UNIVERSITÉ DE BORDEAUX

Homological Algebra

Homework solution

Exectse 1. Let \mathfrak{Rings} denote the category whose objects are unitary rings and where a morphism $f : A \to B$ is an homomorphism of unitary rings (so $f(1_A) = 1_B$).

1) Show that each surjective homomorphism of rings $f : A \to B$ is an epimorphism in this category.

Solution. Let $g_1, g_2 : B \to C$ be two morphisms of rings. Assume that $g_1 \circ f = g_2 \circ f$. Since f is surjective, this implies that $g_1 = g_2$. Therefore f is an epimorphism.

2) Show that the natural inclusion $\mathbf{Z} \to \mathbf{Q}$ is an epimorphism in \mathfrak{Rings} .

Solution. a) Let $g : \mathbf{Q} \to A$ be a morphism of rings. Then $\ker(g)$ is an ideal in \mathbf{Q} . Since $g(1) = 1_A$, we have $\ker(g) \neq \mathbf{Q}$, and therefore $\ker(g) = \{0\}$. Hence the map g is injective.

b) Let $n \ge 1$. Assume that $a \in A$ be an *n*-torsion element of A i.e. na = 0. The the equality

$$a = 1_A \cdot a = g\left(\frac{1}{n} \cdot n\right) = g\left(\frac{1}{n}\right) \cdot na = 0$$

shows that a = 0. Hence for all n, the ring A has no n-torsion.

c) Let $g_1, g_2 : \mathbf{Q} \to A$ be two morphisms such that $g_1 \circ f = g_2 \circ f$. Then $g_1(n) = g_2(n)$ for all $n \in \mathbf{Z}$. Then for any $x = m/n \in \mathbf{Q}$ we have

$$ng_1(x) = g_1(nx) = g_1(m) = g_2(m) = ng_2(x).$$

Hence $n(g_1(x) - g_2(x)) = 0$, and we conclude that $g_1(x) = g_2(x)$.

Remark. For any morphism $g : \mathbf{Q} \to A$, one has $g(m) = m \cdot 1_A$ for all $m \in \mathbf{Z}$. Therefore our proof shows that for each A, there exists at most one morphism $\mathbf{Q} \to A$.

Exercise 2. Let A be an integral domain (unitary commutative ring for which every non-zero element is cancellable under multiplication). Denote by \mathcal{M} the category of A-modules. For any A-module M denote by T(M) the torsion submodule of M, that is

$$T(M) = \{x \in M | ax = 0 \text{ for some nonzero } a \in A\}.$$

We say that M is torsion (respectively torsion free), if T(M) = M(respectively T(M) = 0). Denote by \mathcal{T} (resp. \mathcal{TF}) the full subcategory of \mathcal{M} consisting of torsion (resp. torsion free) modules. 1) Show that \mathcal{T} is an abelian category and \mathcal{TF} is not necessarily abelian.

Solution. It is easy to see that if a full category \mathcal{B} of an abelian category \mathcal{A} satisfies the following properties, it is also abelian : a) It contains zero objects of \mathcal{A} ; b) For any $X, Y \in \mathcal{B}$, the coproduct (in \mathcal{A}) of X and Y lies in \mathcal{B} ; c) For any $X, Y \in \mathcal{B}$ and any $f : X \to Y$ the kernel ker(f) (in \mathcal{A}) and coker(f) (in \mathcal{A}) are objects of \mathcal{B} . Indeed, directly from definitions it follows that in this case for any morphism $f : X \to Y$, ker(f) and coker(f) are the kernel and the cokernel of f in \mathcal{B} . The objects coim(f) and Im(f) are in \mathcal{B} and the canonical map $\bar{f} : \operatorname{coim}(f) \to \operatorname{Im}(f)$ is an isomorphism both in \mathcal{A} and \mathcal{B} because \mathcal{B} is a full subcategory of \mathcal{A} . Applying this observation to the categories \mathcal{M} and \mathcal{T} , we get the first statement.

In \mathcal{TF} , we can consider the morphism $f : \mathbf{Z} \to \mathbf{Z}$ given by f(x) = 2x. It is clear that ker(f) = 0 and therefore $\operatorname{coim}(f) = \mathbf{Z}$. If $g : \mathbf{Z} \to X$ is a morphism in \mathcal{TF} satisfying $g \circ f = 0$, then $g(2\mathbf{Z}) = 0$ and therefore $g(\mathbf{Z}) = 0$ because X is torsion free. This implies that 0 is the cokernel of f in \mathcal{TF} . Then $\operatorname{Im}(f) = \mathbf{Z}$. Therefore the canonical map $\overline{f} : \operatorname{coim}(f) \to \operatorname{Im}(f)$ coincides with f, but it is not an isomorphism (it has no inverse).

2) Denote by $I : \mathcal{T} \to \mathcal{M}$ the inclusion functor. Show that the assignment $M \to T(M)$ defines a functor $T : \mathcal{M} \to T$ which is right adjoint to I.

Solution. The property we need to prove reads

 $\operatorname{Hom}_A(N, T(M)) \simeq \operatorname{Hom}_A(N, M)$

for any torsion module N and any A-module M. This follows from the observation that for any morphism $f : X \to Y$ of A-modules $f(T(X)) \subset T(Y)$.

3) Denote by $J : \mathcal{TF} \to \mathcal{M}$ the inclusion functor. Show that the assignment $M \to M/T(M)$ defines a functor $F : \mathcal{M} \to \mathcal{TF}$ which is left adjoint to J.

Solution. The property we need to prove reads

$$\operatorname{Hom}_A(M/T(M), N) \simeq \operatorname{Hom}_A(M, N)$$

for any A-module M and any torsion free A-module N. This follows from the observation that for any morphism $f : M \to N$ we have $f(T(M)) \subset T(N) = 0$ and therefore f factorizes through M/T(M). **Exercise 3.** Let $C^{\infty}(0,1)$ denote the **R**-vector space of infinitely differentiable functions on the open segment]0,1[. We denote by D the differentiation $D(f) = \frac{df(x)}{dx}$.

1) Consider the cochain complex

$$C : 0 \to C^{\infty}(0,1) \xrightarrow{D} C^{\infty}(0,1) \to 0,$$

where the two nonzero terms are placed in degrees 0 and 1. Compute the cohomology $H^i(C)$ of C.

Solution. It is clear that $\ker(D) = \mathbf{R}$ (constant functions) and that the map D is surjective (for each $f \in C^{\infty}(0, 1)$, take a primitive F of f; then D(F) = f). Hence $H^0(C) \simeq \mathbf{R}$ and $H^1(C) = 0$.

2) We say that $f \in C^{\infty}(0,1)$ is compactly supported if its support Supp $(f) = \{x \in]0, 1[|f(x) \neq 0\}$ is contained in a compact subset of]0, 1[. Let $C_c^{\infty}(0,1) \subset C^{\infty}(0,1)$ denote the subspace of compactly supported functions of $C^{\infty}(0,1)$. Consider the complex

$$C_c : 0 \to C_c^{\infty}(0,1) \xrightarrow{D} C_c^{\infty}(0,1) \to 0,$$

where the two nonzero terms are placed in degrees 0 and 1. Show that $H^0(C_c) = 0$ and $H^1(C_c)$ is canonically isomorphic to **R**.

Solution. Since the only constant function in C_c is the zero function, we have $H^0(C_c) = 0$. Consider the map

$$\alpha : C_c^{\infty}(0,1) \to \mathbf{R},$$
$$\alpha(f) = \int_0^1 f(t) dt.$$

It is clear that $\alpha \circ D = 0$. Conversely, if $f_i n \ker(\alpha)$, then the primitive $F(x) := \int_0^x f(t) dt$ satisfies F(0) = F(1) = 0. This implies that

$$H^1(C_c) \simeq \operatorname{Im}(\alpha) = \mathbf{R}.$$

Exercise 4. Let G be a finite cyclic group of order n. Fix a generator g of G. For any G-module A we define two morphisms $N : A \to A$ and $S : A \to A$ by

$$N(x) = x + gx + \dots + g^{n-1}x, \qquad S(x) = gx - x.$$

1) Check that $N \circ S = S \circ N = 0.$

Solution. In the commutative ring $\mathbf{Z}[G]$ we have

$$SN = NS = (1 + g + \dots + g^{n-1})(g - 1) = g^n - 1 = 0$$

Therefore we can consider the complex

$$X : \cdots \xrightarrow{N} X^0 \xrightarrow{S} X^1 \xrightarrow{N} X^2 \xrightarrow{S} X^3 \xrightarrow{N} \cdots$$

where $X^i = A$ for all $i \in \mathbb{Z}$. If $H^0(X)$ and $H^1(X)$ are both finite, we set

$$h(A) = \frac{|H^0(X)|}{|H^1(X)|}$$

and say that h(A) is well defined.

2) Show that $h(\mathbf{Z}) = n$ for the trivial *G*-module **Z**.

Solution. If G acts trivially on **Z** we have gx = x for all $x \in \mathbf{Z}$. The Sx = 0 and Nx = nx where n is the order of G. Thus $\ker(S) = \mathbf{Z}$, $\operatorname{Im}(S) = 0$, $\ker(N) = 0$ and $\operatorname{Im}(N) = n\mathbf{Z}$. We get $H^0(\mathbf{Z}) = \mathbf{Z}/n\mathbf{Z}$ and $H^1(\mathbf{Z}) = 0$. Therefore $h(\mathbf{Z}) = n$.

3) Show that if A is finite, then h(A) = 1. Solution. Since A is finite,

From the tautological exact sequences

$$0 \to \ker(S) \to A \xrightarrow{S} \operatorname{Im}(S) \to 0$$
$$0 \to \ker(N) \to A \xrightarrow{N} \operatorname{Im}(N) \to 0$$

(or simply from the first isomorphism theorem) it follows that

 $|\ker(S)| \cdot |\operatorname{Im}(S)| = |A|, \qquad |\ker(N)| \cdot |\operatorname{Im}(N)| = |A|.$

This implies that h(A) = 1.

4) Let

$$0 \to A \to B \to C \to 0$$

be an exact sequence of G-modules. Show that, if two of the quotients h(A), h(B) and h(C) are well defined, then the third is well defined and

$$h(B) = h(A)h(C).$$

(Hint: use an appropriate long exact cohomology sequence).

Solution. Let Y (resp. Z) denote the complex X associated to the module B (resp. C). It is easy to see that the complexes X, Y and Z form an exact sequence of complexes

$$0 \to X \to Y \to Z \to 0.$$

Therefore we have an exact cohomology sequence

$$\dots \to H^{-1}(Z) \xrightarrow{\delta^{-1}} H^0(X) \to H^0 \to H^0(Z) \to H^1(X)$$
$$\to H^1(Y) \to H^1(Z) \xrightarrow{\delta^1} H^2(X) \to \dots$$

Note that from the definition of the complex X it follows that $H^{i+2}(X) = H^i(X)$ for all $i \in \mathbb{Z}$ (and the same holds for Y and Z) and that $\delta^{i+2} = \delta^i$ for all $i \in \mathbb{Z}$. Tautologically, we have a finite exact sequence

(1)
$$0 \to \operatorname{Im}(\delta^{-1}) \to H^0(X) \to H^0(Y) \to H^0(Z)$$

 $\to H^1(X) \to H^1(Y) \to H^1(Z) \xrightarrow{\delta^1} \operatorname{Im}(\delta^1) \to 0.$

Note that for any exact sequence of *finite* modules K^i of the form

$$0 \xrightarrow{f^{-1}=0} K^0 \xrightarrow{f^0} K^1 \xrightarrow{f^1} K^2 \xrightarrow{f^2} \cdots \xrightarrow{f^{n-1}} K^n \xrightarrow{f^n=0} 0$$

one has

$$\prod_{i=0}^{n} |K^{i}|^{(-1)^{i}} = 1$$

(This follows from the formula $|K^i| = |\ker(f^i)| \cdot |\operatorname{Im}(f^i)|$ already used in question 3) and the exactness of the sequence which implies that $|\ker(f^i)| = |\operatorname{Im}(f^{i-1})|$ for all *i*.) Applying this formula to the exact sequence (1) and using the fact that $\operatorname{Im}(\delta^{-1}) = \operatorname{Im}(\delta^1)$, we get that h(B) = h(A)h(C).

Exercise 5. Let \mathcal{A} denote the category of left modules over a unitary ring A. Denote by $K(\mathcal{A})$ the category of chain complexes in \mathcal{A} . We know that $K(\mathcal{A})$ is an abelian category.

1) For any two complexes X and Y and $f, g \in \operatorname{Hom}_{K(\mathcal{A})}(X, Y)$ we write $f \simeq g$ if f and g are homotopic. Show in all detail that \simeq is an equivalence relation on $\operatorname{Hom}_{K(\mathcal{A})}(X, Y)$ (see Proposition 2.2 of the lecture notes).

Solution. For each f we have $f \simeq f$ with the zero homotopy map. If $f-g = d \circ s + s \circ d$, with a homotopy s then $g-f = d \circ (-s) + (-s) \circ d$. This shows that \simeq is a symmetric relation. Finally, if $f - g = d \circ s_1 + s_1 \circ d$ and $g - h = d \circ s_2 - 1 + s_2 \circ d$ with homopopies s_1 and s_2 , then $f - h = d \circ s_1 + s \circ d$ with $s = s_1 + s_2$.

2) Show that there exists a category $H(\mathcal{A})$ whose objects are chain complexes and morphisms are given by

$$\operatorname{Hom}_{H(\mathcal{A})}(X,Y) = \operatorname{Hom}_{K(\mathcal{A})}(X,Y)/\simeq .$$

Solution. Let $\alpha \in \operatorname{Hom}_{H(\mathcal{A})}(X, Y)$ and $\beta \in \operatorname{Hom}_{H(\mathcal{A})}(Y, Z)$. Take any representatives f and g of α and β and define $\beta \circ \alpha$ as the class of $g \circ f$. We should check that this class does not depend on the choice of representatives. Let $f' \simeq f$ and $g' \simeq g$. We show that

$$g \circ f \simeq g' \circ f \simeq g' \circ f'.$$

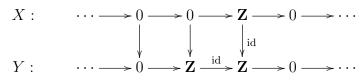
Let $g' - g = d \circ s + s \circ d$ with a homotopy $s = (s_n : Y_n \to Z_{n+1})$. Then

$$\begin{aligned} g' \circ f - g \circ f &= (g' - g) \circ f = (d \circ s + s \circ d) \circ f = \\ d \circ s \circ f + s \circ d \circ f &= d(\circ s \circ f) + (s \circ f) \circ d \end{aligned}$$

because $d \circ f = f \circ d$. Thus $s \circ f$ is a homotopy and $g' \circ f \simeq g \circ f$. The same argument shows that $g' \circ f \simeq g' \circ f'$.

All other properties follow directly from the definitions.

Assume that \mathcal{A} is the category of abelian groups. Consider the following morphism of complexes $f : X \to Y$:



3) Show that f is a monomorphism in $K(\mathcal{A})$ but f = 0 in $H(\mathcal{A})$.

Solution. Let $X = (X_n)$ and $Y = (Y_n)$ be two complexes of abelian groups. In the category $K(\mathcal{A})$ the kernel of a morphism $f : X \to Y$ is ker $(f) = (\text{ker}(f_n))$, where $f_n : X_n \to Y_n$. In our case $f_0 = \text{id}$ and in all other degrees the source object is 0. Thus it is clear that f is a monomorphism.

Define $s_0 : X_0 = \mathbf{Z} \to Y_1 = \mathbf{Z}$ by $s_0 = \text{id}$ and set $s_n = 0$ for all $n \neq 0$. It is easy to check that $f = d \circ s + s \circ d$. Thus $f \simeq 0$.