UNIVERSITÉ DE BORDEAUX

Homological Algebra

Homework solution

Execise 1. Let $\mathfrak{\Re i n g s ~ d e n o t e ~ t h e ~ c a t e g o r y ~ w h o s e ~ o b j e c t s ~ a r e ~ u n i t a r y ~}$ rings and where a morphism $f: A \rightarrow B$ is an homomorphism of unitary rings (so $f\left(1_{A}\right)=1_{B}$).

1) Show that each surjective homomorphism of rings $f: A \rightarrow B$ is an epimorphism in this category.

Solution. Let $g_{1}, g_{2}: B \rightarrow C$ be two morphisms of rings. Assume that $g_{1} \circ f=g_{2} \circ f$. Since f is surjective, this implies that $g_{1}=g_{2}$. Therefore f is an epimorphism.
2) Show that the natural inclusion $\mathbf{Z} \rightarrow \mathbf{Q}$ is an epimorphism in $\mathfrak{R i n g s}$.

Solution. a) Let $g: \mathbf{Q} \rightarrow A$ be a morphism of rings. Then $\operatorname{ker}(g)$ is an ideal in \mathbf{Q}. Since $g(1)=1_{A}$, we have $\operatorname{ker}(g) \neq \mathbf{Q}$, and therefore $\operatorname{ker}(g)=\{0\}$. Hence the map g is injective.
b) Let $n \geqslant 1$. Assume that $a \in A$ be an n-torsion element of A i.e. $n a=0$. The the equality

$$
a=1_{A} \cdot a=g\left(\frac{1}{n} \cdot n\right)=g\left(\frac{1}{n}\right) \cdot n a=0
$$

shows that $a=0$. Hence for all n, the ring A has no n-torsion.
c) Let $g_{1}, g_{2}: \mathbf{Q} \rightarrow A$ be two morphisms such that $g_{1} \circ f=g_{2} \circ f$. Then $g_{1}(n)=g_{2}(n)$ for all $n \in \mathbf{Z}$. Then for any $x=m / n \in \mathbf{Q}$ we have

$$
n g_{1}(x)=g_{1}(n x)=g_{1}(m)=g_{2}(m)=n g_{2}(x)
$$

Hence $n\left(g_{1}(x)-g_{2}(x)\right)=0$, and we conclude that $g_{1}(x)=g_{2}(x)$.
Remark. For any morphism $g: \mathbf{Q} \rightarrow A$, one has $g(m)=m \cdot 1_{A}$ for all $m \in \mathbf{Z}$. Therefore our proof shows that for each A, there exists at most one morphism $\mathbf{Q} \rightarrow A$.

Exercise 2. Let A be an integral domain (unitary commutative ring for which every non-zero element is cancellable under multiplication). Denote by \mathcal{M} the category of A-modules. For any A-module M denote by $T(M)$ the torsion submodule of M, that is

$$
T(M)=\{x \in M \mid a x=0 \text { for some nonzero } a \in A\}
$$

We say that M is torsion (respectively torsion free), if $T(M)=M$ (respectively $T(M)=0$). Denote by \mathcal{T} (resp. $\mathcal{T \mathcal { F }}$) the full subcategory of \mathcal{M} consisting of torsion (resp. torsion free) modules.

1) Show that \mathcal{T} is an abelian category and $\mathcal{T \mathcal { F }}$ is not necessarily abelian.

Solution. It is easy to see that if a full category \mathcal{B} of an abelian category \mathcal{A} satisfies the following properties, it is also abelian : a) It contains zero objects of $\mathcal{A} ;$ b) For any $X, Y \in \mathcal{B}$, the coproduct (in \mathcal{A}) of X and Y lies in \mathcal{B}; c) For any $X, Y \in \mathcal{B}$ and any $f: X \rightarrow Y$ the kernel $\operatorname{ker}(f)$ (in \mathcal{A}) and $\operatorname{coker}(f)$ (in \mathcal{A}) are objects of \mathcal{B}. Indeed, directly from definitions it follows that in this case for any morphism $f: X \rightarrow Y, \operatorname{ker}(f)$ and $\operatorname{coker}(f)$ are the kernel and the cokernel of f in \mathcal{B}. The objects coim (f) and $\operatorname{Im}(f)$ are in \mathcal{B} and the canonical map $\bar{f}: \operatorname{coim}(f) \rightarrow \operatorname{Im}(f)$ is an isomorphism both in \mathcal{A} and \mathcal{B} because \mathcal{B} is a full subcategory of \mathcal{A}. Applying this observation to the categories \mathcal{M} and \mathcal{T}, we get the first statement.

In $\mathcal{T \mathcal { F }}$, we can consider the morphism $f: \mathbf{Z} \rightarrow \mathbf{Z}$ given by $f(x)=$ $2 x$. It is clear that $\operatorname{ker}(f)=0$ and therefore $\operatorname{coim}(f)=\mathbf{Z}$. If $g: \mathbf{Z} \rightarrow X$ is a morphism in $\mathcal{T F}$ satisfying $g \circ f=0$, then $g(2 \mathbf{Z})=0$ and therefore $g(\mathbf{Z})=0$ because X is torsion free. This implies that 0 is the cokernel of f in $\mathcal{T F}$. Then $\operatorname{Im}(f)=\mathbf{Z}$. Therefore the canonical map $\bar{f}: \operatorname{coim}(f) \rightarrow \operatorname{Im}(f)$ coincides with f, but it is not an isomorphism (it has no inverse).
2) Denote by $I: \mathcal{T} \rightarrow \mathcal{M}$ the inclusion functor. Show that the assignement $M \rightarrow T(M)$ defines a functor $T: \mathcal{M} \rightarrow T$ which is right adjoint to I.
Solution. The property we need to prove reads

$$
\operatorname{Hom}_{A}(N, T(M)) \simeq \operatorname{Hom}_{A}(N, M)
$$

for any torsion module N and any A-module M. This follows from the observation that for any morphism $f: X \rightarrow Y$ of A-modules $f(T(X)) \subset T(Y)$.
3) Denote by $J: \mathcal{T F} \rightarrow \mathcal{M}$ the inclusion functor. Show that the assignement $M \rightarrow M / T(M)$ defines a functor $F: \mathcal{M} \rightarrow \mathcal{T F}$ which is left adjoint to J.

Solution. The property we need to prove reads

$$
\operatorname{Hom}_{A}(M / T(M), N) \simeq \operatorname{Hom}_{A}(M, N)
$$

for any A-module M and any torsion free A-module N. This follows from the observation that for any morphism $f: M \rightarrow N$ we have $f(T(M)) \subset T(N)=0$ and therefore f factorizes through $M / T(M)$.

Exercise 3. Let $C^{\infty}(0,1)$ denote the \mathbf{R}-vector space of infinitely differentiable functions on the open segment $] 0,1[$. We denote by D the differentiation $D(f)=\frac{d f(x)}{d x}$.

1) Consider the cochain complex

$$
C: 0 \rightarrow C^{\infty}(0,1) \xrightarrow{D} C^{\infty}(0,1) \rightarrow 0,
$$

where the two nonzero terms are placed in degrees 0 and 1. Compute the cohomology $H^{i}(C)$ of C.

Solution. It is clear that $\operatorname{ker}(D)=\mathbf{R}$ (constant functions) and that the map D is surjective (for each $f \in C^{\infty}(0,1)$, take a primitive F of f; then $D(F)=f)$. Hence $H^{0}(C) \simeq \mathbf{R}$ and $H^{1}(C)=0$.
2) We say that $f \in C^{\infty}(0,1)$ is compactly supported if its support $\operatorname{Supp}(f)=\{x \in] 0,1[\mid f(x) \neq 0\}$ is contained in a compact subset of $] 0,1\left[\right.$. Let $C_{c}^{\infty}(0,1) \subset C^{\infty}(0,1)$ denote the subspace of compactly supported functions of $C^{\infty}(0,1)$. Consider the complex

$$
C_{c}: 0 \rightarrow C_{c}^{\infty}(0,1) \xrightarrow{D} C_{c}^{\infty}(0,1) \rightarrow 0,
$$

where the two nonzero terms are placed in degrees 0 and 1 . Show that $H^{0}\left(C_{c}\right)=0$ and $H^{1}\left(C_{c}\right)$ is canonically isomorphic to \mathbf{R}.

Solution. Since the only constant function in C_{c} is the zero function, we have $H^{0}\left(C_{c}\right)=0$. Consider the map

$$
\begin{aligned}
& \alpha: C_{c}^{\infty}(0,1) \rightarrow \mathbf{R}, \\
& \alpha(f)=\int_{0}^{1} f(t) d t .
\end{aligned}
$$

It is clear that $\alpha \circ D=0$. Conversely, if $f_{i} n \operatorname{ker}(\alpha)$, then the primitive $F(x):=\int_{0}^{x} f(t) d t$ satisfies $F(0)=F(1)=0$. This implies that

$$
H^{1}\left(C_{c}\right) \simeq \operatorname{Im}(\alpha)=\mathbf{R} .
$$

Exercise 4. Let G be a finite cyclic group of order n. Fix a generator g of G. For any G-module A we define two morphisms $N: A \rightarrow A$ and $S: A \rightarrow A$ by

$$
N(x)=x+g x+\cdots+g^{n-1} x, \quad S(x)=g x-x .
$$

1) Check that $N \circ S=S \circ N=0$.

Solution. In the commutative ring $\mathbf{Z}[G]$ we have

$$
S N=N S=\left(1+g+\cdots+g^{n-1}\right)(g-1)=g^{n}-1=0
$$

Therefore we can consider the complex

$$
X: \quad \cdots \xrightarrow{N} X^{0} \xrightarrow{S} X^{1} \xrightarrow{N} X^{2} \xrightarrow{S} X^{3} \xrightarrow{N} \cdots
$$

where $X^{i}=A$ for all $i \in \mathbf{Z}$. If $H^{0}(X)$ and $H^{1}(X)$ are both finite, we set

$$
h(A)=\frac{\left|H^{0}(X)\right|}{\left|H^{1}(X)\right|}
$$

and say that $h(A)$ is well defined.
2) Show that $h(\mathbf{Z})=n$ for the trivial G-module \mathbf{Z}.

Solution. If G acts trivially on \mathbf{Z} we have $g x=x$ for all $x \in \mathbf{Z}$. The $S x=0$ and $N x=n x$ where n is the order of G. Thus $\operatorname{ker}(S)=\mathbf{Z}$, $\operatorname{Im}(S)=0, \operatorname{ker}(N)=0$ and $\operatorname{Im}(N)=n \mathbf{Z}$. We get $H^{0}(\mathbf{Z})=\mathbf{Z} / n \mathbf{Z}$ and $H^{1}(\mathbf{Z})=0$. Therefore $h(\mathbf{Z})=n$.
3) Show that if A is finite, then $h(A)=1$.

Solution. Since A is finite,

From the tautological exact sequences

$$
\begin{aligned}
& 0 \rightarrow \operatorname{ker}(S) \\
& \rightarrow A \xrightarrow{S} \operatorname{Im}(S) \rightarrow 0 \\
& 0 \rightarrow \operatorname{ker}(N)
\end{aligned} \rightarrow A \xrightarrow{N} \operatorname{Im}(N) \rightarrow 0
$$

(or simply from the first isomorphism theorem) it follows that

$$
|\operatorname{ker}(S)| \cdot|\operatorname{Im}(S)|=|A|, \quad|\operatorname{ker}(N)| \cdot|\operatorname{Im}(N)|=|A|
$$

This implies that $h(A)=1$.
4) Let

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

be an exact sequence of G-modules. Show that, if two of the quotients $h(A), h(B)$ and $h(C)$ are well defined, then the third is well defined and

$$
h(B)=h(A) h(C) .
$$

(Hint: use an appropriate long exact cohomology sequence).
Solution. Let Y (resp. Z) denote the complex X associated to the module B (resp. C). It is easy to see that the complexes X, Y and Z form an exact sequence of complexes

$$
0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0
$$

Therefore we have an exact cohomology sequence

$$
\begin{aligned}
\cdots \rightarrow H^{-1}(Z) \xrightarrow{\delta^{-1}} H^{0}(X) \rightarrow & H^{0} \rightarrow H^{0}(Z) \rightarrow H^{1}(X) \\
& \rightarrow H^{1}(Y) \rightarrow H^{1}(Z) \xrightarrow{\delta^{1}} H^{2}(X) \rightarrow \cdots
\end{aligned}
$$

Note that from the definition of the complex X it follows that $H^{i+2}(X)=$ $H^{i}(X)$ for all $i \in \mathbf{Z}$ (and the same holds for Y and Z) and that $\delta^{i+2}=\delta^{i}$ for all $i \in \mathbf{Z}$. Tautologically, we have a finite exact sequence

$$
\begin{align*}
0 \rightarrow \operatorname{Im}\left(\delta^{-1}\right) \rightarrow & H^{0}(X) \rightarrow H^{0}(Y) \rightarrow H^{0}(Z) \tag{1}\\
& \rightarrow H^{1}(X) \rightarrow H^{1}(Y) \rightarrow H^{1}(Z) \xrightarrow{\delta^{1}} \operatorname{Im}\left(\delta^{1}\right) \rightarrow 0 .
\end{align*}
$$

Note that for any exact sequence of finite modules K^{i} of the form

$$
0 \xrightarrow{f^{-1}=0} K^{0} \xrightarrow{f^{0}} K^{1} \xrightarrow{f^{1}} K^{2} \xrightarrow{f^{2}} \cdots \xrightarrow{f^{n-1}} K^{n} \xrightarrow{f^{n}=0} 0
$$

one has

$$
\prod_{i=0}^{n}\left|K^{i}\right|^{(-1)^{i}}=1
$$

(This follows from the formula $\left|K^{i}\right|=\left|\operatorname{ker}\left(f^{i}\right)\right| \cdot\left|\operatorname{Im}\left(f^{i}\right)\right|$ already used in question 3) and the exactness of the sequence which implies that $\left|\operatorname{ker}\left(f^{i}\right)\right|=\left|\operatorname{Im}\left(f^{i-1}\right)\right|$ for all i.) Applying this formula to the exact sequence (1) and using the fact that $\operatorname{Im}\left(\delta^{-1}\right)=\operatorname{Im}\left(\delta^{1}\right)$, we get that $h(B)=h(A) h(C)$.

Exercise 5. Let \mathcal{A} denote the category of left modules over a unitary ring A. Denote by $K(\mathcal{A})$ the category of chain complexes in \mathcal{A}. We know that $K(\mathcal{A})$ is an abelian category.

1) For any two complexes X and Y and $f, g \in \operatorname{Hom}_{K(\mathcal{A})}(X, Y)$ we write $f \simeq g$ if f and g are homotopic. Show in all detail that \simeq is an equivalence relation on $\operatorname{Hom}_{K(\mathcal{A})}(X, Y)$ (see Proposition 2.2 of the lecture notes).

Solution. For each f we have $f \simeq f$ with the zero homotopy map. If $f-g=d \circ s+s \circ d$, with a homotopy s then $g-f=d \circ(-s)+(-s) \circ d$. This shows that \simeq is a symmetric relation. Finally, if $f-g=d \circ s_{1}+s_{1} \circ d$ and $g-h=d \circ s_{2}-1+s_{2} \circ d$ with homopopies s_{1} and s_{2}, then $f-h=d \circ s_{1}+s \circ d$ with $s=s_{1}+s_{2}$.
2) Show that there exists a category $H(\mathcal{A})$ whose objects are chain complexes and morphisms are given by

$$
\operatorname{Hom}_{H(\mathcal{A})}(X, Y)=\operatorname{Hom}_{K(\mathcal{A})}(X, Y) / \simeq .
$$

Solution. Let $\alpha \in \operatorname{Hom}_{H(\mathcal{A})}(X, Y)$ and $\beta \in \operatorname{Hom}_{H(\mathcal{A})}(Y, Z)$. Take any representatives f and g of α and β and define $\beta \circ \alpha$ as the class of $g \circ f$. We should check that this class does not depend on the choice of representatives. Let $f^{\prime} \simeq f$ and $g^{\prime} \simeq g$. We show that

$$
g \circ f \simeq g^{\prime} \circ f \simeq g^{\prime} \circ f^{\prime}
$$

Let $g^{\prime}-g=d \circ s+s \circ d$ with a homotopy $s=\left(s_{n}: Y_{n} \rightarrow Z_{n+1}\right)$. Then

$$
\begin{aligned}
& g^{\prime} \circ f-g \circ f=\left(g^{\prime}-g\right) \circ f=(d \circ s+s \circ d) \circ f= \\
& \quad d \circ s \circ f+s \circ d \circ f=d(\circ s \circ f)+(s \circ f) \circ d
\end{aligned}
$$

because $d \circ f=f \circ d$. Thus $s \circ f$ is a homotopy and $g^{\prime} \circ f \simeq g \circ f$. The same argument shows that $g^{\prime} \circ f \simeq g^{\prime} \circ f^{\prime}$.

All other properties follow directly from the definitions.
Assume that \mathcal{A} is the category of abelian groups. Consider the following morphism of complexes $f: X \rightarrow Y$:

3) Show that f is a monomorphism in $K(\mathcal{A})$ but $f=0$ in $H(\mathcal{A})$.

Solution. Let $X=\left(X_{n}\right)$ and $Y=\left(Y_{n}\right)$ be two complexes of abelian groups. In the category $K(\mathcal{A})$ the kernel of a morphism $f: X \rightarrow Y$ is $\operatorname{ker}(f)=\left(\operatorname{ker}\left(f_{n}\right)\right)$, where $f_{n}: X_{n} \rightarrow Y_{n}$. In our case $f_{0}=$ id and in all other degrees the source object is 0 . Thus it is clear that f is a monomorphism.

Define $s_{0}: X_{0}=\mathbf{Z} \rightarrow Y_{1}=\mathbf{Z}$ by $s_{0}=\mathrm{id}$ and set $s_{n}=0$ for all $n \neq 0$. It is easy to check that $f=d \circ s+s \circ d$. Thus $f \simeq 0$.

