K2. This proves the theorem for A = 1.
b) Assume that A € U,((l) satisfies
A —1g <c .

Then p(y—A) = 1+ (1 —A)p and the series

e:i(a—

converges to an operator 0 such that pO(y—A) = 1. Thus y— A is invertible on
K °.Since A # 1, it is also invertible on K and therefore invertible on Koo

¢) In the general case, we choose 7 such that |[A”" — 1|x < ¢~!. Since A?" # 1,
then by part b), y”" — A" is invertible on K... Since

pn*l . '
YA = (y=2) Y A
i=0

y— A is invertible too. The theorem is proved. (]

44. Letn:I'—>U ,(<1) be a continuous character. We denote by K..(1) the
K-vector space K., equipped with the n-twisted action of I', namely

gxx=n(y)-y(x), VyeTl, xeK.(n).
We will also consider 1 as the character
Gy —TI'— U,((l)
and denote by Ck () the field Cx equipped with the n-twisted action of Gk.

THEOREM 4.5 (Tate). Let K../K be a totally ramified T-extension. Then the
following holds true:

i) KL = K and CS¥ =K

i) Ifn:T'— U,((l) is a character with infinite image 1(I'), then K..(n)T =0
and Cx(n)% =0.

PROOF. We combine Theorems@] and[4.3] Let y be a topological generator
of . Since T = y— 1 is bijective on K2, we have (K2)I' = 0 and

KL=Kk"®(K2)' =K.
Moreover,
cr = (C,?Kw)r — KL =K.
If 1 is a nontrivial character, set AL = 1(y). Then
Ko ={xeKo[7()=2""x}
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Again by Theorem K2(n)T' = 0. Since A # 1, we also have K(n)T' = 0. Thus
K..(n)F = 0. Finally

Cr(m)% = (Cx(m%)" = (€&=(m)) = Rulm)" =0.



CHAPTER 3

Perfectoid fields

1. Perfectoid fields

1.0.1. The notion of perfectoid field was introduced in Scholze’s fundamental
paper [16] as a far-reaching generalization of Fontaine’s constructions [9], [10].
Fix a prime number p. Let E be a field equipped with a non-archimedean absolute
value | - |[g : E — Ry such that |p|g < 1. Note that we don’t exclude the case of
characteristic p, where the last condition holds automatically. We denote by O
the ring of integers of E and by mg the maximal ideal of Of.

DEFINITION. Let E be a field equipped with an absolute value | - |g : E — Ry
such that |p|g < 1. One says that E is perfectoid if the following holds true:

i) | - |g is nondiscrete;

ii) E is complete for | -

iii) The Frobenius map

E;

¢ : Op/pOg — Og/pOg,  @(x)=x"
is surjective.

Example 1) Let K be a non archimedean field. The completion Cg of its
algebraic closure is a perfectoid field.

2) Let K be a local field. Fix a uniformizer mx of K and set m,, = 717[1(/ P Then
the completion of the Kummer extension K [ﬂll(/ b w] = GIK [m,] is a perfectoid field.
n=

This follows from the congruence

m P m
(;)[ai]ﬂff ) E;)[ai]f’ 7,1 (mod p).

3)Let K, = Q,[{,»], where {,» is a primitive root of unity, and K. = L>JlKn. By
nz

the same method, it is not difficult to show that the completion of K., is a perfectoid
field.

The following important result is a particilar case of [12} Proposition 6.6.6].

THEOREM 1.1 (Gabber—Ramero). Let K be a local field of characteristic 0. A
complete subfield K C E C Ck is a perfectoid field if and only if it is the completion
of a deeply ramified extension of K.

45
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2. Tilting

2.0.1. Inthis section, we describle the tilting construction, which functorially
associates to any perfectoid field of characteristic O a perfect field of characteristic
p- This construction first appeared in the pionnering paper of Fontaine [9]].

2.0.2. Let E be a perfectoid field. Consider the projective limit

¢

where @ (x) = x” is the absolute frobenius. It’s clear that O, is equipped with a
natural ring structure. An element x of Oy, is an infinite sequence x = (x,),en of
elements x, € Og/pOg such that x‘Z 1= Xn- Below we summarize first properties
of the ring Op» :

1) If we choose, for all m € N, a lift x,, € Og of x,,, then for any fixed n the
sequence (X}, ,,)meN converges to an element

(n) o 1. M
X = l1m x €0

which does not depends on the choice of the lifts x,,. In addition, (x(”))p =

=1 fol all n > 1.

PROOF. Since x,, = Xp4n—1, we have Xb = X,,4,—1 (mod p), and an easy
m—1

min_1 (mod p™). Therefore the sequence ()?,’j_rtm)meN
converges. Assume that X,, € O are another lifts of x,,, m € N. Then x,, =

Xm (mod p) and therefore ;Cﬁm = fﬂm (mod p™*!). This implies that the limit

doesn’t depend on the choice of the lifts. ([l

m
induction shows thatx’, , , =x"

2) For all x,y € Op» one has

24)  (x+y)™ = lim (x("+m>+y<"+m>>” L ()™ = )

m——+oo

PROOF. It’s easy to see that x" € O is alift of x,. Therefore x"t™) 4 y(”+’") is
a lift of X1 + Yn+m, and the first formula follows from the definition of (x+ y)(”) )
The same argument proves the second formula. (]

3) The map x — (x")),> defines an isomorphism

(25) Op = lim O,

xP<—x

where the right hand side is equipped with the addition and multiplication
defined by (24).

PROOF. This follows from from 2). O

Define
| '|Eb: ()E7 _%'I{LJ{_%°°}7

|xlp = Ol
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Exercise 10. Let y = (yo,y1,...) € Op,. Show that
(26) =0 & |yp<I|plf.

PROPOSITION 2.1. i) | - | is a non archimedean absolute value on Op;.

ii) Op» is a perfect complete valuation ring of characteristic p with maximal
ideal my, = {x € Opy | vy (x) > 0} and residue field k.

iii) Let E” denote the field of fractions of Op,. Then |E |, = |E|E.

PROOF. 1) Let x,y € Op,. It’s clear that
eyl = 1)@ = KOO e = KO- YO = Ix[ [yl
Also,

et ylp =+ =] lim (4 y) g = dim )4y
< lim_max{|"|g, [x" g} = tim_max{| (") )"}

= max{ ‘ (X(O)) ‘E’ ‘ (x(O)) ‘E} = max{ ‘X‘EH |y’Eb }
This proves that | - |z, is an non archimedean absolute value.
i) We prove the completeness of Op,. Let (x,)nen be a Cauchy sequence in
Op>. Then for any M > 0 there exist N such that for all n,m > N

m

PM
%0 — X < |PlE -
Writing X, = (X4,0,Xn,15---)sXm = (Xm,0,Xm,1,-..) and using (26), we obtain that for
alln,m >N
Xni=Xm; forall 0<i<M.
This shows that for each i > 0 the sequence (x,;)qeN is stationary. Set a; =
limy,—, 1o Xp ;. Then a = (ag,ay,...) € Oy, and it’s easy to check that lim,_, X, =
a.
We prove the perfectness of Oy,. Set A := I&Hxlmx Og. Then we have a com-
mutative diagram

(27) Op ——A
L
Op ——A,
where the horizontal maps are the isomorphisms (25), and the map y is given by
l]/(ao,CI],az, .. ) = (ag,af,ag, .. )
It’s clear that ker(y) = {0}, and therefore y is injective. From the formula

l//(al,ag,a3, .. ) = I[/(ao,al,az,...)

it follows that v is surjective. Therefore ¢ is an isomorphism.
The proof of the other assertions is left as an exercise.

Exercise 11. Complete the proof of Proposition [2.1
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DEFINITION. The field E’ will be called the tilt of E.

PROPOSITION 2.2. A perfectoid field E is algebraically closed if and only if
Eis.

PROOF. The proposition can be proved by successive approximation. See [8}
Proposition 2.1.11] for the proof that E’ is algebraically closed and [8, Proposi-
tion 2.2.19, Corollary 3.1.10] for two different proofs of the converse statement.
Scholze’s original proof can be found in [16l Proposition 3.8]. See also Kedlaya’s
proof in [2]. O

3. Witt vectors

3.1. In this section, we review the theory of Witt vectors. Consider the se-
quence of polynomials wo(xo),wi(xp,x1), ... defined by

wo(X0) = Xo,
wi(xo,x1) = x{ + pxi,

2
2
wa(x0,x1,X2) = x5+ pxi + pxs,

PROPOSITION 3.2. Let F(x,y) € Zx,y| be a polynomial with coefficients in Z
such that F(0,0) = 0. Then there exists a unique sequence of polynomials

D (x0,¥0) € Z[xo,y0],
D (x0,¥0,x1,¥1) € Z[x0,Y0,X1,Y1],

such that
(28)
Wi (Do, D1, .., Dy) = F(Wn(x0,X1, -+, %0)y Wi (Y0, Y15+ - -5 Vn)),s foralln > 0.

To prove this proposition, we need the following elementary lemma.

LEMMA 3.3. Let f € Z[xo,...,x,]. Then

P (X0, .- Xn) Efpmfl(xg,...,xﬁ) (mod p™), forallm > 1.

PROOF. The proof is left to the reader. (|
PROOF OF PROPOSITION[3.2]. The proposition could be easily proved by in-
duction on n. For n = 0 we have ®((xo,y0) = F (x0,y0). Assume that @y, Py, ..., P,
are constructed. From (28)) it follows that
(29)

1 . B
q)n:ﬁ(F(Wn(x();xla'"axn)7wn(y0,yla"'>yn))_(CI)(I; ++pn 1¢571))~
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This proves the uniqueness. It remains to prove that ®, has coefficients in Z. Since

Wi (X0, -+, Xn—1,%) = Wyt (xf,...,x2_)  (mod p"),

we have:

(30) F(Wn(wa--)xnflaxn)’wn(yOw"7yn717yn))
= F(Wa1 (X0, ,%,_1):Wn-100,---,Yy—1))  (mod p").

On the other hand, applying Lemma [3.3]and the induction hypothesis we have

(31) q)g +"'+Pn_1(1)£,1 = Wp—1 ((I)O(x(1)77yg)7"'7(I)nfl(x‘(l)7ay‘(l)7a"'7x5717y571))
= F(wut (o)Wt OB ? 1) (mod ).

From (30) and (31)) we obtain that

F(Wn(xo, . axnflyxn)>wn(y07 e 7ynflayn)) = q)g" +--- +pn_l¢571 (mod pn)'
Together with (29), this shows that ®, has coeffiients in Z. The proposition is
proved. O

3.3.1. Let (fy)n>0 denote the polynomials (®,),>o for F(x,y) = x+y and
(gn)n>0 denote the polynomials (P,),=o for F(x,y) = xy. In particular,
xg +y5 — (X0 +y0)”
fo(x0,50) = xo+y0, fi(x0,y0,%1,1) = x1 +y1 + L—=2 p( ) ,

g0(x0,50) =xoy0, &1 (x0,Y0,x1,y1) = Xhy1 +x155 + pxiyi.

3.4. For any commutative unitary ring A, we denote by W(A) the set of in-
finite vectors a = (ag,ai,...) € AN equipped with the addition and multiplication
defined by the formulas:

a+b = (fo(ao,bo), fi(ao,bo,a1,b1),...),
a-b=(go(ao,bo),g1(ao,bo,ai,by),...).

THEOREM 3.5 (Witt). With addition and multiplication defined as above, W (A)
is a commutative unitary ring with

1=(1,0,0,...).
PROOF. a) We show the associativity of addition. From construction it’s clear

that there exist polynomials with integer coefficients (u,)n>0, and (v,),>0 such that
Un, Vi € ZLx0,Y0,205 - - - Xn,Yn,2n| and for any a,b,c € W(A)

(a+b) +c= (MO((JO,bO,CO),. . -7un(a07b07607' .. 7an7bn7cl’l)7' . ')7
a+ (b+c) = (vo(ao,bo,co),---,vn(ao,bo,co, - an,by,cp),...).

Moreover

Wn(l/l(),. .. 7”1’1) = Wn(fO(XOJO)afl (x07y07x17y1)7 .. ) +Wn(ZO7- .o 7Zn)
=wWn(x0, .-+, %0) +Wn (Y05 - - Yn) +Wn(20s---12n)
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and

Wn(V0s -3 Vn) = Wn(X0, .- -, Xn) +wn(fo(¥0,20), f1(¥0,20,¥1,21),- - )
=Wn(x0,- -y Xn) +Wn(Y0y- -+ Yn) +Wn(z0y---,2n)-

Therefore
Wi (Ugy - .. tty) = wi(Vo, ..., vn), foralln >0,
and an easy induction shows that u,, = v,, for all n. This shows the associativity of
addition.
b) We will show the formula
2

(32) (x0,%1,X2,...) - (30,0,0,...) = (xoy0, X155, X155 ,...)
In particular, it implies that 1 = (1,0,0,...) is the unity of W(A). We have

(x0,X1,X2,-..) - (30,0,0,...) = (ho, h1,...),

where hg, hy, ... are some polynomials in yg,Xg,x; - --. We prove by induction that
hy, = x,y5- For n = 0 we have hg = go(x0,y0) = Xo0yo. Assume that the formula is
proved for all i < n— 1. We have

wn(hoyhyy .. hy) = wi (X0, X1, -« s X)) Wn (30,0, ..., Ox).
Thus
W+ e P = (4 pad e P
By induction hypothesis, h; = xiygi for 0 <i<n-—1. Then h, = xnyg", and the

statement is proved.
Other properties can be proved by the same method. U

3.6. We assemble below some properties of the ring W(A):
1) Any morphism of rings ¥ : A — B induces
W(A) — W(B), y(ap,ai,...) = (y(ap), y(ai),...).
2) If pis invertible in A, then there exists an isomorphism of rings W (A) ~
AN,
PROOF. The map
w:W(A) — AN, w(ag,ay,...) = (wo(ao),wi(ao,ar),wz(ap,ai,az), )

is an homomorphism by the definition of the addition and multiplication
in W(A).If p is invertible, then for any (bo,b1,b2,...) the system of equa-
tions

wo(xo) =bo, wi(xo,x1) =b1, wa(xo,x1,%2)=Dba,...
has a unique solution in A. Therefore w is an isomorphism. ]
3) For any a € A, define its Teichmiiller lift [a] € W(A) by
[a] = (a,0,0,...).
Then [ab] = [a][D] for all a,b € A.
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PROOF. This follows from (32). O
4) The shift map (Verschiebung)
V:iW(A)—=W(A), (ap,a1,0,...)— (0,a9,ay,...),
is additive, i.e. V(a+b) =V (a)+ V(D).
PROOF. Can be proved by the method used in the proof of Theorem[3.5] I

5) For any n > 0 define
1,(A) = {(ao,a1,...) EW(A) |a;=0forall 0 <i < n}.

It’s easy to see that (1,(A)),>0 is a descending chain of ideals which de-
fines a separable filtration on W (A). Set

Wi(A) := W (A) /().
Then
W(A) = mW (A)/1,(4).

We equip W(A)/I,(A) with the discrete topology and define the standard
topology on W(A) as the topology of the projective limit. It is clearly
Hausdorff. This topology coincides with the topology of the direct prod-
ucton W(A):

W(A)=AXAXAX---|

where each copy of A is equipped with the discrete topology. The ideals
I,(A) form a base of neighborhoods at 0 (each open neighborhood of 0
contains I,(A) for some n).

6) For any a = (ag,ay,...) € W(A), one has
(a07a17a27--') = ZV”[an]
n=0

PROOF. Can be proved by the method used in the proof of Theorem[3.5]  [J

Assume that A is a ring of characteristic p, i.e. that p- 14 =04 in A. Then A is
equipped with the absolute Frobenius endomorphism

p:A=A o) =x"

7) If A is a ring of characteristic p, then the map (which we denote again by

?)
(0] ZW(A)—>W(A), (ao,al,...)»—>(ag,all’,...),
is a ring endomomorphism. In addition

PV =Veo=p.
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PROOF. We should show that
plag,ai,...) = (0,ah.af,...).
By definition of Witt vectors, the multiplication by p is given by

plag,ai,...) = (ho(ao),h(ao,ar),...),

where 7,(xo,x1,...,x,) is the reduction mod p of the polynomials de-
fined by
Wn(ho,hl,-..,hn):an(X(),Xl,.-.,Xn), n=0.

An easy induction shows that i, =x” | (mod p), and 4) is proved. [

DEFINITION. Let A be a ring of charactersitic p. We say that A is perfect if ¢
is an isomorphism.

PROPOSITION 3.7. Assume that A is an integral perfect ring of characteristic
p. The following holds true:

i) pPPTIW(A) = I,(A).

ii) The standard topology on W (A) coincides with the p-adic topology.

iii) Each a = (ag,ay,...) € W(A) can be written as

oo

(a07a17a27 . ) = Z [aﬁin]pn'
n=0

PROOF. i) Since ¢ is bijective on A (and therefore on W (A)), we can write
pn+1W(A> _ VnJrl(pf(nJrl)W(A) _ Vn+1W(A> _ In(A).

ii) Follows directly from i). Namely, the p-adic topology is determined by the
property that (p"W(A)),>o is asystem of neighborhoods at 0.
iii) One has

(aoar,a2,...) = iovwanb - if”"’_"“""” =Y [

THEOREM 3.8. i) Let A be a perfect integral domain (i.e. has no nonzero zero
divisors) of characteristic p. Then there exists a unique, up to an isomorphism,
ring R such that

a) R is integral of characteristic 0;

b) R/pR ~ A,

¢) R is complete for the p-adic topology, namely

R~1imR/p"R.
i

ii) The ring W (A) satisfies properties a-c).

PROOF. i) See [17, Chapitre II, Théoreme 3].
ii) This follows from Proposition 3.7} O
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3.9. Examples. 1) W(F,) ~Z,.
2) Let F, be the algebraic closure of F,,. Then W (F,) is isomorphic to the ring
of integers of Q).

4. The tilting equivalence
4.1. The ring A ¢(E). Let E be a perfectoid field.
DEFINITION. The ring
Aine(E) := W (0%).
is called the infinitesimal thickening of Op;.
Each element of Aj,¢(E) is an infinite vector
a=(ag,ay,az,...), anEOE:-,

which also can be written in the form

(=

a= Z [aﬁin]pn.

n=0
PROPOSITION 4.2 (Fontaine, Fargues—Fontaine). i) The map
9E : Ainf(E) — Og
given by

oo oo 0
0 [ Ylap" | = Yaip"
n=0 n=0
is a surjective ring homomorphism.

ii) ker(6g) is a principal ideal. An element i [an|p" € ker(6g) is a generator
n=0
of ker(0g) if and only if v, (ao) = ve(p).

PROOF. i) For any ring A set W,(A) = W(A)/I,(A). Directly from the defini-
tion of Witt vectors it follows that for any n > 0 the map

wy @ Wu(Og) = O,
n n—1
Wn(ao,al,...,an):ag —|—pa€ +_|_p”an
is a ring homomorphism. Consider the map
Nn : Wa(Op/pOg) — OE/]?”+10E,
u n—1 -
Tln(ao,al,...,an):ag +p2[11’ +-o o pay,

where a; denotes any lift of g; in Og. It’s easy to see that the definition of 1, doesn’t
depend on the choice of these lifts. Moreover, the diagram

Wn

W, (OE) O

| |

T
W,(Og /pOE) —— Og/p"' O
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commutes by the functoriality of the Witt vectors functor. This shows, that 7),, is a
ring homomorphism. Let 8¢, : W,11(0%) — Og/p""' Og denote the reduction of
6r modulo p"*+!.

Claim. From the definitions of our maps, it follows that O ,, coincides with the
composition

Wa(O}) 7= Wa(O) = Wa(Ox/pOr)  Op/p"' O
where the map pr is induced by the projection

0, — Og/pOr, (y0,¥1,---) = Yo.

The proof is left as an exercise (see below).

The claim shows that 6 ,, is a ring homomorphism for all n > 0. Therefore 6
is a ring homomorphism.

ii) We omit the proof. See [9, Proposition 2.4] and [8, Proposition 3.1.9].

The surjectivity of O follows from the surjectivity of the map

GE,O : 05)5 — OE/pOE.

Exercise 12. 1) Let y = (yo,y1,...) € Op. Show that
()™ =y Ym>1.
2) Show that
(@ ") =y",  vnxo0.
3) Let a = (ao,ai,...) € Aint(E), a; € Op,. Show that the map 1, opro ¢~"
sends a to
aéo) —i—pagl) 4. —|—p”a£,n).
4) Deduce the claim from 3).

Example. Let E = C, be the completion of an algebraic closure of Q,. Take a
compatible system p!/?" of p™th roots of p, i.e. such that (p'/?")? = p!/7""" and
set a,, = p'/7" mod p. Then a = (ay)m=0 € OEP and a¥) = p. By Proposition
the element § = [a] — p is a generator of ker(6c,).

4.3. The untilt. We continue to assume that E is a perfectoid field. Fix an
algebraic closure E of E and denote by Cg _its completion. By Proposition
C?s is algebraically closed and we denote by E” the separable closure of E” in C%.

Let Cp = E denote the p-adic completion of E”. By construction, Cp CCy.In
proposition below we will prove that C, C CJ.
We have the following picture

Cp ~2= C,

E~los
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Let § be a complete perfect intermediate field
E’CcFcC.
Fix a generator £ of ker(6f). Consider the diagram, where Og: := 6¢, (W (03)) :

O

0—— éA”f(E) AinffE) Of 0
0—— 5WIOS) — W(fg) Oft 0
0> EAni(Cr) — > Aur(Ce) > 0¢, — 0

We remark that
Oz: = W(05)/EW (O3).
Set §f = O3:[1/p] (field of fractions of Og:).

PROPOSITION 4.4. §* is a perfectoid field and (§*)’ = §.

PROOF. We omit the proof that F* is complete with the ring of integers Oy
If§ = Y [ay)p", then from Propositionii) we have ap € my,. Thus

n=0
& modp=ag € mp.
Then
0@1/}7031 ~ 05/61003:.
Since Oy is perfect, the Frobenius map in surjective on Oz /agOz Therefore ¢ :
Oj:/pOgz: — Og:/pOy: is surjective, and we proved that & is a perfectoid field.
The exercise below shows that (Sﬁ)b =3. O

Exercise 13. Let § be a perfect complete non-archimedean field of character-
istic p. Let & € mg. Then

@ 03/0603 ~ Og.
¢
The isomorphism is given by the maps
I.%HOE/OCOE — O, (xn)n20 = ngl}rlmﬁz)nv

Og — @03/0603, X+ ((pin(x) mod OCO;;)ngo,
[

This exercise shows that

@]OS;/pOSu = @03/0003 ~ 03,
9 9

i.e. that (§) = 3.

PROPOSITION 4.5. One has C}; = Cp.
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PROOF. Since E° C Ci; and C*}E is complete and algebraically closed, we have
C,, C C;. Set § := Cp,. By the claim, (§%)” = . Since § is complete and alge-
braically closed, §* is complete and algebraically closed by Proposition Since
&' c Cg, we have § C Cg. Therefore

§=@)=Cp
The proposition is proved. ([
Now we can prove the main result of this section.

THEOREM 4.6 (Scholze, Fargues—Fontaine). Let E be a perfectoid field of
characteristic 0. Then the following holds true:

i) Each finite extension of E is a perfectoid field.

ii) The tilt functor F — F° induces an equivalence between the categories of
finite extensions of E and E > respectively.

iii) The functor

o, F=(W(05)/EW(05)[1/p]
is a quasi inverse to the tilt functor.

PROOF. (See Fargues—Fontaine [8, Theorem 3.2.1].)

a) Let Aut(Cg/E) denote the group of continuous automorphisms of Cg/E.
The Galois group Gg = Gal(E/E) acts on E continuously. Therefore it acts on
Cg, and G = Aut(Cg/E). The same argument shows that G, = Aut(C,/E’),
where G, = Gal(Fb /E”) and Aut(Cp,/E”) denotes the group of continuous auto-
morphisms of Cp, /E”.

By Proposition C,. = Cp,. The action of Aut(Cg/E) on Oc, induces an
action of Gg on Oc,/pOc, and, therefore, on ObCE :=1imOc, /pOc- This pro-
vides a natural morphism of groups Aut(Cg/E) — Aut(C}/E’). Hence, we have
a chain of morphisms:

(33) Gg — Aut(Cy/E") = Aut(Cp, /E”) = G
Conversely, again by Proposition 4.5 we have an isomorphism
(34) W(OCEb)/éw(OCEb) = OCE‘

The action of Aut(Cp,/E’) on Cj, induces an action of Aut(C,/E’) on W(Oc,,)-
Since & € W(0y), the group Aut(Cp,/E”) acts trivially on &, and the above iso-
morphism defines a continuous action of Aut(Cg,/E’) on Oc,. This provides a
morphism Aut(Cp,/E”) — Aut(Cg/E). Therefore, we have a chain of morphisms

Gy = Aut(Cp /E’) — Aut(Cg/E) = Gp.
It’s easy to see that the maps and are inverse to each other. Therefore
Gg = Gp,
and by Galois theory we have a one-to-one correspondence

35 {ﬁnite extensions of E } > { finite extensions of E b}
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b) Using the isomorphism Gg ~ G, we can consider subgroups of G as
subgroups of G and vice-versa. Let §/E ’ be a finite extension. Since E” is perfect,
§ is also perfect. Then

G
(36) F = (W(05)/EW (05))[1/p)] C C™.
We omit the proof that the above inclusion is, in fact, an equality:
3 =C.

This shows that the Galois correspondence
37 {ﬁnite extensions of E b} — { finite extensions of E }

is given by the untilting § — §*. Moreover, by the claim F* is perfectoid and
(5 =3.

c) We will use the fact that CgF = F for any finite extension F/E. Below, we
give a proof only in the case E C Ckg, where K is a local field of characteristic 0. By
Theorem E =L, where L/K is deeply ramified. Write F = E|[a], where o is
a root of an irreducible polynomial with coefficients in E. From Krasner’s lemma
it follows that there exists an algebraic element 3 over L such that E[ot] = E[B].
Therefore F = M, where M = K|[B]. Since the Galois group Gy, = Gal(K /M) acts
continuously, we have Gy = Aut(Cg /1\71 ) = Gr. Since Cg = Ckg, we have

Cor=C"=M=F
(here we used Theorem [3.2] of Chapter 2!). o
d) Let F be a finite extension of E. Set § = (Eb)GF . Then Gz = Gr and F =
Cg“ by part ¢). From part b), we have
Cc =3,

By Proposition & is a perfectoid field. Therefore F = F is a perfectoid field,
and the assertion i) is proved.
e) We have

(39) P=(5) =5=(E)".

Formulas (38) shows that the inverse of the correspondence is given by F
F’. The theorem is proved. (]






CHAPTER 4

p-adic representations of local fields

1. p-adic representationss

1.1. Let E be a field equipped with a Hausdorff topology and let V be a
finite dimensional E-vector space. Each choice of a basis of V fixes topological
isomorphisms V ~ E" and Aut(V) ~ GL,(E) where n = dim; (E). Note that V is
equipped with the induced topology.

DEFINITION. A representation of a topological group G on'V is a continuous
homomorphism
p:G— Aut(V).
Fixing a basis of V we can view a representation of G as a continuous homomor-
phism G — GL,(E).

Let K be a field and let K be a separable closure of K. We denote by Gg
the absolute Galois group Gal(K/K) of K. Recall that Gk is equipped with the
inverse limit topology and therefore is a compact and totally disconnected topolog-
ical group.

1.2. Example. Equip E with the discrete topology. Let p : Gx — GL,(E)
be a representation of Gg. Then H := p~!'{1} is an open normal subgroup in
Gk. Since any open subgroup of Gk has a finite index, (G : H) < +oo. Set
L:=K". Then L/K is a finite extension, Gal(L/K) = Gg /H, and p factors through
Gal(L/K) :

Gk — GL,(E)

N

Gal(L/K).

DEFINITION. Let ¢ be a prime number.

i)An L-adic Galois representation is a representation of G on a finite dimen-
sional Qg-vector space.

ii) An Zy¢-adic representation is of Gg is a free Zy-module T of finite rank
equipped with a continuous homomorphism p : Gk — Autg, (T).

Sometimes it is convenient to consider representations with coefficients with a
finite extension £ of Q.
If p : Gk — Autg,(V) is an (-adic representation, we will write

g(x):=p(g)(x), Vg€ Gg,xeV.
59
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1.3. A morphism of ¢-adic representations is a linear map f : V| — V; such
that

f(gx)) =gf(x), VgeGk, xeVi.

We denote by Repg, (Gk) the category of p-adic representations of the absolute
Galois group of a field K. Below we assemble some basic properties of this cate-

gory.
1.3.1. Repg,(Gk) is an abelian category.
1.3.2.  Repg,(Gk) is equipped with the internal Hom:

HOI‘I]Q( (V],Vg).

Namely, Homg, (V;,V2) is the Q-vector space of all Q-linear maps f : V| — V»
equipped with the following linear action of Gg:

(8f)(x):==g(f(g"'(x)), Vg€Gx, xeW.

This induces a structure of an ¢-adic representation on Homg, (V1,V2).

1.3.3.  For each V, we have the dual representation V* = Homg, (V,Q/). The
action of Gg on V* is given by (gf)(x) = f(g~'(x)).

1.3.4. Repg,(Gk) is equipped with @. Namely, if V| and V; are ¢-adic repre-
sentations, the structure of an ¢-adic representation on the tensor product V; ®g V5
is given by

g(x1 ®x2) = g(x1) ® g(x2), g € Gg.

PROPOSITION 1.4. For any (-adic representation V, there exists a Zy-lattice
stable under the action of Gg.

REMARK 1.5. The proposition shows that the functor

Repy, (Gk) — Repg,(Gk),
T—T®z,Q

is essentially surjective.
PROOF. Let {ey,...,e,} be a basis of V and
T'=Ze;+-+Zye,
the associated lattice. The group
U = Aut, (T") ~ GL,(Z;) C GL,(Q/) ~ Autq, (V)
is open in Autq, (V). Therefore H := p~'(U) C G is open and (Gk : H) < .
Replacing H by rgWgH g~ !, where g runs the representatives of left cosets of H, one

m
can assume that A is normal in G. Write G = .Ulg,H and set

=
T= gl(T/) + - +gm(T/)-
Then T is a lattice in V, which is stable under the action of G. O

Below we give some examples of /-adic representations.
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1.5.1. Roots of unity. Let ¢ # char(K). The group Gk acts on the groups i
of £"-th roots of unity via the cyclotomic character y; : Gx — Z;

Set Z,(1) = @n Mo and Qg(1) =Zy(1) ®z, Qs. Then Qy(1) is a one dimensional
Q-vector space equipped with a continuous action of Gx. The homomorphism
Gk — Aut(Qy(1)) ~ Qj concides with x;.

1.5.2. Elliptic curves. Let E be an elliptic curve over a field K of character-
istic 0. The group A[¢"] of ¢"-torsion points of E(K) is a Galois module which is
isomorphic (not canonically) to (Z/£"Z)?? as an abstract group. The f-adic Tate
module of A is defined as the projective limit

T,(E) = imE[¢"],

with respect to the multiplication-by-¢ maps E[¢"*] — E[¢"]. This is a free Z-
module of rank d equipped with a continuous action of Gg. The associated vector
space V;(A) = T;(A) ®z, Q¢ gives rise to an f-adic representation

PEs : Gk — Aut(Vg(E».

Note that 7;(E) is a canonical G -lattice of V;(E). The reduction of 7;(E) modulo
¢ is isomorphic to E[/].

2. Admissible representations

2.1. General approach. p-adic representations arising in algebraic geometry
have very special properties and form some natural subcategories of Repr(GK).
As was first observed by Grothendieck, it should be possible to classify them in
terms of some objects of semi-linear algebra. We review Fontaine’s general ap-
proach to this problem.

In this section, K is a local field. As usual, we denote by K its separable closure
and set Gk = Gal(K/K).

Let B be a commutative Q,-algebra without zero divisors, equipped with a
Q,-linear action of G, namely

o g(bi+b2) =g(b1)+5(b2), g€ Gk, bi,breB;

o g(biby) = g(b1)g(b2), g€ Gk, bi,by€EB;

o g(Ab) =2Ag(D), g€Gg, A€Q, bcB.
Let C denote the field of fractions of B. the action of G extends to C by the formula
g(b1/by) = g(b1)/g(b2). Set E = B := {b € B | g(b) = b,Vg € Gk }.

DEFINITION. The algebra B is Gk-regular if it satisfies the following condi-
tions:

i) BGk — CGK,‘

i) Each non-zero b € B such that the line Q,b, is stable under the action of
Gk, is invertible in B.

If B is a field, these conditions are satisfied automatically.
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2.2. In the remainder of this section, we assume that B is Gg-regular. From
the condition ii), it follows that E is a field. For any p-adic representation V of G
we consider the E-module

Dg(V) = (V®q, B)% .
Consider the map
(V®q,B)®eB—V®q,B, (v®by) @by — vRbb;.
Since Dp(V) CV ®q, B, it induces a map
ap : Dp(V)®e B —V ®q, B.

PROPOSITION 2.3. i) The map o is injective for all V € Repr(GK).

ii) dimg Dp(V) < dimg, V.

PROOF. See [4, Theorem 5.2.1]. Set D¢ (V) = (V ®q, C)°¥. Since B = CYx,
D¢(V) is an E-vector space, and we have the following diagram with injective

vertical maps:

Dy(V) —2-v ®q, B

De(V) —5V @q, B.

Therefore it is sufficient to prove that o is injective. We prove it applying Artin’s
trick. Assume that ker( o) # 0 and choose a non-zero element

xX= Zdi@)ci € ker(oc)
i=1

1

of the shortest length m. It is clear that in this formula, d; € D¢(V) are linearly
independent. Moreover, since C is a field, one can assume that c,, = 1. Then for all
g € Gk

m—1
glx)—x= ; d;i @ (g(c;) —¢;) € ker(o).

This shows that g(x) = x for all g € Gk, and therefore that ¢; € C9¢ = E for all
1 < i< m. Thus x € D¢(V). From the definition of o, it follows that a¢(x) = x,
hence x = 0. O

DEFINITION. A p-adic representation V is called B-admissible if
PROPOSITION 2.4. IfV is admissible, then the map Qg is an isomorphism.

PROOF. See [11, Proposition 1.4.2]. Let v = {v;}? | and d = {d;}""_, be ar-
bitrary bases of V and Dp(V) respectively. Then v = Ad for some matrix A with
coefficients in B. The bases x = A\i_;d; € N"Dp(V) and y = Ai_; v; € A"V are re-
lated by x = det(A)y. Since A"V is one dimensional, Gk acts on it by g(y) =n(g)y,
where 1 : Gk — Z, is a character. Taking into account that x is stable under the
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action of the Galois group, we obtain that g(det(A)g(y) = det(A)y and therefore
that g(det(A)) = n(g) ' det(A). Hence the Q,-vector space generated by det(A)
is stable under the action of Gg. Hence det(A) € B is invertible, the matrix A is
invertible, and o is an isomorphism. (]

2.4.1. We denote by Repy(Gg) the category of B-admissible representations.
The following proposition summarizes some properties of this category.

PROPOSITION 2.5. The following holds true:
i) If in an exact sequence

0>V V-V >0

V is B-admissible, then V' and V"' are B-admissible.
ii) If V' and V" are B-admissible, then V' @q, V" and Hom(V',V") = Homgq, (V',V")
are B-admissible.
iii) V is B-admissible if and only if the dual representation V* is B-admissible,
and in that case Dg(V*) = Dg(V)*.
iv) The functor
Dp : Repy(Gg) — Vectg

to the category of finite dimensional E-vector spaces, is exact and faithful.

PROOF. See [11l Proposition 1.5.2]. i) Since V, V' and V" are Q,-vector
spaces, the sequence

!/ "

0=V ®q,B—=V®q,B—V ®q,B—0

is an exact sequence of Gg-modules. Passing to Galois invariants, we obtain that
0— (V' ®q, B)’" = (V®q, B)% — (V" ®q, B)¥
is exact. Tautologically, the last exact sequence reads:
0—Dg(V') = Dg(V) = Dg(V").

From the exact sequence we have that

dimg Dg(V) < dimg Dp(V’) +dimg Dp(V").
Moreover dimg Dp (V') < dimq, (V'), dimg Dp(V) < dimq, (V) and dimg Dp(V") <
dimg, (V") by Proposition If V is B-admissible, dimg Dp(V) = dimg, (V'), and
we obtain that

dime (V) = dime (V,) + dime (V”) < dimg Dpg (V’) + dimg DB(VN) .
Therefore dimg Dp(V') = dimq, (V'), dimg Dp(V") < dimg, (V"), and we proved
that V/ and V" are B-admissible. In addition, in that case the sequence
0— Dp(V') = Dp(V) = Dp(V") =0

is exact.
ii) Assume that V' and V" are B-admissible. Then we have isomorphisms

Dp(V') QB —V'®q, B, Dp(V")®rB— V" ®q,B.
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Taking the tensor product of these isomorphisms over B, we obtain

(Dp(V') @k B) @ (Dp(V") @£ B) =~ (V' ®q, B) @5 (V" ®q, B)-

Since
(Dp(V') ®g B) ®p (Dp(V") @£ B) ~ (Dp(V") @ Dp(V")) @£ B
and
(V'®q, B)®8 (V" ®q,B) ~ (V' ®q, V") ®q, B
we have

(DB (V/) XE DB(V”)) Qg B~ (V/ ®Qp V”) ®Qp B.

Taking Galois invariants in the both sides, we obtain

DB(V/) XRE DB(V”) ~ Dp (V/ ®QP V”).
In particular,

dimg Dpg (V, ®Qp V”) = dimg DB(V,) -dimg DB(VN)
= dimQP (V/) . dimQP (V”) = dime (VI ®Qp V”).

This shows that V'’ ®q, V" is B-admissible. In addition, in that case

DB(V/ ®Qp VN) ~ Dpg (V,) XE DB(V”).

iii) We prove that the dual V* of an admissible representation V is admissible.
This follows from the following isomorphisms:

Dg(V*) = (Homg, (V,Q,) ®q, B)CK ~ Homg, (V,B)° ~ Homp(V ®q, B, B)%¥
~ Hom(Dp(V) ®f B, B)¥ ~ Homg (D(V),B)° ~ Homg (Dg(V),E).

Therefore dimg Dp(V*) = dimg Homg (Dg(V), E) = dimg Dg(V') = dimq, (V). This
implies that V* is admissible. In addition, in that case

DB(V*) ~ HomE(DB(V),E).
Assume now that V' and V" are B-admissible, Since
Home(V', V")~ Homyg, v',Q,) ®q, v,

the admissibility of Homg, (V',V") follows from the admissibility of the dual rep-
resentation and the tensor product.
iv) Let Homg, (V',V") denote the vector space of morphisms V' — V.

Homg, (V',V") < Homg, (V' ®q, B,V" ®q, B)
~ HOIIIGK (DB(V/) ®E B,DB(V”) ®E B) s HOIIIE (DB(V/),DB(V//)).

Therefore the map Homg, (V',V") — Homg(Dg(V’),Dp(V")) is injective, and the
functor Dp is faithful. O
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2.5.1.  We can also work with the contravariant version of the functor Dp :
D3(V) = Homg, (V,B).
From definitions, it is clear that
D;(V) = Dg(V").
In particular, if V (and therefore V*) is admissible, then
D3 (V) =Dg(V)" := Homg (Dp(V),E).

The last isomorphism shows that the covariant and contravariant theories are equiv-
alent. For an admissible V, we have the canonical non-degenerate pairing

<7>:VXDE(V)_>B7 <V7f>:f(v)v

which can be seen as an abstract p-adic version of the canonical duality between
singular homology and de Rham cohomology of a complex variety.

2.6. Examples.
2.6.1. B=K, where K is of characteristic 0. One has BYx = K. The following
proposition describes K-admissible representations.

PROPOSITION 2.7. p : Gk — Autq,V is K-admissible if and only if Im(p) is
finite.

PROOF. a) Assume that Im(p) is finite. The group Gk acts semi-linearly on
E@QP \
gla®v) =gla)®g(v), g€ Gk,
Since Im(p) is finite, for each x € E@QP V there exists a subgroup H C Gk of

finite index such that H acts trivially on x. This implies that Gk acts on f@QP Vv
continuously (here E@QP V is equipped with the discrete topology !).

THEOREM 2.8 (Hilbert’s theorem 90). Let W be a finite dimensional K-vector
space of dimension n equipped with a semilinear action of Gk, namely

o g(wi+wz)=g(wi)+g(wa), g€ Gk, wiL,meW;
o g(Aw)=g(A)g(w), g€Gk, AEK, weW.
Assume that this action is continuous in the discrete topology on W. Then Wk :=
{weW|g(w)=wVg € Gk} is an n-dimensional K-vector space and the natural
map
Kox WO W, AQw— Aw

is an isomorphism.
PROOF. The proof is omitted. See, for example, [15, Chapter 2, §2]. O
By Hilbert’s theorem 90, one has:
dimg D(V) := dimg (K ®q, V)* = dimq, V.
Therefore V is K-admissible.
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b) Assume that V is K-admissible. Fix a basis {v;}_; of V and a basis {d;}}_,
of Dp(V) = (K®q, V). Then:

n
d;i = Zaij®vj, a,'jEF, 1<i<gn.
j=1
There exists a finite extension L/K such that G, acts trivially on all a;;. Since
G acts trivially on {d;}?_,, and A = (a;;)1<i j<n is invertible, G, acts trivially on
{v;}j-,. Therefore G acts trivially on V, and Im(p) is finite. O

2.8.1. B = Ckg, where K is of characteristic 0. One has CSr =K by Theo-
rem[4.5] Chapter II.

THEOREM 2.9 (Sen). p is Cg-admissible if and only if p(Ix) is finite.

Example. Take V = Q,(1). Then

Dc, (Qy(1)) = (Cx ®q, Qp(1))% = (Cx(xx))** =0
again by Theorem Chapter II. Therefore Q,(1) is not Cx-admissible.

3. Hodge-Tate representations

3.1. We maintain notation and conventions of Section 2.1l The notion of a
Hodge-Tate representation was introduced in Tate’s paper [?]. We use the formal-
ism of admissible representations. Let K be a local field of characteristic 0. Let

BHT = C[([l,l_l}

denote the ring of polynomials in the variable ¢ with integer exponents and coeffi-
cients in Cgx. We equip Byt with the action of G given by

g(Yar') =Y gla) xk(9)t', g€ Gk,
where g denotes the cyclotomic character. Therefore Gk acts naturally on Ckg,
and ¢ can be viewed as the ”p-adic 27i” — the p-adic period of the multiplicative
group G,,. For any p-adic representation V of Gk, we set:

Dyr(V) = (V ®q, Bur) %
PROPOSITION 3.2. The ring Byt is Gg-regular and Bg’% =K.

PROOF. a) The field of fractions Fr(Byr) of Byt is isomorphic to the field of
rational functions Ck (¢). Embedding it in the field of Laurent power series Cx (7)),
we have:

Bgﬁi C FI‘(BHT)GK C CK((I))GK.
From Theorem Chapter II, it follows that (Cg#')°k = K if i =0, and (Cgt') % =
0 otherwise. Hence BSX = Ck((1))%% = K. Therefore

FI‘(BHT)GK = Bﬁ% =K.

b) Let b € Byr \ {0}. Assume that Qb is stable under the action of Gg. This
means that

(39) g(b)=n(g)b, VgeGk
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for some character ) : Gx — Z;‘,. Werite b in the form
b= Zaiti.
i

We will prove by contradiction that all, except one monomials in this sum are zero.
From formula (39)), if follows that for all i one has:

g(a)xk(g) =am(g), g€ Gk.

Assume that ¢; and a; are both non-zero for some i # j. Then

g(a,-))d((g) _ g(“j)%lj%(g)7 Vg € Gk.
a; aj

Setc =a;/aj and m =i— j # 0. Then c is a non-zero element of Cg such that

glc)xg(g)=c,  Vge€Gk.

This is in contradiction with the fact that Cx(y%)%% = 0 if m # 0.
Therefore b = a;¢* for some i € Z and a; = 0. This implies that b is invertible
in Byt. The proposition is proved. (]

3.2.1. A graded vector space over K is a K-vector space D equipped with a
decomposition into a direct sum of subspaces D', i € Z:

G=EpD'.

icZ
We will often write gr'(D) := D' and G = @ gr’(D). A morphism of graded spaces
icZ
f : D' — D" is a K-linear map preserving the grading :
f(gr' (D)) C gr'(D"), VieZ.

Let Gradg denote the category of finite-dimensional graded K-vector spaces. We
remark that Dy (V) has a natural structure of a graded K-vector space:

Dyur(V) = ,-?ZgriDHT(V), gr'Dur(V) = (V ®q, Ckt i)GK~
Therefore we have a functor
Dyr : Repr(GK) — Gradg.
Note that this functor is clearly left exact but not right exact.

DEFINITION. A p-adic representation V is a Hodge—Tate representation if it
is Byr-admissible.

We denote by Repyr(Gk) the category of Hodge—Tate representations. From
the general formalism of B-admissible representations, it follows that the restriction
of Dyr on Repyr(Gk) is exact and faithful.
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3.3. Set:

vl = {xeV®q,Ck|glx)=xxk(8)'x, Vg€ Gk}, i€Z,

v{i} =v @k Ck.
It is clear that

v~ gr Dyt (V), Xt
is an isomorphism of K-vector spaces. Therefore
VO ~ ot 'Dyr(V) @k K1, x & (@t
1s an _isomorphism of Gg-modules (G acts on the both sides as the multiplication
by xx). Set:
v{i} =V @k Ck.
From the above isomorphism, it follows that
V{i} ~ gr Dur(V)®x Cxt', icZ.

Set:

gr’ (Dur(V) @k Bur) = €P (gr Dur(V) @k Ckt') C Dur(V) @k Bur.
i€Z
We have a commutative diagram

o V{i} V ®q, Ck

gr’ (Dyur(V) ®k Bur) ——=V ®q, Ck

Dyt (V) ®k Bur My ®q, Bur.
The upper map in this diagram
(40) igazv{i} —V®q,Ck

is induced by the maps:

V{i} = V(i) Rk Cx —V ®Qp Ck,

(ka®ak> QA ka®akl,
k k

where Yv, ®ay € V(i), A € Ck.
k

The following proposition shows that our definition of a Hodge—Tate represen-
tation coincides with Tate’s original definition:

PROPOSITION 3.4. i) For any representation V, the map ({#0) is injective.
ii) V is a Hodge—Tate if and only if is an isomorphism.
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PROOF. i) By Proposition for any p-adic representation V, the map
oyr - DHT(V) Qg Bar —V ®Q[7 Bur
is injective. The restriction of agr on the homogeneous subspaces of degree 0
coincides with the map (0). Therefore ({@0) is injective.
ii) By Proposition[2.4] V is a Hodge-Tate if and only if ogyr is an isomorphism.
We remark that o is an isomorphism if and only if the map (0] is. Now ii)
follows from the above diagram (exercise). This proves the proposition. (]

DEFINITION. LetV be a Hodge—Tate representation. The isomorphism
V®q, Ck ~ & V{i}
i€Z

is called the Hodge—Tate decomposition of V. If V{i} # 0, one says that the integer
i is a Hodge—Tate weight of V, and that m; = dimc, V{i} is the multiplicity of i.

We will use the standard notation Cg (i) = Ck(x%) for the cyclotomic twists
of Cg. Then V{i} = Ck(i)"™ as a Galois module. The Hodge-Tate decomposition
of V can be written in the following form:

% ®Qp Ck = iEBZCK(i)mi.

4. De Rham representations

4.1. The field B4r. In this section, we define Fontaine’s field of p-adic periods
Bgr. For proofs and more detail, we refer the reader to [9]] and [10].

Let K be a local field of characteristic 0. Recall that the ring of integers of the
tilt Cg( of Cg was defined as the projective limit

O%K = @OCK/p 0CK? (p(x) =x’
[

(see Section[2)). By Propositions|2.1|and 2.2, Chapter III, 0’ is a complete perfect
y Frop p Cx p p

valuation ring of characteristic p with residue field k. The field Cg( is a complete
algebraically closed field of characteristic p.
4.1.1. We will denote by Ajy¢ the ring of Witt vectors

Aing = W(Og, ).

Recall that A, is equipped with the surjective ring homomorphism 0 : Ajyr — Oc,
(see Proposition4.2] Chapter III, where it is denoted by 6f). The kernel of 6 is the

principal ideal generated by any element & = ¥ [a,]p" € ker(0) such that a; is a

n=0
unit in O%K. A useful choice is:

- & =[p)—p, where = (p""") 2.
Exercise 14. Let € = ({,),>0 be a compatible system of primitive p”th roots
of unity, i.e. {; =1 and le = {1 We consider € as an element of ObCK iden-
—1

p=l_
tifying & with ({,» mod p),=0. Show that @ = ¥, [€]"/? € Ay is a generator of
i=0
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ker(6).

Let Ky denote the maximal unramified subextension of K. Then Ok, =W (kg ) C
Ains. Let Ajnr x = Ajnt ®ox, K. Then 0 extends by linearity to a sujective homomor-
phism

Ok : Ainf7K—>CK, 9](()6@7(,):19()(), XGAianLGK.
More explicitly, each element of K can be written in the form

Z [an]ﬂ:[’a ap € ka
n>>>—oo

where [a,,] denotes the Teichmiiller lift of a,, in Ox, = W (kx) C Ainr and the number
of terms of negative degree in finite (see Corollary [2.6). In particular, p can be
written in this form. Therefore every element of Ajn g = Ayt ®ox, K can be written
in the form

Y g, x, € O,
n>>—oo

Then
O ( y [x,,]n;;> = Y
n>>—oo n>—oo
where x,(f)) are defined in Chapter III.
Set Jx := ker(6x).

PROPOSITION 4.2. The kernel Jx is a principal ideal. An element

&= Z [x| g € ker(Ok)

n>>—oo

generates Jy if and only if v¢, (x0) = vk (7k). In particular, let Tx = (ﬂ,i/pn)@o
be a compatible system of p"th roots of mk, viewed as an element of ObCK. Then
[Tx] — 7k is a generator of Jk.

PROOF. See [9, Proposition 2.4]. O

We denote by B(J{R_’ x the completion of Ajuf x for the Jg-adic topology, namely

BIR,K = 1<i£1Ainf,-1</J1’§-
n
From the definition of O, it follows easily that the map O : Aj;rx — Ck is a
morphism of Galois modules, namely
g(bk(x)) = 6k(g(x)), g€ Gk, xE€Apnik.

This implies that 6x(g(x)) = 0 if Ox(x) = 0, i.e. that Jx is stable under the action
of Gg. Therefore the action of Gk extends to B(TR x> and we can consider BIR’ x as
a Gg-module. '
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PROPOSITION 4.3. i) B:{R_ x is a complete discrete valuation ring with maximal
ideal /

MR K = JKB:{K X
The residue field B:fR’ I% /mgr g is isomorphic to Ck as a Galois module.
ii) If L/K is a finite extension, then the natural map BHL& K= BIK 1, IS an iso-
morphism. In particular, BIR‘ x depends only on the algebraic closure K of K.

We use the following well-known result:

LEMMA 4.4. Let A be a commutative domain and m a maximal principal ideal
of A such that le" = {0}. Set A = &nﬂA/m”. Then
n=

i) The natural map 1 : A —Ais injective.
ii) A is a complete discrete valuation ring with residue field A /m.

PROOF. i) The map 1t is given by t(a) = (ay)n>1, where a, = a mod m”.
Therefore the injectivity of 1 follows from the assumption le" ={0}.
nz

R ii) Let & be a generator of m. Using the map t, we identify A with a subring of
A.

a) We first show that 52 is the unique maximal ideal of A. For this, it is suf-
ficient to prove that any a € A\ £A is invertible. Let a = (ay),>1 € A, where
a, € A/m". By, induction, we will construct b = (b,),>1 such that a,b, = 1 in
A/m". This will prove that ab = 1. Since a ¢ A, a; € A/m is nonzero, and there
exists by € A/m such that ajb; = 1. (A/m is a field.) Now assume that b, is
constructed. Let denote by a, € A, En € A and a,.1 € A any lifts of a,, b, and
an+1. Note that a,+1 = a, (mod m”). We want to prove that there exists Zn—i—l = Zn
(mod m") such that

Gni1bpsr =1 (mod m™ ™),

Writing b, = 1 + E™, Guyy = G + E"u and by = by, + E™x, we can write this
congruence in the form

anx =v—ub, (mod m).

Since @, ¢ m, this congruence has a solution x and setting b, | = b,y; mod m" ™,
we obtain that a,,1b,, .1 = 1. This shows that 52 is the unique maximal ideal of A.

b) Since A is the completion of A with respect to the topology induced by the
ideal m (by definition,this means that (m”),~; form a neighborhood base in 0), the
ring Alis complete.

¢) We prove that A is a discrete valuation ring. Let a = (a,),>1 be a nonzero
element of A. Let no be the biggest n such that a, = 0 in A/m". Then for all n > ny
one has a, = "¢, with ¢, ¢ m, and setting ¢ = (¢, )n>1, one has a = "¢ where
¢ € A* is invertible. Therefore A is a DVR. U

PROOF OF PROPOSITION[4.3] 1) From the above lemma, it follows immedi-
ately that BIR x 1s adiscrete valuation ring with the maximal ideal mgr x = <§B;’R e
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where & is any generator of Jg. Moreover,
BIR,K/de-,K = Ainny/ker(QK) ~ C[(.

ii) Let L/K be a finite extension. If L/K is unramified, then from construction it
is clear that Ajpr ¢ = Ajyt,z, and B:er, k= BIK 1.- Therefore we can assume that L /K is
totally ramified. Since L/K is a free K-vector space, the inclusion K C L, induces
an inclusion Ajnrx C Ainfz = Ainf.x @k L. Moreover since Jg = Jp N Ajr x, We
have inclusions Ajys x/J }< C Ainer/J i Passing to projective limits, we obtain that
B(J{R, x C B:{R 1.» and we want to prove that this inclusion is an equality. If necessary,
we can replace L by a bigger extension and assume that L/K is a finite Galois

extension of degree e with the Galois group G. Let f(X) = [] (X —g(m)) € Ok [X]
geG
be the minimal polynomial of 77 over K (this is an Eisenstein polynomial). Then

f([m]) = TT(7) — g(aL)) € Aintk € Ainek-
geG

Since 77| — 7. divides f([7z]), we obtain that f([7.]) € Jx. Moreover, if we write
f([mL]) in the form
Z [Xn]ﬂ';é,

n>—oo
then xo = 7§ . Therefore

ch< (X()) = evc;((er) = VCbL((ﬁ'L) = VL(TCL) = VK(ﬂ'K).

By Proposition this implies that f([7;]) is a generator of Jk. On the other
hand, for any g € G\ {e}, we have 0. ([m.] — g(n)) = m — g(m) # 0. Therefore
f([m]) ¢ J? and we conclude that the extension of complete discrete valuation
rings B(’;R_ x C BIR_ ; 1s unramified. Moreover, the residue fields of BIR_ x and B(‘f& I3
coincide. Hence By, x = By ;-

U

The above proposition shows that BIR x depends only on the residual charac-
teristic of the local field K. By this reason, we will omit K from notation and write
+ ._pt
Bir = Bgr ¢

DEFINITION. The field of p-adic periods Bgr is defined to be the field of frac-
tions of B:{R.

The field Byr is equipped with the filtration (B );cz provided by the discrete
valuation on Bggr, namely

BfiR = éiBgR’
where & is any uniformizer of Bj,. Set gr'(Bar) = Bi, /Bi:! for all i € Z and
gl’. (BdR> = .@ gri(BdR).
icZ
THEOREM 4.5. i) The series

r =log([e)) = ¥ (~1)
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converges in the topology induced by the discrete valuation on B;R x 1o a uni-
formizer of BSFR, x> and the Galois group acts on t as follows:

g(t) = xx(g)t, g € Gg.
(Here xx denotes the cyclotomic character.)
ii) Big = 1'Bj; and gr'(Bar) ~ Ck (xk) as Ggx-modules.
iii) gr*(Bar ) ~ Bur as Gk-algebras.
iv) There exists a natural Gg-equivariant embedding of K in Bar, and

BSY =K.

p=1
PROOF. i) [e] —1 = ([€]"/? —1)®, where @ =¥ [€]//? € Ajys. Since 6([e]'/7 —
i=0
1) = {, —1 and o is a generator of ker(6) by Exercise 14, we obtain that [e] — 1

is a uniformizer of B(‘fR’Qp. Since t = [¢] — 1 (mod m?iR.Q,,)’ we conclude that ¢ is
a uniformizer. Moreover, for any g € G,

8(1) = gl1ogle]) = log(g([e])) = log ([e]*) = xx(g) log([e]) = xk (g)r-

ii) Since ¢ is a uniformizer of Byr, we can write BfiR = t"B(J{R. Hence gr'(Bgr) =
1'(Bjg/B) ~ Ckt'. From part i) it follows that Ck#' is isomorphic to Cx(xk) as
Gg-module.

iii) Immediately follows from ii) and the definition of Byr.

iv) Since for any L/K, Bgr = Bgr z contains L, we have a natural inclusion
K C Bgr. Then is clear that

K =K% c Bk
Conversely, assume that x € ng . Let i € Z be the unique integer such that x € BQR\
Bi:'. Let X € gr'(Bgr) denote the class of x modulo Bi:'. Then X € Cx(xk)Cx.
Since Cx (%)% = 0 for m # 0, we obtain that i = 0. Taking Galois invariants in
the exact sequence
0— Blr = Bjz — Cx — 0,

we obtain that (Blg)%* = 0 and (B;)% C C$¥ = K by Tate’s theorem. Hence
x € K, and we proved that Bgﬁ‘ CK. O

4.6. Filtered vector spaces. A filtered vector space over K is a finite dimen-
sional K-vector space A equipped with an exhaustive separated decreasing filtration
by K-subspaces (Fil'A);cz:

L OFRITAD FIADFTIAS | NFil'A= {0}, UFil'A=A.
icZ icZ

A morphism of filtered spaces is a linear map f : A" — A” which is compatible
with filtrations i.e. such that f(Fil'A’) = Fil'A” for all i € Z. If A’ and A" are two
filtered spaces, one defines the filtered space A’ @k A” as the tensor product of A’
and A” equipped with the filtration

Flll (A/ ®K A”) — Z Fili/Al ®K Fili”A”.

i+i"=i
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The one-dimensional vector space 1x = K with the filtration
Filg— K %f z <0
0 ifi>0
is a unit object with respect to the tensor product defined above, namely
ARl ~A

for any filtered module A.
One defines the filtered space Homg (A, A”) as the vector space of K-linear
maps f : A" — A” equipped with the filtration

Fil' (Homg (A',A")) =
{f € Homg (A',A") | f(FiVA") C FilV'/(A”) forall j € Z}.

In particular we consider the dual space A* = Homg (A, 1k) as a filtered vector
space.
We denote by MFg the category of filtered vector spaces over K.

4.7. The functor Dgg. Let V be a p-adic representation of Gg. For each p-
adic representation V of Gk define:

Dgr(V) :=(V ®qQ, BdR)GK.

Since Bg]f = K, from Propositionit follows that Dgr (V) is a K-vector space of
dimension dimg Dgr (V') < dimg, (V). Moreover, it is equipped with the decreasing
filtration defined by

Fil'Dgr (V) = (V ©q, Fil'Bar )%
Therefore the mapping which assigns Dgg (V) to each V defines a functor
Dar : Repq, (Gk) — MFk.

DEFINITION. A p-adic representation V is a de Rham representation if it Bgr-
admissible, i.e. if dimgDgr(V) = dimq, (V). We denote by Repyg(Gk) the cate-
gory of de Rham representations.

PROPOSITION 4.8. Every de Rham representation V is Hodge-Tate. In that

case
Dyt (V) ~ gr*Dgr (V).
PROOF. Tensoring the exact sequence
0— B! = Bz — Cxt' >0
with V, we obtain an exact sequence
0— B ®q,V = Bir®q,V — Ckt' ®q,V — 0.

Taking Galois invariants, we obtain an exact sequence

0 — Fil'"'Dgr (V) — Fil'Dar (V) — (Ckt' ®q, V)¥.
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Therefore for each i we have an injection gr'Dgr(V) < (Ckt’ ®q, V)% Since
Dur(V) = & (Ckt' ®q, V)°F, this implies that
ieZ
gI'.DdR(V) — DHT(V>
Assume that V is de Rham. Then
dime (V) == dlmK DdR(V) = dll’nK gI‘.DdR(V) < dlmK DHT(V) < dime (V)

Therefore dimg Dyt (V) = dimg, (V) and gr*Dgr (V) = Dur(V). The proposition
is proved. ([l

5. Crystalline representations

5.1. The ring Ay s[(§/p]]. Recall that Ajyr = W(ObCK). Fix a generator & of
ker(0 : Ainf — Oc, ) and consider the set

1

Amf[(é/p]] = { moai(é/p)i ’ a; € Ainf} C B?I_R

(We remark that Y a;(&/p) converges in the topology induced by the discrete
i=0

valuation on B .) To simplify notation, set S := Aiu¢[(§/p]]. Note that S doesn’
depend on the choice of the generator . The map 0 extends to S by the formula

0 (Z a,(&/p)’) = 0(ap). Note that this map is just the composition S C B, —
i=0
B /Blr ~ Ck.

LEMMA 5.2. The ring S is separated and complete for the p-adic topology (i.e.
for the topology induced by the ideal pS.)

PROOF. a) To prove that S is separated, we need to check that 51 p"S ={0}.

Assume that x € ﬂl p"S. Then for each n > 1, we can write x in the form
n—=

X = pnzam’(é/p)ia i € Ajnf.
i=0

Therefore 0(x) = p"0(a,o) € p"O¢, for each n, and we obtain that vk (0 (x)) —
+o0 when n — +o0. Hence x € ker(0), and we can write x in the form x = y(&/p)
for some y € S. Applying the same argument to y, we obtain that y € ker(0) and so
on. By induction, we prove that x is divisible by £ for any m, and therefore x = 0.

b) We prove that S is complete for the p-adic topology. It is sufficient to show
that the series Y x, converges if x,, € p"S. Let

n=0

Xo=p"Y ani(E/p)  ani € Ain.
i=0
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Then it’s easy to see that
an = anZam'(g/p)i Z (Zp am) é/p
n=0 n=0 =0

Here each sum Z p"ay,; converges in the p-adic topology of A, by Theorem
0

ic). ]

5.3. The ring B.;s. Let Agm denote the A;,s-submodule of B r generated by
the elements " /n!, n > 1:

R
Ay = Aint | 2 [n>1].

Below, we record some properties of A
1) A2,

cris

cris”

is a ring. Indeed

f_(nim) o

n! m! n ) (n+m)’

€ Z, and each element of Agm

Z an , Qp € Ajpt.

neZz

n-‘rm)

where ( can be written as a finite sum

2) The Frobenius operator ¢ on Aj,s extends to Agm

Indeed, since & € Ay, the action of @ on 5 is well defined. Define

(Zan ) Y p(a) 2

nez neZz

We need to show that the right hand side of this formula belongs to A?
First note that (&) = £ + pn for some 1) € Ajys. Hence

o(E) =L (5 o) = (2.

and we are done.

cris”

Since A0 ¢ 1s a ring, this expression belongs to Acm,
3) Agm 1s equlpped with a natural action of Gg. It’s clear because ker(60) is

stable under the action of Gg.
We denote by A the p-adic completion of Al :

cris®

0
cr1s = L Acrls/pnAcrls

Since Agm C S, where S is p-adically complete, we have natural inclusions A5 C
SCB ar- In particular, A5 can be viewed as a subring of B(J{R. The action of ¢ and

G extends by continuity to As. Since
(el =1y

([8]_1)’1 :(I’l—l)

n n!
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where (n— 1)! — 0 when n — o0 in the p-adic topology, we obtain that the series

= tog((e)) = ¥ (—1y LS

n=1 n

converges p-adically in A.ys. In addition

o(t) =log(p([e])) = log([e]”) = plog([e]) = pt.
= Acis ®z, Qp and Beis = B [1/t]. The ring By is

cris

DEFINITION. Set BT

cris

called the ring of crystalline periods.

It is easy to see that the rings B;is and B, are stable under the action of Gg.

The actions of Gk and ¢ on B.;i; commute to each other. The inclusion B.is C Bgr
induces a filtration on B which we denote by Fil'B.,is. Note that B;is - FilOBcriS
but the latter space is much bigger. Also the action of ¢ on B is not compatible
with filtration i.e. (p(Filchris) 4 Fil'B.i;. We summarize some properties of B

in the following proposition.

PROPOSITION 5.4. Let Ky denote the maximal unramified subextension of K.
i) The map
K @k, Beris — Bar, A®x— Ax
is injective.
ii) BSX = Kp.
iii) (Fundamental exact sequence). The sequence

=1 pr
41) 0—Q,—BY " = Bgr/Bj —0,

(P:

1 .
ais < Bdr with the canon-

where the map pr is the composition of the inclusion B
ical projection B — Bar/ BCTR, is exact.

iv) Beyis is Gg-regular.

PROOF. 1) See [10, Section 4].
i1) We deduce ii) from 1). Since Ky C B;is, the inclusion Ky C BCGrfs is clear. On
the other hand, from i) we have

K @k, BSK C BSK =K,

cris

and an easy dimension argument shows that BcGrfs = Kp.
1ii) See [10, Section 5.3.7] and [3]].
iv) See [11, Proposition 5.1.2]. O

5.5. Filtered ¢-modules. We denote by ¢ the absolute Frobenius on K. Namely
o is induced by the p-power map on the residue field kg of K.

A ¢-module over Kj is a finite dimensional Ky-vector space D equipped with
a o-semi-linear bijective map ¢ : D — D, namely

o(di+dy) =o(d1)+o(d2), di,d, €D,
o(Ad) = (M)9(d), A EKydeD.
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If D' and D" are two @-modules, we define a structure of ¢-module on D' ®k,
D’ setting

o(d' @d")=o(d)2e(d").
A morphism of @-modules is a Ky-linear map f : D' — D" such that f(¢(d')) =
o(f(d")) foralld € D'.

DEFINITION. i) A filtered @-module over K is a ¢-module D over Ky together
with a structure of filtered K-vector space on Dg = D @k, K.

i) A morphism of filtered @-modules is a morphism of @-modules f : D' — D"
such that the induced K-linear map

fx :Dx =Dk,  fx(Aed)=Axf(d), AeK,deD
is a morphism of filtered K-vector spaces.

If D’ and D" are filtered @-modules, then D’ ®g, D" has a natural structure of
a ¢-module.
We denote by MFI(Q the category of filtered K-modules.

5.6. The functor D.;s. For any p-adic representation V of G define:
Dcris(‘/) = (V ®Qp Bcris)GK
Then Dy;i5(V') is a Ko-vector space of dimension dimg, De;is(V) < dimg, (V). The
map @(v®b) =v® @(b) on Vytimesq,Besis is injective and induces a o-semilinear
injective map @ on Di5(V). By dimension argument, @ is bijective. Moreover, the
inclusion K ®g, Beris < Bgr induces an injective K-linear map
Desis (V) := K @k, Deris (V) = (K @k, Beris @ V)% — (Bgr @ V) = Dgr(V).
Therefore D5 (V )k is equipped with the induced filtration
Fil'Desis (V) = Deris (V) x NFil' Dggr (V).

To sum up, D¢is(V') has a natural structure of filtered ¢-module, and we have a
functor

De:is : Repg, (Gg) — MF?.
DEFINITION. A p-adic representation is called crystalline if it is B.is-admissible,

namely l.fdimKo Deis (V) = dime (V) :

PROPOSITION 5.7. i) Every crystalline representation V is de Rham. In that
case

DdR(V) ~ Dcris (V)K~
ii) Assume that V is crystalline. Then we have an isomorphism of Gg-modules

V>~ (Dcris (V) ®Ko Bcris)(p:l N Fllo (DdR(V) QK BdR)a

where the intersection is taken in Dgr (V) @ g Bar. In particular, V can be recovered

Sfrom Dyis (V).
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PROOF. i) The inclusion D¢yis(V)x < Dgr(V) implies that
dimKO Dcris (V) = dll’nK Dcris (V)K < DdR(V) < dimQP(V).
If V is crystalline, then dimg, Dyis(V) = dimg, (V), and the inequality in the above
formula is an equality, and V is de Rham.
ii) The fundamental exact sequence (1)) induces an exact sequence
1oV I Bar@V)/ (B @ V) — 0.

cris

Therefore V = (B(p:1 ®V)N(Bjr ®V), where the intersection is taken in Bgr ®q,

cris
V. From the isomorphisms Cris : Deris (V') @k, Beris 2 Beris ®q,V and OgR : Dar (V) ®k
Bir >~ Bar ®q, V, we have
B(P:1 (%9 V ~ (Dcris (V) ®K0 Bcris)q):1a BIR ® Ve~ FllO(DdR(V) ®K BdR)-

cris

0—-V—>B

This implies part ii). U
Example. Let V = Q),(m). Fix abasis v, of V. Thend,, =t ™" ®@v,, € Q,(m) ®q,
B, is invariant under the action of Gk, and D¢yis(Q,,(m)) = Kod,,. We have
@(dn) = @(t) " Qv =p~"dp.
In addition, Dgr (Qp(m)) = Kd,,, and
{DdR(Qp(m)), ifi < —m,

Fil Dar(Qp(m)) = § if i > —m
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