Homological Algebra

Solutions and hints for some exercises

Exercise 3. X is a direct product of $\left(X_{i}\right)_{i \in I}$ in \mathcal{A} if and only if X° is a direct sum of $\left(X_{i}^{\circ}\right)_{i \in I}$ in \mathcal{A}°.

Solution. Dualize diagrams in the definition of the direct product.
Exercise 4. Let K be a field. A filtered finite-dimensional vector space $X=\left(V,\left(V_{i}\right)_{i \in \mathbf{Z}}\right)$ over K is a finite dimensional K-vector space K equipped with an increasing filtration by K-subspaces:

$$
\ldots \subseteq V_{i-1} \subseteq V_{i} \subseteq V_{i+1} \subseteq \ldots
$$

Let $Y=\left(W,\left(W_{i}\right)_{i \in \mathbf{Z}}\right)$. A morphism $f: X \rightarrow Y$ is a linear map $f: V \rightarrow W$ such that $f\left(V_{i}\right) \subseteq W_{i}$ for all $i \in \mathbf{Z}$. Let \mathbf{F} Vect $_{K}$ denote the category of filtered finite-dimensional vector spaces over K.

1) Show that $\mathbf{F V e c t}{ }_{K}$ is additive.

Solution. Straightforward.
2) Show that each morphism in $\mathbf{F V e c t}{ }_{K}$ has a kernel and a cokernel.

Solution. Let $f: X \rightarrow Y$ be a morphism. Write $\varphi: V \rightarrow W$ for the associated linear map (such that $\varphi\left(V_{i}\right) \subseteq W_{i}$ for all $i \in \mathbf{Z}$.) Set $\operatorname{ker}(\varphi)_{i}:=\operatorname{ker}(\varphi) \cap V_{i}$ and $\operatorname{coker}\left(\varphi_{i}\right):=Y_{i} /\left(Y_{i} \cap \varphi(X)\right)$. It is not difficult to check that

$$
\operatorname{ker}(f)=\left(\operatorname{ker}(\varphi),\left(\operatorname{ker}(\varphi)_{i}\right)_{i \in \mathbf{Z}}\right)
$$

and

$$
\operatorname{coker}(f)=\left(\operatorname{coker}(\varphi),\left(\operatorname{coker}\left(\varphi_{i}\right)\right)_{i \in \mathbf{Z}}\right)
$$

are kernel and cokernel of f.
3) Let V be a nonzero vector space and let $X=\left(V,\left(V_{i}\right)_{i \in \mathbf{Z}}\right)$ and $Y=$ $\left(V,\left(V_{i}^{\prime}\right)_{i \in \mathbf{Z}}\right)$ be the objects defined as:

$$
V_{i}=\left\{\begin{array}{ll}
0, & \text { if } i \leqslant 0, \\
V, & \text { if } i \geqslant 1,
\end{array} \quad V_{i}^{\prime}= \begin{cases}0, & \text { if } i \leqslant-1 \\
V, & \text { if } i \geqslant 0\end{cases}\right.
$$

Show that the identity map on V induces a morphism $f: X \rightarrow Y$ which is monic and epi, but is not an isomorphism. Deduce that FVect $_{K}$ is not abelian.

Solution. From part 2), it follows that $\operatorname{ker}(f)=\operatorname{coker}(f)=0$. Therefore f is monic and epi. However f is not an isomorphism (compare the filtrations of X and Y).

Exercise 7. In a an additive category, the zero map $X \xrightarrow{0} Y$ is monic (resp. epi) if and only if $X=0($ resp. $Y=0)$.

Solution. Assume that $f_{1}, f_{2}: Z \rightarrow X$ be two morphisms. Then $0 \circ f_{1}=0 \circ f_{2}$. If the zero map if monic, then $f_{1}=f_{2}$. Therefore X is initial.

Exercise 8. Show that the category of torsion abelian groups has no projective nonzero objects.

Solution. Assume that P is a projective object in this category. Let $x \in P$ be an element of order $n \geqslant 2$. Let $f:\langle x\rangle \rightarrow \mathbf{Q} / \mathbf{Z}$ denote the map defined by $f(x)=1 / n(\bmod \mathbf{Z})$. The abelian group \mathbf{Q} / \mathbf{Z} is an injective object in the category of abelian groups. Therefore there exists a map $\pi: P \rightarrow \mathbf{Q} / \mathbf{Z}$ such that $g(x)=1 / n(\bmod \mathbf{Z})$. Consider the diagram

Since P is projective, there exists π^{\prime} such that $n \pi^{\prime}(x)=\pi(x)=1 / n(\bmod \mathbf{Z})$. On the other hand, $n \pi^{\prime}(x)=\pi^{\prime}(n x)=0$. This gives a contradiction.

Exercise 9. Let k be a field and $A:=\mathrm{M}_{n}(k)$ the ring of $n \times n$ matrices with coefficients in k. Assume that $n \geqslant 2$. Give an example of an A-module which is projective but not free.

Solution. Take $P=k^{n}$ (the module of columns equipped with the natural left action of A) and remark that A is a direct sum of n copies of P.

Exercise 10. Let $\left(P_{i}\right)_{i \in I}$ be a family of projective objects. Show that if the coproduct $\coprod_{i \in I} P_{i}$ exists, then it is projective.

Solution. Set $P:=\underset{i \in I}{ } P_{i}$. We have canonical morphisms $q_{i}: P_{i} \rightarrow P$. Assume that we have a diagram

Set $\pi_{i}=\pi \circ q_{i}: P_{i} \rightarrow Y$. By the projectivity of P_{i}, there exist $\pi_{i}^{\prime}: P_{i} \rightarrow X$ such that $g \circ \pi_{i}^{\prime}=\pi_{i}$. By the definition of coproducts, there exists a unique $\pi^{\prime}: P \rightarrow X$ such that $\pi^{\prime} \circ q_{i}=\pi_{i}^{\prime}$ for all i. Then the composition $\left(g \circ \pi^{\prime}\right)$ satisfies

$$
\left(g \circ \pi^{\prime}\right) \circ q_{i}=g \circ \pi_{i}^{\prime}=\pi_{i}=\pi \circ q_{i}, \quad \forall i \in I .
$$

Hence $g \circ \pi^{\prime}=\pi$.
Exercise 11. Let $\left(I_{j}\right)_{j \in J}$ be a family of injective objects. Show that if the product $\prod_{j \in J} I_{j}$ exists, then it is injective.

Solution. Use Exercise 10 and duality.
Exercise 12. Give an example of a non-projective flat module over \mathbf{Z}.
Solution. The \mathbf{Z}-module \mathbf{Q} is divisible and therefore not projective. Let $f: A \rightarrow B$ be an injective morphism of abelian groups. Let $A_{\text {tor }}$ and $B_{\text {tor }}$ denote the torsion subgroups of A and B. Then $A / A_{\text {tor }}$ and $B / B_{\text {tor }}$ are torsion free and the map $A / A_{\text {tor }} \rightarrow B / B_{\text {tor }}$ is injective.

$$
\mathbf{Q} \otimes A \simeq \mathbf{Q} \otimes\left(A / A_{\mathrm{tor}}\right), \quad \mathbf{Q} \otimes B \simeq \mathbf{Q} \otimes\left(B / B_{\mathrm{tor}}\right)
$$

Therefore the induced map $f_{\mathbf{Q}}: \mathbf{Q} \otimes A \rightarrow \mathbf{Q} \otimes B$ is injective. This implies that \mathbf{Q} is flat.

Exercise 13. Let G be an infinite cyclic group. Fix a generator g of G.

1) Show that $\mathbf{Z}[G]$ is isomorphic to the ring $\mathbf{Z}\left[X, X^{-1}\right]$.

Solution. Check that the map

$$
\begin{aligned}
& \mathbf{Z}\left[X, X^{-1}\right] \rightarrow \mathbf{Z}[G], \\
& \sum_{k} a_{k} X^{k} \mapsto \sum_{k} a_{k} g^{k}
\end{aligned}
$$

is an isomorphism.
2) Show that the sequence

$$
0 \rightarrow \mathbf{Z}\left[X, X^{-1}\right] \xrightarrow{\partial_{0}} \mathbf{Z}\left[X, X^{-1}\right] \xrightarrow{\varepsilon} \mathbf{Z} \rightarrow 0,
$$

where $\partial_{0}(f(X))=(X-1) f(X)$ and $\epsilon(f)=f(1)$, is a free resolution of \mathbf{Z}.
Solution. Compute $\operatorname{ker}(\epsilon)$. If

$$
f=\sum_{k} a_{k} X^{k} \in \operatorname{ker}(\epsilon),
$$

then $\sum_{k} a_{k}=0$ and one can write

$$
f=\sum_{k} a_{k}\left(X^{k}-1\right)=(X-1) g
$$

for some $g \in \mathbf{Z}$. This shows that $\operatorname{ker}(\epsilon)$ is the principal ideal generated by ($X-1$). Therefore the sequence

$$
0 \rightarrow \mathbf{Z}\left[X, X^{-1}\right] \xrightarrow{\partial_{0}} \mathbf{Z}\left[X, X^{-1}\right] \xrightarrow{\varepsilon} \mathbf{Z} \rightarrow 0,
$$

is exact. The module $\mathbf{Z}\left[X, X^{-1}\right]$ is clearly free over $\mathbf{Z}\left[X, X^{-1}\right]$.
3) Let M be a G-module. Show that $H^{0}(G, M)=M^{G}, H^{1}(G, M) \simeq M /(g-$ 1) M and $H^{i}(G, M)=0$ for $i \geq 2$.

Solution. Note that $\operatorname{Hom}_{\mathbf{Z}[G]}(\mathbf{Z}[G], M) \simeq M$. Taking $\operatorname{Hom}_{\mathbf{Z}[G]}\left(P_{\bullet}, M\right)$ where

$$
P_{.}: 0 \rightarrow \mathbf{Z}\left[X, X^{-1}\right] \xrightarrow{\partial_{0}} \mathbf{Z}\left[X, X^{-1}\right] \rightarrow 0,
$$

we obtain the complex

$$
0 \rightarrow M \xrightarrow{d^{0}} M \rightarrow 0,
$$

with $d^{0}(m)=(X-1) m$. Hence

$$
H^{0}(G, M)=\operatorname{ker}(g-1: M \rightarrow M)=M^{g=1}=M^{G},
$$

and

$$
H^{1}(G, M)=M /(g-1) M .
$$

Also $H^{i}(G, M)=0$ for $i \geqslant 2$.
Exercise 14. Let A be an abelian group and $f \in A^{*}=C^{1}(G, A)$. Show that if $g f=f$ for all $g \in G$, then f is a constant map, i.e. there exists $a \in A$ such that $f(g)=a$ for all $g \in G$. Therefore $\left(A^{*}\right)^{G} \simeq A$.

Solution. Set $a:=f(e)$. Since $g f=f$, we have

$$
f(g)=g f(e)=f(e), \quad \forall g \in G .
$$

The map $f \mapsto f(e)$ gives an isomorphism $\left(A^{*}\right)^{G} \simeq A$.
Exercise 16. Let G be an infinite cyclic group. Fix a generator g of G. Show that $H_{0}(G, M)=M /(g-1) M, H_{1}(G, M)=M^{G}$ and $H_{i}(G, M)=0$ for $i \geqslant 2$.

Solution. Take the projective resolution P. from Exercise 13. Since $\mathbf{Z}[G] \otimes_{\mathbf{Z}[G]} M \simeq M$, the complex $P_{\mathbf{\bullet}} \otimes_{\mathbf{Z}[G]} M$ reads:

$$
0 \rightarrow M \xrightarrow{d_{0}} M \rightarrow 0,
$$

where $d_{0}(m)=(X-1) m$ and the nonzero terms of the complex are concentrated in degrees 1 and 0 .

