UNIVERSITÉ DE BORDEAUX

Homological Algebra

Exam, December 13th 2022. Duration 3h

Hard copies of the lecture notes are allowed.
You can use all results explicitly stated in the chapters 1-3 of the course.

Exercise 1. Let $\mathscr{F}: \mathcal{A} \rightarrow \mathcal{B}$ and $\mathscr{G}: \mathcal{B} \rightarrow \mathcal{A}$ be two adjoint functors between abelian categories (with \mathscr{F} left adjoint and \mathscr{G} right adjoint). Show that the following properties are equivalent:

1) \mathscr{G} is exact.
2) For each projective $P \in \operatorname{Obj}(\mathcal{F})$, the object $\mathscr{F}(P)$ is projective in \mathcal{B}.

Exercise 2. Let $\mathscr{F}: \mathcal{A} \rightarrow \mathcal{B}$ be a covariant functor. Assume that \mathscr{F} is right exact and \mathcal{A} has enough projectives, and denote by $L_{n} \mathscr{F}$ the derived functors. Show that if for some $n \geqslant 1$ the functor $L_{n} \mathscr{F}$ is right exact, then $L_{m} \mathscr{F}=0$ for all $m \geqslant n$.

Exercise 3. 1) Let $A=\mathbf{Z}[X] /\left(X^{2}\right)$
1a) Give a simple projective resolution of \mathbf{Z} in the category of A-modules.
1b) For any A-module M, compute $\operatorname{Tor}_{i}^{A}(\mathbf{Z}, M)$ and $\operatorname{Ext}_{A}^{i}(\mathbf{Z}, M)$ in terms of M.
2) Can you generalize this computation to the case of the ring $A=$ $\mathbf{Z}[X] /\left(X^{n}\right)$ where $n \geqslant 2$?

Exercise 4. Let G be a finite group of order n and M a G-module. We denote by $C^{\bullet}(G, M)$ the standard complex computing the cohomology of G.

1) Let $f: G \rightarrow M$ be a 1 -cocycle. Set $m=\sum_{h \in G} f(h) \in M$. Show that $d_{0}(m)=-n f$ and deduce that $H^{1}(G, M)$ is killed by the multiplication by n.
2) Can you generalize this argument and prove that $H^{i}(G, M)$ is killed by the multiplication by n for all $i \geqslant 1$?
3) Let

$$
0 \rightarrow A \rightarrow N \rightarrow G \rightarrow 0
$$

be an extension of G by a finite abelian group A of order m. Show that if $\operatorname{gcd}(m, n)=1$, then N is a semidirect product of G and A.

Exercise 5. Let A be a ring and let I (respectively J) be a right (respectively left) ideal of A. We denote by $I J$ the abelian group generated by the products $x y, x \in I, y \in J$.

1) Show that the sequence

$$
0 \rightarrow I J \xrightarrow{\alpha} I \xrightarrow{\beta} I \otimes_{A}(A / J) \rightarrow 0,
$$

where α is the inclusion and $\beta(x):=x \otimes 1$, is exact.
2) Let $\gamma: I \otimes_{A}(A / J) \rightarrow A / J$ be the map defined by $\gamma(x \otimes \bar{a})=\overline{x a}$. Show that

$$
\operatorname{ker}(\gamma) \simeq(I \cap J) /(I J)
$$

Hint: consider the diagram

3) Using question 2$)$, show that $\operatorname{Tor}_{1}^{A}(R / I, R / J)=(I \cap J) /(I J)$.

Exercise 6. Let A be a ring.

1) Show that a left A-module I is injective if and only if $\operatorname{Ext}^{1}(A / a, I)=0$ for any left ideal \mathfrak{a} of A.
2) Let M be a left A-module. Show that the following conditions are equivalent:
a) M has an injective resolution I^{\bullet} of length 2 :

$$
0 \rightarrow M \rightarrow I_{0} \rightarrow I_{1} \rightarrow 0
$$

b) For any left A-module N,

$$
\operatorname{Ext}_{A}^{i}(N, M)=0, \quad \forall i \geqslant 2 .
$$

