UNIVERSITÉ DE BORDEAUX

Homological Algebra

Homework, due November 17th 2022

Execise 1. Let Rings denote the category whose objects are unitary rings and where a morphism $f : A \to B$ is an homomorphism of unitary rings (so $f(1_A) = 1_B$).

1) Show that each surjective homomorphism of rings $f : A \to B$ is an epimorphism in this category.

2) Show that the natural inclusion $\mathbf{Z} \to \mathbf{Q}$ is an epimorphism in Rings.

Exercise 2. Let A be an integral domain (unitary commutative ring for which every non-zero element is cancellable under multiplication). Denote by \mathcal{M} the category of A-modules. For any A-module M denote by T(M) the torsion submodule of M, that is

$$T(M) = \{x \in M | ax = 0 \text{ for some nonzero } a \in A\}.$$

We say that M is torsion (respectively torsion free), if T(M) = M(respectively T(M) = 0). Denote by \mathcal{T} (resp. \mathcal{TF}) the full subcategory of \mathcal{M} consisting of torsion (resp. torsion free) modules.

1) Show that \mathcal{T} is an abelian category and \mathcal{TF} is not necessarily abelian.

2) Denote by $I : \mathcal{T} \to \mathcal{M}$ the inclusion functor. Show that the assignment $M \to T(M)$ defines a functor $T : \mathcal{M} \to T$ which is right adjoint to I.

3) Denote by $J : \mathcal{TF} \to \mathcal{M}$ the inclusion functor. Show that the assignment $M \to M/T(M)$ defines a functor $F : \mathcal{M} \to \mathcal{TF}$ which is left adjoint to J.

Exercise 3. Let $C^{\infty}(0,1)$ denote the **R**-vector space of infinitely differentiable functions on the open segment]0,1[. We denote by D the differentiation $D(f) = \frac{df(x)}{dx}$. 1) Consider the cochain complex

$$C : 0 \to C^{\infty}(0,1) \xrightarrow{D} C^{\infty}(0,1) \to 0,$$

Б

where the two nonzero terms are placed in degrees 0 and 1. Compute the cohomology $H^i(C)$ of C.

2) We say that $f \in C^{\infty}(0,1)$ is compactly supported if its support $\operatorname{Supp}(f) = \{x \in]0, 1 | | f(x) \neq 0\}$ is contained in a compact subset of]0,1[. Let $C_c^{\infty}(0,1) \subset C^{\infty}(0,1)$ denote the subspace of compactly supported functions of $C^{\infty}(0,1)$. Consider the complex

$$C_c : 0 \to C_c^{\infty}(0,1) \xrightarrow{D} C_c^{\infty}(0,1) \to 0,$$

where the two nonzero terms are placed in degrees 0 and 1. Show that $H^0(C_c) = 0$ and $H^1(C_c)$ is canonically isomorphic to **R**.

Exercise 4. Let G be a finite cyclic group of order n. Fix a generator g of G. For any G-module A we define two morphisms $N : A \to A$ and $S : A \to A$ by

 $N(x) = x + gx + \dots + g^{n-1}x,$ S(x) = gx - x.

1) Check that $N \circ S = S \circ N = 0$.

Therefore we can consider the complex

$$X : \cdots \xrightarrow{N} X^0 \xrightarrow{S} X^1 \xrightarrow{N} X^2 \xrightarrow{S} X^3 \xrightarrow{N} \cdots$$

where $X^i = A$ for all $i \in \mathbb{Z}$. If $H^0(X)$ and $H^1(X)$ are both finite, we set

$$h(A) = \frac{|H^0(X)|}{|H^1(X)|}$$

and say that h(A) is well defined.

2) Show that $h(\mathbf{Z}) = n$ for the trivial *G*-module **Z**.

3) Show that if A is finite, then h(A) = 1.

4) Let

$$0 \to A \to B \to C \to 0$$

be an exact sequence of G-modules. Show that, if two of the quotients h(A), h(B) and h(C) are well defined, then the third is well defined and

$$h(B) = h(A)h(C).$$

(Hint: use an appropriate long exact cohomology sequence).

Exercise 5. Let \mathcal{A} denote the category of left modules over a unitary ring A. Denote by $K(\mathcal{A})$ the category of chain complexes in \mathcal{A} . We know that $K(\mathcal{A})$ is an abelian category.

1) For any two complexes X and Y and $f, g \in \operatorname{Hom}_{K(\mathcal{A})}(X, Y)$ we write $f \simeq g$ if f and g are homotopic. Show in all detail that \simeq is an equivalence relation on $\operatorname{Hom}_{K(\mathcal{A})}(X, Y)$ (see Proposition 2.2 of the lecture notes).

2) Show that there exists a category $H(\mathcal{A})$ whose objects are chain complexes and morphisms are given by

$$\operatorname{Hom}_{H(\mathcal{A})}(X,Y) = \operatorname{Hom}_{K(\mathcal{A})}(X,Y)/\simeq .$$

Assume that \mathcal{A} is the category of abelian groups. Consider the following morphism of complexes $f : X \to Y$:

3) Show that f is a monomorphism in $K(\mathcal{A})$ but f = 0 in $H(\mathcal{A})$.