Homological Algebra

Solutions and hints for some exercises

Exercise 3. *X* is a direct product of $(X_i)_{i \in I}$ in \mathcal{A} if and only if X° is a direct sum of $(X_i^\circ)_{i \in I}$ in \mathcal{A}° .

Solution. Dualize diagrams in the definition of the direct product.

Exercise 4. Let *K* be a field. A filtered finite-dimensional vector space $X = (V, (V_i)_{i \in \mathbb{Z}})$ over *K* is a finite dimensional *K*-vector space *K* equipped with an increasing filtration by *K*-subspaces:

$$\ldots \subseteq V_{i-1} \subseteq V_i \subseteq V_{i+1} \subseteq \ldots$$

Let $Y = (W, (W_i)_{i \in \mathbb{Z}})$. A morphism $f : X \to Y$ is a linear map $f : V \to W$ such that $f(V_i) \subseteq W_i$ for all $i \in \mathbb{Z}$. Let \mathbf{FVect}_K denote the category of filtered finite-dimensional vector spaces over K.

- Show that FVect_K is additive.
 Solution. Straightforward.
- Show that each morphism in FVect_K has a kernel and a cokernel.
 Solution. Let f : X → Y be a morphism. Write φ : V → W for the associated linear map (such that φ(V_i) ⊆ W_i for all i ∈ Z.) Set ker(φ)_i := ker(φ) ∩ V_i and coker(φ_i) := Y_i/(Y_i ∩ φ(X)). It is not difficult to check that

$$\ker(f) = (\ker(\varphi), (\ker(\varphi)_i)_{i \in \mathbb{Z}}).$$

and

$$\operatorname{coker}(f) = (\operatorname{coker}(\varphi), (\operatorname{coker}(\varphi_i))_{i \in \mathbb{Z}})$$

are kernel and cokernel of f.

3) Let V be a nonzero vector space and let $X = (V, (V_i)_{i \in \mathbb{Z}})$ and $Y = (V, (V'_i)_{i \in \mathbb{Z}})$ be the objects defined as:

$$V_i = \begin{cases} 0, & \text{if } i \leq 0, \\ V, & \text{if } i \geq 1, \end{cases} \qquad \qquad V'_i = \begin{cases} 0, & \text{if } i \leq -1, \\ V, & \text{if } i \geq 0, \end{cases}$$

Show that the identity map on V induces a morphism $f : X \to Y$ which is monic and epi, but is not an isomorphism. Deduce that \mathbf{FVect}_K is not abelian.

Solution. From part 2), it follows that ker(f) = coker(f) = 0. Therefore f is monic and epi. However f is not an isomorphism (compare the filtrations of X and Y).

Exercise 7. In a an additive category, the zero map $X \xrightarrow{0} Y$ is monic (resp. epi) if and only if X = 0 (resp. Y = 0).

Solution. Assume that $f_1, f_2 : Z \to X$ be two morphisms. Then $0 \circ f_1 = 0 \circ f_2$. If the zero map if monic, then $f_1 = f_2$. Therefore X is initial.

Exercise 8. Show that the category of torsion abelian groups has no projective nonzero objects.

Solution. Assume that *P* is a projective object in this category. Let $x \in P$ be an element of order $n \ge 2$. Let $f : \langle x \rangle \to \mathbf{Q}/\mathbf{Z}$ denote the map defined by $f(x) = 1/n \pmod{\mathbf{Z}}$. The abelian group \mathbf{Q}/\mathbf{Z} is an injective object in the category of abelian groups. Therefore there exists a map $\pi : P \to \mathbf{Q}/\mathbf{Z}$ such that $g(x) = 1/n \pmod{\mathbf{Z}}$. Consider the diagram

Since *P* is projective, there exists π' such that $n\pi'(x) = \pi(x) = 1/n \pmod{Z}$. On the other hand, $n\pi'(x) = \pi'(nx) = 0$. This gives a contradiction.

Exercise 9. Let *k* be a field and $A := M_n(k)$ the ring of $n \times n$ matrices with coefficients in *k*. Assume that $n \ge 2$. Give an example of an *A*-module which is projective but not free.

Solution. Take $P = k^n$ (the module of columns equipped with the natural left action of *A*) and remark that *A* is a direct sum of *n* copies of *P*.

Exercise 10. Let $(P_i)_{i \in I}$ be a family of projective objects. Show that if the coproduct $\coprod P_i$ exists, then it is projective.

Solution. Set $P := \prod_{i \in I} P_i$. We have canonical morphisms $q_i : P_i \to P$. Assume that we have a diagram

Set $\pi_i = \pi \circ q_i : P_i \to Y$. By the projectivity of P_i , there exist $\pi'_i : P_i \to X$ such that $g \circ \pi'_i = \pi_i$. By the definition of coproducts, there exists a unique $\pi' : P \to X$ such that $\pi' \circ q_i = \pi'_i$ for all *i*. Then the composition $(g \circ \pi')$ satisfies

$$(g \circ \pi') \circ q_i = g \circ \pi'_i = \pi_i = \pi \circ q_i, \quad \forall i \in I.$$

2

Hence $g \circ \pi' = \pi$.

Exercise 11. Let $(I_j)_{j \in J}$ be a family of injective objects. Show that if the product $\prod I_j$ exists, then it is injective.

Solution. Use Exercise 10 and duality.

Exercise 12. Give an example of a non-projective flat module over Z.

Solution. The **Z**-module **Q** is divisible and therefore not projective. Let $f : A \rightarrow B$ be an injective morphism of abelian groups. Let A_{tor} and B_{tor} denote the torsion subgroups of A and B. Then A/A_{tor} and B/B_{tor} are torsion free and the map $A/A_{tor} \rightarrow B/B_{tor}$ is injective.

$$\mathbf{Q} \otimes A \simeq \mathbf{Q} \otimes (A/A_{\text{tor}}), \qquad \mathbf{Q} \otimes B \simeq \mathbf{Q} \otimes (B/B_{\text{tor}}).$$

Therefore the induced map $f_{\mathbf{Q}}$: $\mathbf{Q} \otimes A \rightarrow \mathbf{Q} \otimes B$ is injective. This implies that \mathbf{Q} is flat.

Exercise 13. Let *G* be an infinite cyclic group. Fix a generator *g* of *G*. 1) Show that $\mathbb{Z}[G]$ is isomorphic to the ring $\mathbb{Z}[X, X^{-1}]$. **Solution.** Check that the map

$$\mathbf{Z}[X, X^{-1}] \to \mathbf{Z}[G],$$
$$\sum_{k} a_{k} X^{k} \mapsto \sum_{k} a_{k} g^{k}$$

is an isomorphism.

2) Show that the sequence

$$0 \to \mathbf{Z}[X, X^{-1}] \xrightarrow{\partial_0} \mathbf{Z}[X, X^{-1}] \xrightarrow{\varepsilon} \mathbf{Z} \to 0,$$

where $\partial_0(f(X)) = (X - 1) f(X)$ and $\epsilon(f) = f(1)$, is a free resolution of **Z**. **Solution.** Compute ker(ϵ). If

$$f = \sum_{k} a_k X^k \in \ker(\epsilon),$$

then $\sum_{k} a_k = 0$ and one can write

$$f = \sum_{k} a_{k}(X^{k} - 1) = (X - 1)g$$

for some $g \in \mathbb{Z}$. This shows that ker(ϵ) is the principal ideal generated by (X - 1). Therefore the sequence

$$0 \to \mathbf{Z}[X, X^{-1}] \xrightarrow{\partial_0} \mathbf{Z}[X, X^{-1}] \xrightarrow{\varepsilon} \mathbf{Z} \to 0,$$

is exact. The module $\mathbb{Z}[X, X^{-1}]$ is clearly free over $\mathbb{Z}[X, X^{-1}]$.

3) Let *M* be a *G*-module. Show that $H^0(G, M) = M^G$, $H^1(G, M) \simeq M/(g-1)M$ and $H^i(G, M) = 0$ for $i \ge 2$.

Solution. Note that $\operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}[G], M) \simeq M$. Taking $\operatorname{Hom}_{\mathbb{Z}[G]}(P_{\bullet}, M)$ where

$$P_{\bullet}: 0 \to \mathbf{Z}[X, X^{-1}] \xrightarrow{\partial_0} \mathbf{Z}[X, X^{-1}] \to 0,$$

we obtain the complex

$$0 \to M \xrightarrow{d^0} M \to 0,$$

with $d^0(m) = (X - 1)m$. Hence

$$H^0(G, M) = \ker(g - 1 : M \to M) = M^{g=1} = M^G,$$

and

$$H^1(G,M) = M/(g-1)M.$$

Also $H^i(G, M) = 0$ for $i \ge 2$.

Exercise 14. Let *A* be an abelian group and $f \in A^* = C^1(G, A)$. Show that if gf = f for all $g \in G$, then *f* is a constant map, i.e. there exists $a \in A$ such that f(g) = a for all $g \in G$. Therefore $(A^*)^G \simeq A$.

Solution. Set a := f(e). Since gf = f, we have

$$f(g) = gf(e) = f(e), \quad \forall g \in G.$$

The map $f \mapsto f(e)$ gives an isomorphism $(A^*)^G \simeq A$.

Exercise 16. Let *G* be an infinite cyclic group. Fix a generator *g* of *G*. Show that $H_0(G, M) = M/(g - 1)M$, $H_1(G, M) = M^G$ and $H_i(G, M) = 0$ for $i \ge 2$.

Solution. Take the projective resolution P_{\bullet} from Exercise 13. Since $\mathbb{Z}[G] \otimes_{\mathbb{Z}[G]} M \simeq M$, the complex $P_{\bullet} \otimes_{\mathbb{Z}[G]} M$ reads:

$$0 \to M \xrightarrow{a_0} M \to 0,$$

where $d_0(m) = (X - 1)m$ and the nonzero terms of the complex are concentrated in degrees 1 and 0.