UNIVERSITÉ DE BORDEAUX

Homological Algebra

Exam, December 13th 2022. Duration 3h

Hard copies of the lecture notes are allowed.
You can use all results explicitly stated in the chapters 1-3 of the course.

Exercise 1. Let $\mathscr{F}: \mathcal{A} \rightarrow \mathcal{B}$ and $\mathscr{G}: \mathcal{B} \rightarrow \mathcal{A}$ be two adjoint functors between categories of modules (with \mathscr{F} left adjoint and \mathscr{G} right adjoint). Show that the following properties are equivalent:

1) \mathscr{G} is exact.
2) For each projective $P \in \operatorname{Obj}(\mathcal{A})$, the object $\mathscr{F}(P)$ is projective in \mathcal{B}.

Solution. 1) $\Longrightarrow 2$). Consider the diagram

Let $X=\operatorname{ker}(g)$. By the definition of adjoint functors, we have a commutative diagram

The vertical arrows are isomorphisms. Since P is projective, the functor $\operatorname{Hom}_{\mathcal{A}}(P,-)$ is exact. Since the functor \mathscr{G} is exact, this implies that the bottom row is exact. Therefore the map $\operatorname{Hom}_{\mathcal{B}}(\mathscr{F}(P), Y) \rightarrow \operatorname{Hom}_{\mathcal{B}}(\mathscr{F}(P), Z)$ is surjective. This shows that $\mathscr{F}(P)$ is projective.
$2) \Longrightarrow 1)$ Let

$$
0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0
$$

be an exact sequence in \mathscr{B}. By a general property of adjoint functors, \mathscr{G} is left exact. For any projective P, consider the diagram

Since $\mathscr{F}(P)$ is projective, the upper row is exact. Therefore the bottom row is also exact, i.e. for any projective P, the sequence

$$
0 \rightarrow \operatorname{Hom}_{\mathcal{A}}(P, \mathscr{G}(X)) \rightarrow \operatorname{Hom}_{\mathcal{A}}(P, \mathscr{G}(Y)) \rightarrow \operatorname{Hom}_{\mathcal{A}}(P, \mathscr{G}(Z)) \rightarrow 0
$$

is exact. If \mathcal{A} is the category of modules over a ring A, take $P=A$. Then P is free, hence projective. For any A-modume M, one has $\operatorname{Hom}_{A-M o d}(A, M)=$ M. Therefore the above exact sequence reads

$$
0 \rightarrow \mathscr{G}(X) \rightarrow \mathscr{G}(Y) \rightarrow \mathscr{G}(Z) \rightarrow 0
$$

and we have proved the exacteness of \mathscr{G}.
Exercise 2. Let $\mathscr{F}: \mathcal{A} \rightarrow \mathcal{B}$ be a covariant functor. Assume that \mathscr{F} is right exact and \mathcal{A} has enough projectives, and denote by $L_{n} \mathscr{F}$ the derived functors. Show that if for some $n \geqslant 1$ the functor $L_{n} \mathscr{F}$ is right exact, then $L_{m} \mathscr{F}=0$ for all $m \geqslant n$.

Solution. Any object Z of \mathcal{A} can be inserted in an exact sequence

$$
0 \rightarrow X \rightarrow P \rightarrow Z \rightarrow 0
$$

where P is projective. Assume that $L_{n} \mathscr{F}$ is right exact for some $n \geqslant 1$. Then

$$
L_{n} \mathscr{F}(X) \rightarrow L_{n} \mathscr{F}(P) \rightarrow L_{n} \mathscr{F}(Z) \rightarrow 0
$$

Since P is projective, $L_{n} \mathscr{F}(P)=0$, and we obtain that $L_{n} \mathscr{F}(Z)=0$. Therefore $L_{n} \mathscr{F}=0$. Assume now that $L_{m} \mathscr{F}=0$ for some $m \geqslant n$. We have a long exact sequence

$$
L_{m+1} \mathscr{F}(X) \rightarrow L_{m+1} \mathscr{F}(P) \rightarrow L_{m+1} \mathscr{F}(Z) \rightarrow L_{m} \mathscr{F}(X) .
$$

Here $L_{m} \mathscr{F}(X)$ by assumption, and mimiking the previous argument, we conclude that $L_{m+1} \mathscr{F}(Z)=0$.

By induction, $L_{m} \mathscr{F}=0$ for all $m \geqslant n$.
Exercise 3. 1) Let $A=\mathbf{Z}[X] /\left(X^{2}\right)$
1a) Give a simple projective resolution of \mathbf{Z} in the category of A-modules.
Solution. We have an exact sequence

$$
\cdots \xrightarrow{X} \mathbf{Z}[X] /\left(X^{2}\right) \xrightarrow{X} \mathbf{Z}[X] /\left(X^{2}\right) \xrightarrow{X} \mathbf{Z}[X] /\left(X^{2}\right) \xrightarrow{\varepsilon} \mathbf{Z} \rightarrow 0,
$$

where ε is the projection of $\mathbf{Z}[X] /\left(X^{2}\right)$ onto \mathbf{Z} and X denotes the multiplication by X map. Therefore

$$
P_{\bullet}: \quad \cdots \xrightarrow{X} \mathbf{Z}[X] /\left(X^{2}\right) \xrightarrow{X} \mathbf{Z}[X] /\left(X^{2}\right) \xrightarrow{X} \mathbf{Z}[X] /\left(X^{2}\right) \rightarrow 0
$$

is a projective resolution of \mathbf{Z}.

1b) For any A-module M, compute $\operatorname{Tor}_{i}^{A}(\mathbf{Z}, M)$ and $\operatorname{Ext}_{A}^{i}(\mathbf{Z}, M)$ in terms of M.

Solution. We have $A \otimes_{A} M \simeq M$, and

$$
P_{\bullet} \otimes_{A} M: \quad \cdots \xrightarrow{X} M \xrightarrow{X} M \xrightarrow{X} M \xrightarrow{X} M \rightarrow 0 .
$$

Therefore $\operatorname{Tor}_{0}^{A}(\mathbf{Z}, M)=M / X M$ and

$$
\operatorname{Tor}_{i}^{A}(\mathbf{Z}, M)=M_{X} / X M, \quad i \geqslant 1,
$$

where we write M_{X} for the kernel of the multiplication by $X \operatorname{map} X: M \rightarrow$ M. Note that $M_{X} / X M=\mathbf{Z} \otimes_{A} M$.

Also, $\operatorname{Hom}_{A}(A, M) \simeq M$, and

$$
\operatorname{Hom}_{A}\left(P_{\bullet}, M\right): \quad 0 \rightarrow M \xrightarrow{X} M \xrightarrow{X} M \xrightarrow{X} \cdots .
$$

Therefore $\operatorname{Ext}_{A}^{0}(\mathbf{Z}, M)=M_{X}$ and

$$
\operatorname{Ext}_{A}^{i}(\mathbf{Z}, M)=M_{X} / X M, \quad i \geqslant 1
$$

2) Can you generalize this computation to the case of the ring $A=\mathbf{Z}[X] /\left(X^{n}\right)$ where $n \geqslant 2$?

Solution. We have an exact sequence
$\cdots \xrightarrow{X} \mathbf{Z}[X] /\left(X^{n}\right) \xrightarrow{X^{n-1}} \mathbf{Z}[X] /\left(X^{n}\right) \xrightarrow{X} \mathbf{Z}[X] /\left(X^{n}\right) \xrightarrow{X^{n-1}} \mathbf{Z}[X] /\left(X^{n}\right) \xrightarrow{X} \mathbf{Z}[X] /\left(X^{n}\right) \xrightarrow{\varepsilon} \mathbf{Z} \rightarrow 0$,
Therefore
P. : $\quad \cdots \xrightarrow{X} \mathbf{Z}[X] /\left(X^{n}\right) \xrightarrow{X^{n-1}} \mathbf{Z}[X] /\left(X^{n}\right) \xrightarrow{X} \mathbf{Z}[X] /\left(X^{n}\right) \xrightarrow{X^{n-1}} \mathbf{Z}[X] /\left(X^{n}\right) \xrightarrow{X} \mathbf{Z}[X] /\left(X^{n}\right) \rightarrow 0$
is a projective resolution of \mathbf{Z} as A-module. We easily check that again $\operatorname{Tor}_{0}^{A}(\mathbf{Z}, M)=M / X M$ and

$$
\operatorname{Tor}_{i}^{A}(\mathbf{Z}, M)= \begin{cases}M / X M, & \text { if } i=0 \\ M_{X^{n-1}} / X M, & \text { if } i>0 \text { is even } \\ M_{X} / X^{n-1} M, & \text { if } i \text { is odd }\end{cases}
$$

and

$$
\operatorname{Ext}_{A}^{i}(\mathbf{Z}, M)= \begin{cases}M_{X}, & \text { if } i=0 \\ M_{X} / X^{n-1} M, & \text { if } i>0 \text { is even }, \\ M_{X^{n-1}} / X M, & \text { if } i \geqslant 1 \text { is odd. }\end{cases}
$$

Here $M_{X^{n-1}}$ denotes the kernel of the multiplication by X^{n-1} map $X^{n-1}: M \rightarrow M$.

Exercise 4. Let G be a finite group of order n and M a G-module. We denote by $C^{\bullet}(G, M)$ the standard complex computing the cohomology of G.

1) Let $f: G \rightarrow M$ be a 1 -cocycle. Set $m=\sum_{h \in G} f(h) \in M$. Show that $d_{0}(m)=-n f$ and deduce that $H^{1}(G, M)$ is killed by the multiplication by n.

Solution. Let $F=d_{0}(m) \in C^{1}(G, M)$. By definition of the map d_{0} : $C^{0}(G, M) \rightarrow C^{1}(G, M)$, we have

$$
F(g)=g(m)-m=\sum_{h \in G}(g f(h)-f(h)) .
$$

Since $f(g h)=g f(h)+f(g)$, this gives

$$
F(g)=\sum_{h \in G} f(g h)-\sum_{h \in G} f(h)-n f(g)=-n f(g) .
$$

2) Can you generalize this argument and prove that $H^{i}(G, M)$ is killed by the multiplication by n for all $i \geqslant 1$?

Solution. Let $f \in Z^{i}(G, M)$. Set

$$
F\left(g_{1}, g_{2}, \ldots, g_{i-1}\right)=\sum_{h \in G} f\left(g_{1}, \ldots, g_{i-1}, h\right) .
$$

The map f satisfies the cocycle condition $d^{i}(f)=0$, where

$$
\begin{aligned}
& \left(d^{i} f\right)\left(g_{0}, g_{1}, \ldots, g_{i}\right)=g_{0} f\left(g_{1}, \ldots, g_{i}\right) \\
& \quad+\sum_{k=0}^{i-1}(-1)^{k+1} f\left(g_{0}, \ldots, g_{k} g_{k+1}, \ldots, g_{i}\right)+(-1)^{i+1} f\left(g_{0}, \ldots, g_{i-1}\right) .
\end{aligned}
$$

We compute $d^{i-1} F$:

$$
\begin{aligned}
& \quad\left(d^{i-1} F\right)\left(g_{0}, \ldots, g_{i-1}\right)= \\
& =g_{0} F\left(g_{1}, \ldots, g_{i-1}\right)+\sum_{k=0}^{i-2}(-1)^{k+1} F\left(g_{0}, \ldots, g_{k} g_{k+1}, \ldots, g_{i-1}\right)+(-1)^{i} F\left(g_{0}, \ldots, g_{i-2}\right)= \\
& \quad=\sum_{h \in G} g_{0} f\left(g_{1}, \ldots, g_{i-1}, h\right)+\sum_{k=0}^{i-2}(-1)^{k+1}\left(\sum_{h \in G} f\left(g_{0}, \ldots, g_{k} g_{k+1}, \ldots, h\right)\right) \\
& \quad+(-1)^{i} \sum_{h \in G} f\left(g_{0}, \ldots, g_{i-2}, h\right) .
\end{aligned}
$$

From the cocycle condition, we have:

$$
\begin{aligned}
& g_{0} f\left(g_{1}, \ldots, g_{i-1}, h\right)+\sum_{k=0}^{i-2}(-1)^{k+1} f\left(g_{0}, \ldots, g_{k} g_{k+1}, \ldots, h\right)= \\
& =(-1)^{i-1} f\left(g_{0}, g_{1}, \ldots, g_{i-1} h\right)+(-1)^{i} f\left(g_{0}, g_{1}, \ldots, g_{i-1}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \left(d^{i-1} F\right)\left(g_{0}, \ldots, g_{i-1}\right)=(-1)^{i-1} \sum_{h \in G} f\left(g_{0}, g_{1}, \ldots, g_{i-1} h\right)+ \\
& (-1)^{i} \sum_{h \in G} f\left(g_{0}, g_{1}, \ldots, g_{i-1}\right)+(-1)^{i} \sum_{h \in G} f\left(g_{0}, \ldots, g_{i-2}, h\right) .
\end{aligned}
$$

Since

$$
\sum_{h \in G} f\left(g_{0}, g_{1}, \ldots, g_{i-1} h\right)=\sum_{h \in G} f\left(g_{0}, \ldots, g_{i-2}, h\right),
$$

we obtain that

$$
\left(d^{i-1} F\right)\left(g_{0}, \ldots, g_{i-1}\right)=n \cdot(-1)^{i} f\left(g_{0}, g_{1}, \ldots, g_{i-1}\right)
$$

3) Let

$$
0 \rightarrow A \rightarrow N \rightarrow G \rightarrow 0
$$

be an extension of G by a finite abelian group A of order m. Show that if $\operatorname{gcd}(m, n)=1$, then N is a semidirect product of G and A.

Solution. The above extension equips A with a G-module structure, and we can consider $H^{2}(G, A)$. By 1$), H^{2}(G, A)$ is an abelian group killed by the multiplication by n. On the other hand, it is killed by the multiplication by $m=|A|$. Since $\operatorname{gcd}(m, n)=1$, this implies that $H^{2}(G, A)=0$. Therefore each extension of G by A is a semidirect product (see Theorem 5.5).

Exercise 5. Let A be a ring and let I (respectively J) be a right (respectively left) ideal of A. We denote by $I J$ the abelian group generated by the products $x y, x \in I, y \in J$.

1) Show that the sequence

$$
0 \rightarrow I J \xrightarrow{\alpha} I \xrightarrow{\beta} I \otimes_{A}(A / J) \rightarrow 0,
$$

where α is the inclusion and $\beta(x):=x \otimes 1$, is exact.
Solution. Consider the exact sequence

$$
0 \rightarrow J \rightarrow A \rightarrow A / J \rightarrow 0 .
$$

Since the tensor product is right exact, the sequence

$$
I \otimes_{A} J \rightarrow I \otimes_{A} A \rightarrow I \otimes_{A}(A / J) \rightarrow 0
$$

is exact. It remains to remark that $I \otimes_{A} A=I$ and the image of $I \otimes_{A} J$ in I is $I J$.
2) Let $\gamma: I \otimes_{A}(A / J) \rightarrow A / J$ be the map defined by $\gamma(x \otimes \bar{a})=\overline{x a}$. Show that

$$
\operatorname{ker}(\gamma) \simeq(I \cap J) /(I J)
$$

Hint: consider the diagram

Solution. Apply the shake lemma to the diagram

We obtain an exact sequence

$$
\operatorname{ker}(g) \rightarrow \operatorname{ker}(\gamma) \rightarrow \operatorname{coker}(f) \rightarrow \operatorname{coker}(g) .
$$

Here $\operatorname{ker}(g)=0, \operatorname{coker}(f)=J / I J$ and coker $(g)=A / I$. Therefore

$$
\operatorname{ker}(\gamma)=\operatorname{ker}(J / I J \rightarrow A / I)=(J \cap I) /(I J) .
$$

3) Using question 2), show that $\operatorname{Tor}_{1}^{A}(R / I, R / J)=(I \cap J) /(I J)$.

Solution. The exact sequence

$$
0 \rightarrow I \rightarrow A \rightarrow A / I \rightarrow 0
$$

induces a long exact sequence

$$
\rightarrow \operatorname{Tor}_{A}^{1}(I, A / J) \rightarrow \operatorname{Tor}_{A}^{1}(A, A / J) \rightarrow \operatorname{Tor}_{A}^{1}(A / I, A / J) \rightarrow I \otimes_{A} A / J \rightarrow A / J .
$$

Since A is free, $\operatorname{Tor}_{A}^{1}(I, A / J)$, and

$$
\operatorname{Tor}_{A}^{1}(A / I, A / J)=\operatorname{ker}\left(I \otimes_{A} A / J \rightarrow A / J\right)=(I \cap J) /(I J)
$$

by question 2).
Exercise 6. Let A be a ring.

1) Show that a left A-module I is injective if and only if $\operatorname{Ext}^{1}(A / \mathfrak{a}, I)=0$ for any left ideal \mathfrak{a} of A.

Solution. If I is injective, $\operatorname{Ext}_{A}^{i}(-, I)$ are zero for $i \geqslant 1$ (see Proposition 4.3). Conversely, each short exact sequence of the form

$$
0 \rightarrow \mathfrak{a} \rightarrow A \rightarrow A / \mathfrak{a} \rightarrow 0
$$

induces a long exact sequence

$$
0 \rightarrow \operatorname{Hom}_{A}(A / \mathfrak{a}, I) \rightarrow \operatorname{Hom}_{A}(A, I) \rightarrow \operatorname{Hom}_{A}(\mathfrak{a}, I) \rightarrow \operatorname{Ext}_{A}^{1}(A / \mathfrak{a}, I)
$$

If $\operatorname{Ext}^{1}(A / \mathfrak{a}, I)=0$, then the map $\operatorname{Hom}_{A}(A, I) \rightarrow \operatorname{Hom}_{A}(\mathfrak{a}, I)$ is surjective. Applying Baer criterion (Proposition 2.3), we obtain that I is injective.
2) Let M be a left A-module. Show that the following conditions are equivalent:
a) M has an injective resolution I^{\bullet} of length 2 :

$$
0 \rightarrow M \rightarrow I_{0} \rightarrow I_{1} \rightarrow 0
$$

b) For any left A-module N,

$$
\operatorname{Ext}_{A}^{i}(N, M)=0, \quad \forall i \geqslant 2 .
$$

Solution. $a) \Longrightarrow b$). This follows directly from the definition of the derived functor:

$$
\operatorname{Ext}_{A}^{i}(N, M)=H^{i}\left(\operatorname{Hom}_{A}\left(N, I_{\bullet}\right)\right)=0, \quad i \geqslant 2 .
$$

$b) \Longrightarrow a)$. There exists a monomorphism $M \rightarrow I_{0}$, where I_{0} is injective. Set $I_{1}=I_{0} / M$. We have an exact sequence

$$
0 \rightarrow M \rightarrow I_{0} \rightarrow I_{1} \rightarrow 0
$$

We only need to prove that I_{1} is injective. For any ideal \mathfrak{a} of A, we have a long exact sequence

$$
\cdots \rightarrow \operatorname{Ext}^{1}\left(A / \mathfrak{a}, I_{0}\right) \rightarrow \operatorname{Ext}^{1}\left(A / \mathfrak{a}, I_{1}\right) \rightarrow \operatorname{Ext}^{2}(A / \mathfrak{a}, M) \rightarrow \cdots
$$

Here $\operatorname{Ext}^{1}\left(A / \mathfrak{a}, I_{0}\right)=0$ by 1$)$, and $\operatorname{Ext}^{2}(A / \mathfrak{a}, M)=0$ by assumption $\left.\mathfrak{b}\right)$. Hence $\operatorname{Ext}^{1}\left(A / \mathfrak{a}, I_{1}\right)=0$ and applying 1$)$, we obtain the injectivity of I_{1}.

