
UNIVERSITÉ DE BORDEAUX

Homological Algebra

Homework solution

Execise 1. Let Rings denote the category whose objects are unitary
rings and where a morphism f : A → B is an homomorphism of
unitary rings (so f(1A) = 1B).

1) Show that each surjective homomorphism of rings f : A → B is
an epimorphism in this category.

Solution. Let g1, g2 : B → C be two morphisms of rings. Assume
that g1 ◦ f = g2 ◦ f. Since f is surjective, this implies that g1 = g2.
Therefore f is an epimorphism.

2) Show that the natural inclusion Z→ Q is an epimorphism in Rings.
Solution. a) Let g : Q → A be a morphism of rings. Then ker(g)

is an ideal in Q. Since g(1) = 1A, we have ker(g) 6= Q, and therefore
ker(g) = {0}. Hence the map g is injective.

b) Let n > 1. Assume that a ∈ A be an n-torsion element of A i.e.
na = 0. The the equality

a = 1A · a = g

(
1

n
· n
)

= g

(
1

n

)
· na = 0

shows that a = 0. Hence for all n, the ring A has no n-torsion.
c) Let g1, g2 : Q → A be two morphisms such that g1 ◦ f = g2 ◦ f.

Then g1(n) = g2(n) for all n ∈ Z. Then for any x = m/n ∈ Q we have

ng1(x) = g1(nx) = g1(m) = g2(m) = ng2(x).

Hence n(g1(x)− g2(x)) = 0, and we conclude that g1(x) = g2(x).
Remark. For any morphism g : Q → A, one has g(m) = m · 1A for

all m ∈ Z. Therefore our proof shows that for each A, there exists at
most one morphism Q→ A.

Exercise 2. Let A be an integral domain (unitary commutative ring
for which every non-zero element is cancellable under multiplication).
Denote byM the category of A-modules. For any A-module M denote
by T (M) the torsion submodule of M , that is

T (M) = {x ∈M |ax = 0 for some nonzero a ∈ A}.
We say that M is torsion (respectively torsion free), if T (M) = M
(respectively T (M) = 0). Denote by T (resp. T F) the full subcategory
of M consisting of torsion (resp. torsion free) modules.
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1) Show that T is an abelian category and T F is not necessarily
abelian.

Solution. It is easy to see that if a full category B of an abelian
category A satisfies the following properties, it is also abelian : a) It
contains zero objects of A; b) For any X, Y ∈ B, the coproduct (in
A) of X and Y lies in B; c) For any X, Y ∈ B and any f : X → Y
the kernel ker(f) (in A) and coker(f) (in A) are objects of B. Indeed,
directly from definitions it follows that in this case for any morphism
f : X → Y, ker(f) and coker(f) are the kernel and the cokernel of f
in B. The objects coim(f) and Im(f) are in B and the canonical map
f̄ : coim(f) → Im(f) is an isomorphism both in A and B because B
is a full subcategory of A. Applying this observation to the categories
M and T , we get the first statement.

In T F , we can consider the morphism f : Z → Z given by f(x) =
2x. It is clear that ker(f) = 0 and therefore coim(f) = Z. If g : Z→ X
is a morphism in T F satisfying g ◦ f = 0, then g(2Z) = 0 and there-
fore g(Z) = 0 because X is torsion free. This implies that 0 is the
cokernel of f in T F . Then Im(f) = Z. Therefore the canonical map
f̄ : coim(f) → Im(f) coincides with f, but it is not an isomorphism
(it has no inverse).

2) Denote by I : T → M the inclusion functor. Show that the as-
signement M → T (M) defines a functor T : M → T which is right
adjoint to I.

Solution. The property we need to prove reads

HomA(N, T (M)) ' HomA(N,M)

for any torsion module N and any A-module M. This follows from
the observation that for any morphism f : X → Y of A-modules
f(T (X)) ⊂ T (Y ).

3) Denote by J : T F → M the inclusion functor. Show that the
assignement M →M/T (M) defines a functor F : M→ T F which is
left adjoint to J.

Solution. The property we need to prove reads

HomA(M/T (M), N) ' HomA(M,N)

for any A-module M and any torsion free A-module N. This follows
from the observation that for any morphism f : M → N we have
f(T (M)) ⊂ T (N) = 0 and therefore f factorizes through M/T (M).
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Exercise 3. Let C∞(0, 1) denote the R-vector space of infinitely dif-
ferentiable functions on the open segment ]0, 1[. We denote by D the

differentiation D(f) = df(x)
dx

.
1) Consider the cochain complex

C : 0→ C∞(0, 1)
D−→ C∞(0, 1)→ 0,

where the two nonzero terms are placed in degrees 0 and 1. Compute
the cohomology H i(C) of C.

Solution. It is clear that ker(D) = R (constant functions) and that
the map D is surjective (for each f ∈ C∞(0, 1), take a primitive F of
f ; then D(F ) = f). Hence H0(C) ' R and H1(C) = 0.

2) We say that f ∈ C∞(0, 1) is compactly supported if its support
Supp(f) = {x ∈]0, 1[|f(x) 6= 0} is contained in a compact subset of
]0, 1[. Let C∞c (0, 1) ⊂ C∞(0, 1) denote the subspace of compactly sup-
ported functions of C∞(0, 1). Consider the complex

Cc : 0→ C∞c (0, 1)
D−→ C∞c (0, 1)→ 0,

where the two nonzero terms are placed in degrees 0 and 1. Show that
H0(Cc) = 0 and H1(Cc) is canonically isomorphic to R.

Solution. Since the only constant function in Cc is the zero function,
we have H0(Cc) = 0. Consider the map

α : C∞c (0, 1)→ R,

α(f) =

∫ 1

0

f(t)dt.

It is clear that α ◦D = 0. Conversely, if fin ker(α), then the primitive
F (x) :=

∫ x
0
f(t)dt satisfies F (0) = F (1) = 0. This implies that

H1(Cc) ' Im(α) = R.

Exercise 4. Let G be a finite cyclic group of order n. Fix a generator
g of G. For any G-module A we define two morphisms N : A→ A and
S : A→ A by

N(x) = x+ gx+ · · ·+ gn−1x, S(x) = gx− x.
1) Check that N ◦ S = S ◦N = 0.

Solution. In the commutative ring Z[G] we have

SN = NS = (1 + g + · · ·+ gn−1)(g − 1) = gn − 1 = 0



4

Therefore we can consider the complex

X : · · · N−→ X0 S−→ X1 N−→ X2 S−→ X3 N−→ · · ·
where X i = A for all i ∈ Z. If H0(X) and H1(X) are both finite, we
set

h(A) =
|H0(X)|
|H1(X)|

and say that h(A) is well defined.
2) Show that h(Z) = n for the trivial G-module Z.
Solution. If G acts trivially on Z we have gx = x for all x ∈ Z.

The Sx = 0 and Nx = nx where n is the order of G. Thus ker(S) = Z,
Im(S) = 0, ker(N) = 0 and Im(N) = nZ. We get H0(Z) = Z/nZ and
H1(Z) = 0. Therefore h(Z) = n.

3) Show that if A is finite, then h(A) = 1.
Solution. Since A is finite,

From the tautological exact sequences

0→ ker(S)→ A
S−→ Im(S)→ 0

0→ ker(N)→ A
N−→ Im(N)→ 0

(or simply from the first isomorphism theorem) it follows that

| ker(S)| · |Im(S)| = |A|, | ker(N)| · |Im(N)| = |A|.
This implies that h(A) = 1.

4) Let

0→ A→ B → C → 0

be an exact sequence of G-modules. Show that, if two of the quotients
h(A), h(B) and h(C) are well defined, then the third is well defined
and

h(B) = h(A)h(C).

(Hint: use an appropriate long exact cohomology sequence).

Solution. Let Y (resp. Z) denote the complex X associated to the
module B (resp. C). It is easy to see that the complexes X, Y and Z
form an exact sequence of complexes

0→ X → Y → Z → 0.

Therefore we have an exact cohomology sequence
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· · · → H−1(Z)
δ−1

−−→ H0(X)→ H0 → H0(Z)→ H1(X)

→ H1(Y )→ H1(Z)
δ1−→ H2(X)→ · · ·

Note that from the definition of the complexX it follows thatH i+2(X) =
H i(X) for all i ∈ Z (and the same holds for Y and Z) and that δi+2 = δi

for all i ∈ Z. Tautologically, we have a finite exact sequence

(1) 0→ Im(δ−1)→ H0(X)→ H0(Y )→ H0(Z)

→ H1(X)→ H1(Y )→ H1(Z)
δ1−→ Im(δ1)→ 0.

Note that for any exact sequence of finite modules Ki of the form

0
f−1=0−−−−→ K0 f0−→ K1 f1−→ K2 f2−→ · · · f

n−1

−−−→ Kn fn=0−−−→ 0

one has
n∏
i=0

|Ki|(−1)i = 1.

(This follows from the formula |Ki| = | ker(f i)| · |Im(f i)| already used
in question 3) and the exactness of the sequence which implies that
| ker(f i)| = |Im(f i−1)| for all i. ) Applying this formula to the exact
sequence (1) and using the fact that Im(δ−1) = Im(δ1), we get that
h(B) = h(A)h(C).

Exercise 5. Let A denote the category of left modules over a uni-
tary ring A. Denote by K(A) the category of chain complexes in A.
We know that K(A) is an abelian category.

1) For any two complexes X and Y and f, g ∈ HomK(A)(X, Y ) we
write f ' g if f and g are homotopic. Show in all detail that ' is
an equivalence relation on HomK(A)(X, Y ) (see Proposition 2.2 of the
lecture notes).

Solution. For each f we have f ' f with the zero homotopy map. If
f−g = d◦s+s◦d, with a homotopy s then g−f = d◦(−s)+(−s)◦d. This
shows that ' is a symmetric relation. Finally, if f − g = d ◦ s1 + s1 ◦ d
and g − h = d ◦ s2 − 1 + s2 ◦ d with homopopies s1 and s2, then
f − h = d ◦ s1 + s ◦ d with s = s1 + s2.

2) Show that there exists a category H(A) whose objects are chain
complexes and morphisms are given by

HomH(A)(X, Y ) = HomK(A)(X, Y )/ ' .
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Solution. Let α ∈ HomH(A)(X, Y ) and β ∈ HomH(A)(Y, Z). Take any
representatives f and g of α and β and define β ◦ α as the class of
g ◦ f. We should check that this class does not depend on the choice of
representatives. Let f ′ ' f and g′ ' g. We show that

g ◦ f ' g′ ◦ f ' g′ ◦ f ′.
Let g′− g = d ◦ s+ s ◦ d with a homotopy s = (sn : Yn → Zn+1). Then

g′ ◦ f − g ◦ f = (g′ − g) ◦ f = (d ◦ s+ s ◦ d) ◦ f =

d ◦ s ◦ f + s ◦ d ◦ f = d(◦s ◦ f) + (s ◦ f) ◦ d
because d ◦ f = f ◦ d. Thus s ◦ f is a homotopy and g′ ◦ f ' g ◦ f. The
same argument shows that g′ ◦ f ' g′ ◦ f ′.

All other properties follow directly from the definitions.

Assume that A is the category of abelian groups. Consider the fol-
lowing morphism of complexes f : X → Y :

X : · · · // 0 //

��

0 //

��

Z //

id
��

0 // · · ·

Y : · · · // 0 // Z
id // Z // 0 // · · ·

3) Show that f is a monomorphism in K(A) but f = 0 in H(A).

Solution. Let X = (Xn) and Y = (Yn) be two complexes of abelian
groups. In the category K(A) the kernel of a morphism f : X → Y
is ker(f) = (ker(fn)), where fn : Xn → Yn. In our case f0 = id and
in all other degrees the source object is 0. Thus it is clear that f is a
monomorphism.

Define s0 : X0 = Z → Y1 = Z by s0 = id and set sn = 0 for all
n 6= 0. It is easy to check that f = d ◦ s+ s ◦ d. Thus f ' 0.


