UNIVERSITE DE BORDEAUX
Homological Algebra

Homework solution

Execise 1. Let Rings denote the category whose objects are unitary
rings and where a morphism f : A — B is an homomorphism of
unitary rings (so f(14) = 1p).

1) Show that each surjective homomorphism of rings f : A — B is
an epimorphism in this category.

Solution. Let g1,g2 : B — C be two morphisms of rings. Assume
that g o f = g2 o f. Since f is surjective, this implies that g, = ¢s.
Therefore f is an epimorphism.

2) Show that the natural inclusion Z — Q is an epimorphism in Rings.
Solution. a) Let ¢ : Q — A be a morphism of rings. Then ker(g)
is an ideal in Q. Since g(1) = 14, we have ker(g) # Q, and therefore
ker(g) = {0}. Hence the map ¢ is injective.
b) Let n > 1. Assume that a € A be an n-torsion element of A i.e.
na = 0. The the equality

1 1
a=1p-a=g ﬁn =g - -na =10

shows that a = 0. Hence for all n, the ring A has no n-torsion.
c) Let g1,92 : Q — A be two morphisms such that g; o f = gy 0 f.
Then g1(n) = g2(n) for all n € Z. Then for any x = m/n € Q we have

ngi(z) = g1(nx) = gi(m) = ga(m) = nga(x).
Hence n(g;(z) — g2(x)) = 0, and we conclude that g;(z) = go(z).
Remark. For any morphism g : Q — A, one has g(m) =m - 1,4 for
all m € Z. Therefore our proof shows that for each A, there exists at
most one morphism Q — A.

Exercise 2. Let A be an integral domain (unitary commutative ring
for which every non-zero element is cancellable under multiplication).
Denote by M the category of A-modules. For any A-module M denote
by T'(M) the torsion submodule of M, that is

T(M) = {x € M|ax = 0 for some nonzero a € A}.

We say that M is torsion (respectively torsion free), if T'(M) = M
(respectively T'(M) = 0). Denote by T (resp. TF) the full subcategory
of M consisting of torsion (resp. torsion free) modules.



1) Show that 7 is an abelian category and 7 F is not necessarily
abelian.

Solution. It is easy to see that if a full category B of an abelian
category A satisfies the following properties, it is also abelian : a) It
contains zero objects of A; b) For any XY € B, the coproduct (in
A) of X and Y lies in B; ¢) For any X, Y € Band any f : X — Y
the kernel ker(f) (in .A) and coker(f) (in \A) are objects of B. Indeed,
directly from definitions it follows that in this case for any morphism
f X =Y, ker(f) and coker(f) are the kernel and the cokernel of f
in B. The objects coim(f) and Im(f) are in B and the canonical map
f : coim(f) — Im(f) is an isomorphism both in A and B because B
is a full subcategory of A. Applying this observation to the categories
M and T, we get the first statement.

In 7F, we can consider the morphism f : Z — Z given by f(x) =
2z. It is clear that ker(f) = 0 and therefore coim(f) =Z.1fg : Z - X
is a morphism in 7 F satisfying g o f = 0, then g(2Z) = 0 and there-
fore g(Z) = 0 because X is torsion free. This implies that 0 is the
cokernel of f in TF. Then Im(f) = Z. Therefore the canonical map
f : coim(f) — Im(f) coincides with f, but it is not an isomorphism
(it has no inverse).

2) Denote by I : T — M the inclusion functor. Show that the as-
signement M — T(M) defines a functor T : M — T which is right
adjoint to I.

Solution. The property we need to prove reads

Hom (N, T(M)) ~ Hom (N, M)

for any torsion module N and any A-module M. This follows from
the observation that for any morphism f : X — Y of A-modules
F(T(X)) CTY).

3) Denote by J : TF — M the inclusion functor. Show that the
assignement M — M /T (M) defines a functor F' : M — TF which is
left adjoint to J.

Solution. The property we need to prove reads

Hom (M /T (M), N) ~ Homu (M, N)

for any A-module M and any torsion free A-module N. This follows
from the observation that for any morphism f : M — N we have
f(T'(M)) C T(N) =0 and therefore f factorizes through M/T'(M).
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Exercise 3. Let C°(0,1) denote the R-vector space of infinitely dif-
ferentiable functions on the open segment |0, 1[. We denote by D the
differentiation D(f) = %.

1) Consider the cochain complex

C:0—C>0,1)2 Cc™0,1) =0,

where the two nonzero terms are placed in degrees 0 and 1. Compute
the cohomology H'(C) of C.

Solution. It is clear that ker(D) = R (constant functions) and that
the map D is surjective (for each f € C*°(0,1), take a primitive F' of
f; then D(F) = f). Hence H°(C) ~ R and H'(C) = 0.

2) We say that f € C*°(0,1) is compactly supported if its support
Supp(f) = {z €]0,1]|f(z) # 0} is contained in a compact subset of
10,1]. Let C°(0,1) € C*°(0,1) denote the subspace of compactly sup-
ported functions of C*°(0,1). Consider the complex

C. . 0—C>0,1) 2 Cc>(0,1) -0,

where the two nonzero terms are placed in degrees 0 and 1. Show that
H°(C.) =0 and H'(C,) is canonically isomorphic to R.

Solution. Since the only constant function in C. is the zero function,
we have H°(C,) = 0. Consider the map

. C(0,1) - R,

/f

It is clear that ao D = 0. Conversely, if finker(a), then the primitive
= [ f(t)dt satisfies F(0) = F(1) = 0. This implies that

H*(C.) ~Im(a) = R.

Exercise 4. Let G be a finite cyclic group of order n. Fix a generator
g of G. For any G-module A we define two morphisms N : A — A and
S:A— Aby

N(z)=z+gr+---+g" 'z, S(z) = gz — .
1) Check that No S =SoN =0.

Solution. In the commutative ring Z[G] we have

SN=NS=(1+g+-+¢"Ng-1)=g¢g"—-1=0
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Therefore we can consider the complex
X N x05 xr Nyox2 5 s Ny

where X' = A for all i € Z. If H°(X) and H'(X) are both finite, we
“ H0(X)
H°(X
" =)
and say that h(A) is well defined.

2) Show that h(Z) = n for the trivial G-module Z.

Solution. If G acts trivially on Z we have gr = x for all z € Z.
The Sz = 0 and Nz = nx where n is the order of G. Thus ker(S) = Z,
Im(S) = 0, ker(N) = 0 and Im(N) = nZ. We get H°(Z) = Z/nZ and
HY(Z) = 0. Therefore h(Z) = n.

3) Show that if A is finite, then h(A) = 1.
Solution. Since A is finite,

From the tautological exact sequences

0 — ker(S) — A 2 Im(S) = 0

0 — ker(N) — A &, Im(N) =0
(or simply from the first isomorphism theorem) it follows that

[ ker(S)| - [Im(S)| = [A],  |ker(N)]| - [Im(N)| = [A].
This implies that h(A) = 1.
4) Let
0—-A—-B—-C—0

be an exact sequence of G-modules. Show that, if two of the quotients
h(A), h(B) and h(C) are well defined, then the third is well defined
and

h(B) = h(A)h(C).
(Hint: use an appropriate long exact cohomology sequence).
Solution. Let Y (resp. Z) denote the complex X associated to the

module B (resp. C'). It is easy to see that the complexes X, Y and Z
form an exact sequence of complexes

0—-X—-Y—>Z—=0.

Therefore we have an exact cohomology sequence



S HYZ) S HYX) — HY — H(Z) — HY(X)
S HYY) = HY(Z) S HA(X) = -

Note that from the definition of the complex X it follows that H*™?(X) =
H(X) for alli € Z (and the same holds for Y and Z) and that §'*2 = ¢

for all ¢ € Z. Tautologically, we have a finite exact sequence
(1) 0—=Im(0~") — HY(X) = H°(Y) — H°(Z)

S HY(X) = HYY) — HY(Z) 5 Im(8Y) — 0.
Note that for any exact sequence of finite modules K* of the form

=0,

—1_ 0 1 2 n—1
NERSSNY ' CIEANY CREANy 'R AN AN & 0

one has
[T =1,
i=0

(This follows from the formula |K*| = |ker(f*)| - [Im(f*)| already used
in question 3) and the exactness of the sequence which implies that
| ker(f)| = [Im(f=1)| for all 4. ) Applying this formula to the exact
sequence (1) and using the fact that Im(6~!) = Im(d'), we get that
h(B) = h(A)h(C).

Exercise 5. Let A denote the category of left modules over a uni-
tary ring A. Denote by K(A) the category of chain complexes in A.
We know that K (.A) is an abelian category.

1) For any two complexes X and Y and f,g € Homg4)(X,Y) we
write f ~ ¢ if f and g are homotopic. Show in all detail that ~ is
an equivalence relation on Homg4)(X,Y") (see Proposition 2.2 of the
lecture notes).

Solution. For each f we have f ~ f with the zero homotopy map. If
f—g = dos+sod, with a homotopy s then g— f = do(—s)+(—s)od. This
shows that ~ is a symmetric relation. Finally, if f —g =dos; +s;0d
and g — h = do sy — 1+ sy od with homopopies s; and s, then
f—h=dos;+sod with s = s + ss.

2) Show that there exists a category H(.A) whose objects are chain
complexes and morphisms are given by

Hom g (a)(X,Y) = Homg ) (X,Y)/ >~ .
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Solution. Let a € Homp(4)(X,Y) and 8 € Homp(4) (Y, Z). Take any
representatives f and ¢ of a and [ and define 8 o « as the class of
go f. We should check that this class does not depend on the choice of
representatives. Let f' ~ f and ¢’ ~ g. We show that
gof=gof=golf.
Let ¢ — g = do s+ sod with a homotopy s = (s, : ¥;, = Z,41). Then
gof—gof=(g—g)of=(dos+sod)of=
dosof+sodof=d(osof)+(sof)od

because do f = fod. Thus so f is a homotopy and ¢’ o f ~ go f. The
same argument shows that ¢’ o f ~ ¢’ o f’.
All other properties follow directly from the definitions.

Assume that A is the category of abelian groups. Consider the fol-
lowing morphism of complexes f : X — Y

X - 0 0 V/ 0
A
Y - 0 7 4.7 0

3) Show that f is a monomorphism in K(A) but f =0 in H(A).

Solution. Let X = (X,,) and Y = (Y},) be two complexes of abelian
groups. In the category K(A) the kernel of a morphism f : X — Y
is ker(f) = (ker(f,)), where f, : X,, = Y,. In our case f; = id and
in all other degrees the source object is 0. Thus it is clear that f is a
monomorphism.

Define sg : Xg =7Z — Y, = Z by so = id and set s, = 0 for all
n # 0. It is easy to check that f =do s+ sod. Thus f ~ 0.



