UNIVERSITÉ DE BORDEAUX

Homological Algebra

Exam, December 13th 2022. Duration 3h

Hard copies of the lecture notes are allowed.

You can use all results explicitly stated in the chapters 1-3 of the course.

Exercise 1. Let $\mathscr{F} : \mathscr{A} \to \mathscr{B}$ and $\mathscr{G} : \mathscr{B} \to \mathscr{A}$ be two adjoint functors between categories of modules (with \mathscr{F} left adjoint and \mathscr{G} right adjoint). Show that the following properties are equivalent:

1) \mathscr{G} is exact.

2) For each projective $P \in \text{Obj}(\mathcal{A})$, the object $\mathscr{F}(P)$ is projective in \mathcal{B} .

Solution. 1) \implies 2). Consider the diagram

$$\mathcal{F}(P)$$

$$\downarrow^{\pi}$$

$$Y \xrightarrow{g} Z \longrightarrow 0$$

Let X = ker(g). By the definition of adjoint functors, we have a commutative diagram

The vertical arrows are isomorphisms. Since *P* is projective, the functor $\operatorname{Hom}_{\mathcal{R}}(P, -)$ is exact. Since the functor \mathscr{G} is exact, this implies that the bottom row is exact. Therefore the map $\operatorname{Hom}_{\mathcal{B}}(\mathscr{F}(P), Y) \to \operatorname{Hom}_{\mathcal{B}}(\mathscr{F}(P), Z)$ is surjective. This shows that $\mathscr{F}(P)$ is projective.

2) \implies 1). Let

$$0 \to X \to Y \to Z \to 0$$

be an exact sequence in \mathcal{B} . By a general property of adjoint functors, \mathcal{G} is left exact. For any projective *P*, consider the diagram

Since $\mathscr{F}(P)$ is projective, the upper row is exact. Therefore the bottom row is also exact, i.e. for any projective *P*, the sequence

$$0 \to \operatorname{Hom}_{\mathcal{A}}(P, \mathscr{G}(X)) \to \operatorname{Hom}_{\mathcal{A}}(P, \mathscr{G}(Y)) \to \operatorname{Hom}_{\mathcal{A}}(P, \mathscr{G}(Z)) \to 0$$

is exact. If \mathcal{A} is the category of modules over a ring A, take P = A. Then P is free, hence projective. For any A-modume M, one has $\operatorname{Hom}_{A-\operatorname{Mod}}(A, M) = M$. Therefore the above exact sequence reads

$$0 \to \mathscr{G}(X) \to \mathscr{G}(Y) \to \mathscr{G}(Z) \to 0,$$

and we have proved the exacteness of \mathcal{G} .

Exercise 2. Let $\mathscr{F} : \mathscr{A} \to \mathscr{B}$ be a covariant functor. Assume that \mathscr{F} is right exact and \mathscr{A} has enough projectives, and denote by $L_n \mathscr{F}$ the derived functors. Show that if for some $n \ge 1$ the functor $L_n \mathscr{F}$ is right exact, then $L_m \mathscr{F} = 0$ for all $m \ge n$.

Solution. Any object Z of \mathcal{A} can be inserted in an exact sequence

$$0 \to X \to P \to Z \to 0$$

where *P* is projective. Assume that $L_n \mathscr{F}$ is right exact for some $n \ge 1$. Then

$$L_n \mathscr{F}(X) \to L_n \mathscr{F}(P) \to L_n \mathscr{F}(Z) \to 0.$$

Since *P* is projective, $L_n \mathscr{F}(P) = 0$, and we obtain that $L_n \mathscr{F}(Z) = 0$. Therefore $L_n \mathscr{F} = 0$. Assume now that $L_m \mathscr{F} = 0$ for some $m \ge n$. We have a long exact sequence

$$L_{m+1}\mathscr{F}(X) \to L_{m+1}\mathscr{F}(P) \to L_{m+1}\mathscr{F}(Z) \to L_m\mathscr{F}(X).$$

Here $L_m \mathscr{F}(X)$ by assumption, and mimiking the previous argument, we conclude that $L_{m+1} \mathscr{F}(Z) = 0$.

By induction, $L_m \mathscr{F} = 0$ for all $m \ge n$.

Exercise 3. 1) Let $A = \mathbb{Z}[X]/(X^2)$

1a) Give a simple projective resolution of \mathbf{Z} in the category of A-modules.

Solution. We have an exact sequence

$$\cdots \xrightarrow{X} \mathbf{Z}[X]/(X^2) \xrightarrow{X} \mathbf{Z}[X]/(X^2) \xrightarrow{X} \mathbf{Z}[X]/(X^2) \xrightarrow{\varepsilon} \mathbf{Z} \to 0,$$

where ε is the projection of $\mathbb{Z}[X]/(X^2)$ onto \mathbb{Z} and X denotes the multiplication by X map. Therefore

$$P_{\bullet}: \cdots \xrightarrow{X} \mathbf{Z}[X]/(X^2) \xrightarrow{X} \mathbf{Z}[X]/(X^2) \xrightarrow{X} \mathbf{Z}[X]/(X^2) \to 0$$

is a projective resolution of **Z**.

1b) For any A-module M, compute $\operatorname{Tor}_{i}^{A}(\mathbb{Z}, M)$ and $\operatorname{Ext}_{A}^{i}(\mathbb{Z}, M)$ in terms of M.

Solution. We have $A \otimes_A M \simeq M$, and

$$P_{\bullet} \otimes_A M : \cdots \xrightarrow{X} M \xrightarrow{X} M \xrightarrow{X} M \xrightarrow{X} M \xrightarrow{X} M \to 0.$$

Therefore $\operatorname{Tor}_0^A(\mathbf{Z}, M) = M/XM$ and

$$\operatorname{Tor}_{i}^{A}(\mathbf{Z}, M) = M_{X}/XM, \quad i \ge 1$$

where we write M_X for the kernel of the multiplication by $X \max X : M \to M$. Note that $M_X/XM = \mathbb{Z} \otimes_A M$.

Also, $\operatorname{Hom}_A(A, M) \simeq M$, and

$$\operatorname{Hom}_{A}(P_{\bullet}, M) : \qquad 0 \to M \xrightarrow{X} M \xrightarrow{X} M \xrightarrow{X} \cdots$$

Therefore $\operatorname{Ext}_{A}^{0}(\mathbf{Z}, M) = M_{X}$ and

$$\operatorname{Ext}_{A}^{i}(\mathbf{Z}, M) = M_{X}/XM, \quad i \ge 1.$$

2) Can you generalize this computation to the case of the ring $A = \mathbb{Z}[X]/(X^n)$ where $n \ge 2$?

Solution. We have an exact sequence

$$\cdots \xrightarrow{X} \mathbf{Z}[X]/(X^n) \xrightarrow{X^{n-1}} \mathbf{Z}[X]/(X^n) \xrightarrow{X} \mathbf{Z}[X]/(X^n) \xrightarrow{X^{n-1}} \mathbf{Z}[X]/(X^n) \xrightarrow{X} \mathbf{Z}[X]/(X^n) \xrightarrow{\varepsilon} \mathbf{Z} \to 0,$$

Therefore

$$P_{\bullet}: \cdots \xrightarrow{X} \mathbf{Z}[X]/(X^n) \xrightarrow{X^{n-1}} \mathbf{Z}[X]/(X^n) \xrightarrow{X} \mathbf{Z}[X]/(X^n) \xrightarrow{X} \mathbf{Z}[X]/(X^n) \xrightarrow{X} \mathbf{Z}[X]/(X^n) \xrightarrow{X} \mathbf{Z}[X]/(X^n) \to 0$$

is a projective resolution of **Z** as *A*-module. We easily check that again $\text{Tor}_0^A(\mathbf{Z}, M) = M/XM$ and

$$\operatorname{Tor}_{i}^{A}(\mathbf{Z}, M) = \begin{cases} M/XM, & \text{if } i = 0, \\ M_{X^{n-1}}/XM, & \text{if } i > 0 \text{ is even}, \\ M_{X}/X^{n-1}M, & \text{if } i \text{ is odd} \end{cases}$$

and

$$\operatorname{Ext}_{A}^{i}(\mathbf{Z}, M) = \begin{cases} M_{X}, & \text{if } i = 0, \\ M_{X}/X^{n-1}M, & \text{if } i > 0 \text{ is even}, \\ M_{X^{n-1}}/XM, & \text{if } i \ge 1 \text{ is odd.} \end{cases}$$

Here $M_{X^{n-1}}$ denotes the kernel of the multiplication by X^{n-1} map $X^{n-1} : M \to M$.

Exercise 4. Let *G* be a finite group of order *n* and *M* a *G*-module. We denote by $C^{\bullet}(G, M)$ the standard complex computing the cohomology of *G*.

1) Let $f : G \to M$ be a 1-cocycle. Set $m = \sum_{h \in G} f(h) \in M$. Show that $d_0(m) = -nf$ and deduce that $H^1(G, M)$ is killed by the multiplication by n.

Solution. Let $F = d_0(m) \in C^1(G, M)$. By definition of the map $d_0 : C^0(G, M) \to C^1(G, M)$, we have

$$F(g) = g(m) - m = \sum_{h \in G} (gf(h) - f(h))$$

Since f(gh) = gf(h) + f(g), this gives

$$F(g) = \sum_{h \in G} f(gh) - \sum_{h \in G} f(h) - nf(g) = -nf(g).$$

2) Can you generalize this argument and prove that $H^i(G, M)$ is killed by the multiplication by *n* for all $i \ge 1$?

Solution. Let $f \in Z^i(G, M)$. Set

$$F(g_1, g_2, \ldots, g_{i-1}) = \sum_{h \in G} f(g_1, \ldots, g_{i-1}, h).$$

The map f satisfies the cocycle condition $d^{i}(f) = 0$, where

$$(d^{i}f)(g_{0}, g_{1}, \dots, g_{i}) = g_{0}f(g_{1}, \dots, g_{i}) + \sum_{k=0}^{i-1} (-1)^{k+1}f(g_{0}, \dots, g_{k}g_{k+1}, \dots, g_{i}) + (-1)^{i+1}f(g_{0}, \dots, g_{i-1}).$$

We compute $d^{i-1}F$:

$$(d^{i-1}F)(g_0, \dots, g_{i-1}) =$$

$$= g_0F(g_1, \dots, g_{i-1}) + \sum_{k=0}^{i-2} (-1)^{k+1}F(g_0, \dots, g_kg_{k+1}, \dots, g_{i-1}) + (-1)^iF(g_0, \dots, g_{i-2}) =$$

$$= \sum_{h \in G} g_0f(g_1, \dots, g_{i-1}, h) + \sum_{k=0}^{i-2} (-1)^{k+1} \left(\sum_{h \in G} f(g_0, \dots, g_kg_{k+1}, \dots, h)\right)$$

$$+ (-1)^i \sum_{h \in G} f(g_0, \dots, g_{i-2}, h).$$

4

From the cocycle condition, we have:

$$g_0 f(g_1, \dots, g_{i-1}, h) + \sum_{k=0}^{i-2} (-1)^{k+1} f(g_0, \dots, g_k g_{k+1}, \dots, h) =$$

= $(-1)^{i-1} f(g_0, g_1, \dots, g_{i-1}h) + (-1)^i f(g_0, g_1, \dots, g_{i-1}).$

Hence

$$(d^{i-1}F)(g_0,\ldots,g_{i-1}) = (-1)^{i-1} \sum_{h \in G} f(g_0,g_1,\ldots,g_{i-1}h) + (-1)^i \sum_{h \in G} f(g_0,g_1,\ldots,g_{i-1}) + (-1)^i \sum_{h \in G} f(g_0,\ldots,g_{i-2},h).$$

Since

$$\sum_{h\in G} f(g_0, g_1, \dots, g_{i-1}h) = \sum_{h\in G} f(g_0, \dots, g_{i-2}, h),$$

we obtain that

$$(d^{i-1}F)(g_0,\ldots,g_{i-1}) = n \cdot (-1)^i f(g_0,g_1,\ldots,g_{i-1})$$

3) Let

$$0 \to A \to N \to G \to 0$$

be an extension of G by a finite abelian group A of order m. Show that if gcd(m, n) = 1, then N is a semidirect product of G and A.

Solution. The above extension equips A with a G-module structure, and we can consider $H^2(G, A)$. By 1), $H^2(G, A)$ is an abelian group killed by the multiplication by n. On the other hand, it is killed by the multiplication by m = |A|. Since gcd(m, n) = 1, this implies that $H^2(G, A) = 0$. Therefore each extension of G by A is a semidirect product (see Theorem 5.5).

Exercise 5. Let *A* be a ring and let *I* (respectively *J*) be a right (respectively left) ideal of *A*. We denote by *IJ* the abelian group generated by the products $xy, x \in I, y \in J$.

1) Show that the sequence

$$0 \to IJ \xrightarrow{\alpha} I \xrightarrow{\beta} I \otimes_A (A/J) \to 0,$$

where α is the inclusion and $\beta(x) := x \otimes 1$, is exact.

Solution. Consider the exact sequence

$$0 \to J \to A \to A/J \to 0.$$

Since the tensor product is right exact, the sequence

$$I \otimes_A J \to I \otimes_A A \to I \otimes_A (A/J) \to 0$$

is exact. It remains to remark that $I \otimes_A A = I$ and the image of $I \otimes_A J$ in I is IJ.

2) Let $\gamma : I \otimes_A (A/J) \to A/J$ be the map defined by $\gamma(x \otimes \overline{a}) = \overline{xa}$. Show that

$$\ker(\gamma) \simeq (I \cap J)/(IJ).$$

Hint: consider the diagram

Solution. Apply the shake lemma to the diagram

$$0 \longrightarrow IJ \longrightarrow I \longrightarrow I \otimes_A (A/J) \longrightarrow 0$$
$$\downarrow_f \qquad \qquad \downarrow_g \qquad \qquad \downarrow_\gamma \\ 0 \longrightarrow J \longrightarrow A \longrightarrow A/J \longrightarrow 0.$$

We obtain an exact sequence

$$\ker(g) \to \ker(\gamma) \to \operatorname{coker}(f) \to \operatorname{coker}(g).$$

Here ker(g) = 0, coker(f) = J/IJ and coker(g) = A/I. Therefore

$$\ker(\gamma) = \ker\left(J/IJ \to A/I\right) = (J \cap I)/(IJ).$$

3) Using question 2), show that $\operatorname{Tor}_1^A(R/I, R/J) = (I \cap J)/(IJ)$.

Solution. The exact sequence

$$0 \rightarrow I \rightarrow A \rightarrow A/I \rightarrow 0$$

induces a long exact sequence

 $\rightarrow \operatorname{Tor}_{A}^{1}(I, A/J) \rightarrow \operatorname{Tor}_{A}^{1}(A, A/J) \rightarrow \operatorname{Tor}_{A}^{1}(A/I, A/J) \rightarrow I \otimes_{A} A/J \rightarrow A/J.$ Since *A* is free, $\operatorname{Tor}_{A}^{1}(I, A/J)$, and

$$\operatorname{Tor}_{A}^{1}(A/I, A/J) = \operatorname{ker}\left(I \otimes_{A} A/J \to A/J\right) = (I \cap J)/(IJ)$$

by question 2).

Exercise 6. Let *A* be a ring.

1) Show that a left A-module I is injective if and only if $\text{Ext}^1(A/\mathfrak{a}, I) = 0$ for any left ideal \mathfrak{a} of A.

Solution. If *I* is injective, $\text{Ext}_{A}^{i}(-, I)$ are zero for $i \ge 1$ (see Proposition 4.3). Conversely, each short exact sequence of the form

$$0 \to \mathfrak{a} \to A \to A/\mathfrak{a} \to 0$$

induces a long exact sequence

$$0 \to \operatorname{Hom}_{A}(A/\mathfrak{a}, I) \to \operatorname{Hom}_{A}(A, I) \to \operatorname{Hom}_{A}(\mathfrak{a}, I) \to \operatorname{Ext}_{A}^{1}(A/\mathfrak{a}, I)$$

If $\text{Ext}^1(A/\mathfrak{a}, I) = 0$, then the map $\text{Hom}_A(A, I) \to \text{Hom}_A(\mathfrak{a}, I)$ is surjective. Applying Baer criterion (Proposition 2.3), we obtain that *I* is injective.

2) Let *M* be a left *A*-module. Show that the following conditions are equivalent:

a) *M* has an injective resolution I^{\bullet} of length 2:

$$0 \to M \to I_0 \to I_1 \to 0.$$

b) For any left A-module N,

$$\operatorname{Ext}_{A}^{i}(N, M) = 0, \quad \forall i \ge 2.$$

Solution. *a*) \implies *b*). This follows directly from the definition of the derived functor:

$$\operatorname{Ext}_{A}^{i}(N, M) = H^{i}(\operatorname{Hom}_{A}(N, I_{\bullet})) = 0, \qquad i \ge 2$$

b) \implies a). There exists a monomorphism $M \rightarrow I_0$, where I_0 is injective. Set $I_1 = I_0/M$. We have an exact sequence

$$0 \to M \to I_0 \to I_1 \to 0.$$

We only need to prove that I_1 is injective. For any ideal \mathfrak{a} of A, we have a long exact sequence

$$\cdots \to \operatorname{Ext}^{1}(A/\mathfrak{a}, I_{0}) \to \operatorname{Ext}^{1}(A/\mathfrak{a}, I_{1}) \to \operatorname{Ext}^{2}(A/\mathfrak{a}, M) \to \cdots$$

Here $\text{Ext}^1(A/\mathfrak{a}, I_0) = 0$ by 1), and $\text{Ext}^2(A/\mathfrak{a}, M) = 0$ by assumption b). Hence $\text{Ext}^1(A/\mathfrak{a}, I_1) = 0$ and applying 1), we obtain the injectivity of I_1 .