AN INTRODUCTION TO p-ADIC HODGE THEORY
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AssTtrACT. These notes provide an introduction to p-adic Hodge theory. They
are based on the series of lectures given by the author at the International Center

of Theoretical Sciences of Tata Institute in 2019.
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INTRODUCTION

0.1. These notes grew out of author’s lectures at the International Center of The-
oretical Sciences of Tata Institute in Bangalore in September, 2019. Their aim is
to provide a self-contained introduction to p-adic Hodge theory with minimal pre-
requisties. The reader should be familiar with valuations, complete fields and basic
results in the theory of local fields, including ramification theory as, for example,
the first four chapters of Serre’s book [142]. In Sections 3 and 4, we use the lan-
guage of continuous cohomology. Sections 15 and 16 require the knowledge of
Galois cohomology and local class field theory, as in [[142] or [[140].

0.2. Section 1 is utilitarian. For the convenience of the reader, it assembles ba-
sic definitions and results from the theory of local fields repeatedly used in the
text. In Section 2, we discuss the structure of the absolute Galois group of a lo-
cal field. Although only a portion of this material is used in the remainder of the
text, we think that it is important in its own right. In Section 3, we illustrate the
ramification theory by the example of Z,-extensions. Following Tate, we define
the normalized trace map and compute continuous cohomology of Galois groups
of such extensions.

Krasner [100] was probably the first to remark that local fields of caracteristic p
appear as “limits” of totally ramified local fields of characteristic OH In Sections 4-
6, we study three important manifestations of this phenomenon. In Section 4, we
introduce Tate’s method of almost étale extensions. We consider deeply ramified
extensions of local fields and prove that finite extensions of a deeply ramified field
are almost étale. The main reference here is the paper of Coates and Greenberg
[37]. The book of Gabber and Ramero [78]] provides a new conceptual approach to
this theory in a very general setting, but uses the tools which are beyond the scope
of these notes. As an application, we compute continuous Galois cohomology of
the absolute Galois group of a local field.

In Section 5, we study perfectoid fields following Scholze [130] and Fargues—
Fontaine [60]. The connection of this notion with the theory of deeply ramified
extensions is given by a theorem of Gabber—Ramero. Again, we limit our study to
the arithmetic case and refer the interested reader to [130] for the general treatment.
In Section 6, we review the theory of field of norms of Fontaine—Wintenberger and
discuss its relation with perfectoid fields.

Sections 7-13 are devoted to the general theory of p-adic representations. In
Section 7, we introduce basic notions and examples and discuss Grothendieck’s
{-adic monodromy theorem. Next we turn to the case £ = p. Section 8 gives an

Igee [S2] for a modern exposition of Krasner’s results.



4 DENIS BENOIS

introduction to Fontaine’s theory of (¢,I')-modules [69]]. Here we classify p-adic
representations of local fields using the link between the fields of characteristic 0
and p studied in Sections 5-6. In Sections 9-13, we introduce and study special
classes of p-adic representations. The general formalism of admissible representa-
tions is reviewed in Section 9. In Section 10, we discuss the notion of a Hodge—
Tate representation and put it in the frame of Sen’s theory of Cg-representations.
Here the computation of the continuous Galois cohomology from Section 4 plays
a fundamental role. In Section 11-13, we define the rings of p-adic periods Bgr,
B.:is and By and introduce Fontaine’s hierarchy of p-adic representations. Its re-
lation with p-adic comparison isomorphisms is quickly discussed at the end of
Section 13.

In the remainder of the text, we study p-adic representations arising from for-
mal groups. In this case, the main constructions of the theory have an explicit
description, and p-adic representations can be studied without an extensive use
of algebraic geometry. In Section 14, we review the p-adic integration on formal
groups following Colmez [38]. A completely satisfactory exposition of this ma-
terial should cover the general case of p-divisible groups, which we decided not
to include in these notes. For this material, we refer the reader to [[64], [66l, [39],
[30]. In Sections 15-16, we illustrate the p-adic Hodge theory of formal groups by
two applications: complex multiplication of abelian varieties and Hilbert pairings
on formal groups. In Section 17, we prove the theorem “weakly admissible =
admissible” in the case of dimension one by the method of Laffaille [102]. This
implies the surjectivity of the Gross—Hopkins period map. Finally, we apply the
theory of formal groups to the study of the spaces (B:ris)g"h:p , which play an im-
portant role in the theory of Fargues—Fontaine. For further detail and applications
of these results, we refer the reader to [60]].

0.3. These notes should not be viewed as a survey paper. Several important as-
pects of p-adic Hodge theory are not even mentioned. As a partial substitute, we
propose some references for further reading in the body of the text.

Aknowledgements. The author is very grateful to Nicola Mazzari for pointing out
several inaccuracies in the first version of this text.

1. LocAL FIELDS. PRELIMINARIES

1.1. Non-archimedean fields.

1.1.1. We recall basic definitions and facts about non-archimedean fields.

Definition. A non-archimedean field is a field K equipped a non-archimedean ab-
solute value that is, an absolute value | - |g satisfying the ultrametric triangle in-
equality:

|x +ylx < max{|xlk, ylk}, Yx,y € K.

We will say that K is complete if it is complete for the topology induced by | - |k.
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To any non-archimedean field K, one associates its ring of integers

Ok ={xeK||xlg < 1}.
The ring Ok is local, with the maximal ideal

mg ={xeK||x|g <1}.
The group of units of Ok is

Ug={xeK|lxlg =1}.
The residue field of K is defined as

kg = Ok /mg.

Theorem 1.1.2. Let K be a complete non-archimedean field and let L/K be a
finite extension of degree n = [L : K|. Then the absolute value | - |k has a unique

continuation | - | to L, which is given by

x|, = |NL/K(X)’;(/n,

where Ny i is the norm map.

Proof. See, for example, [10, Chapter 2, Theorem 7]. O

1.1.3.  We fix an algebraic closure K of K and denote by K*¢P the separable closure
of K in K. If char(K) = p > 0, we denote by K™ := K1/P” the purely inseparable
closure of K. Thus K = K* if char(K) = 0, and K = (K™9)*¢P if char(K) = p > 0.
Theorem allows to extend | - |x to K. To simplify notation, we denote again
by | - |k the extension of | - g to K.

Proposition 1.1.4 (Krasner’s lemma). Let K be a complete non-archimedean field.
Let a € K*%P and let a) = @, s, ...,q, denote the conjugates of @ over K. Set
dy = minfla—ajlx | 2<i<n}.
If B € K3 is such that |a — 8] < dg, then K(a) C K(B).
Proof. We recall the proof (see, for example, [119, Proposition 8.1.6]). Assume
that a ¢ K(B8). Then K(«,5)/ K(,B_) is a non-trivial extension, and there exists an
embedding o : K(«,5)/K(B) — K/K(B) such that ¢; := o(a) # @. Hence
IB8—ailk =lo(B-a)lk = |8—alk <da,
and
la — ajlx = [(@—p)+ (B—a)lk < max{la—Blk,|B - ailx} < d-
This gives a contradiction. O

Proposition 1.1.5 (Hensel’s lemma). Let K be a complete non-archimedean field.
Let f(X) € Ox[X] be a monic polynomial such that:

a) the reduction f(X) € kx[X] of f(X) modulo my has a root & € kg;

b) f(@) #0.

Then there exists a unique a € Ok such that f(a) =0 and @ = @ (mod mg).

Proof. See, for example, [106, Chapter 2, §2]. O
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1.1.6. Recall that a valuation on K is a function vk : K — R U {+00} satisfying
the following properties:

D) ve(xy) = vg(x) +vk(y),  Yx,y €K™

2) vg(x+y) = min{vg(x), v ()}, Yx,ye K"

3) vg(x) =00 & x=0.
For any p €]0, 1[, the function |x|, = "k defines an ultrametric absolute value
on K. Conversely, if | - | is an ultrametric absolute value, then for any p €]0,1[
the function v,(x) = log, |x|x is a valuation on K. This establishes a one to one
correspondence between equivalence classes of non-archimedean absolute values
and equivalence classes of valuations on K.

Definition. A discrete valuation field is a field K equipped with a valuation vk such
that vk (K™) is a discrete subgroup of R. Equivalently, K is a discrete valuation field
if it is equipped with an absolute value | - |k such that |K*|x C R, is discrete.

Let K be a discrete valuation field. In the equivalence class of discrete valuations
on K, we can choose the unique valuation vg such that vg(K*) = Z. An element
g € K such that vg(mg) = 1 is called a uniformizer of K. Every x € K* can be

written in the form x = ﬂ;(’((x)u with u € Uk, and one has:
K* ~{(ng)x Uk, mg = (7k).

1.1.7. Let K be a complete non-archimedean field. We finish this section by
discussing the Galois action on the completion Ck of K.

Theorem 1.1.8 (Ax—Sen-Tate). Let K be a complete non-archimedean field. The
the following statements hold true:

i) The completion Cg of K is an algebraically closed field, and K*P is dense in
Ck.

ii) The absolute Galois group Gg = Gal(K*P/K) acts continuously on Cg, and
this action identifies Gg with the group of all continuous automorphisms of Cg
that act trivially on K.

iii) For any closed subgroup H C G, the field CII? coincides with the completion

of the purely inseparable closure of (K**P)" in K.

Proof. The statement i) follows easily from Krasner’s lemma, and ii) is an imme-
diate consequence of continuity of the Galois action. The last statement was first
proved by Tate [151]] for local fields of characteristic 0. In full generality, the the-
orem was proved by Ax [L1]]. Tate’s proof is based on the ramification theory and
leads to the notion of an almost étale extension, which is fundamental for p-adic
Hodge theory. We review it in Section 4] O

1.2. Local fields.

1.2.1. In these notes, we adopt the following convention.

Definition 1.2.2. A local field is a complete discrete valuation field K whose residue
field kk is finite.
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Note that many (but not all) results and constructions of the theory are valid
under the weaker assumption that the residue field kg is perfect.
We will always assume that the discrete valuation

vk : K — Z U{+o0}

is surjective. Let p = char(kg). The following well-known classification of local
fields can be easily proved using Ostrowski’s theorem:

e If char(K) = p, then K is isomorphic to the field kx((x)) of Laurent power
series, where kg is the residue field of K and x is transcendental over k.
The discrete valuation on K is given by

v (f(x)) = ord, f(x).

Note that x is a uniformizer of K and Ok =~ kx[[x]].

e If char(K) = 0, then K is isomorphic to a finite extension of the field of
p-adic numbers Q. The absolute value on K is the extension of the p-adic
absolute value

a

EP

In all cases, set fx = [kg : F),] and denote by gx = pf’( the cardinality of kx. The

group of units Uk is equipped with the exhaustive descending filtration:

= p_k, p Ja,b.
P

UY =1+m40k, n>0.
For the factors of this filtration, one has:

(1) Uk/UQ =k, U o 2wl it it 1

1.2.3. If L/K is a finite extension of local fields, the ramification index e(L/K)
and the inertia degree f(L/K) of L/K are defined as follows:
e(L/K) = vi(nk), J(L/K) = [kg : kg].
Recall the fundamental formula:
JIL/K)e(L/K) =[L:K]
(see, for example, [[10, Chapter 3, Theorem 6] ).

Definition 1.2.4. One says that L/K is
i) unramified if e(L/K) = 1 (and therefore f(L/K) =[L: K]);
ii) totally ramified if e(L/K) = [L : K] (and therefore f(L/K)=1).

The following useful proposition follows easily from Krasner’s lemma.

Proposition 1.2.5. Let K be a local field of characteristic 0. For any n > 1 there
exists only a finite number of extensions of K of degree < n.

Proof. See [106, Chapter 2, Proposition 14]. O

We remark that, looking at Artin—Schreier extensions, it’s easy to see that a local
field of characteristic p has infinitely many separable extensions of degree p.
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1.2.6. The unramified extensions can be described entirely in terms of the residue
field kx. Namely, there exists a one-to-one correspondence

{finite extensions of kg } «— {finite unramified extensions of K},

which can be explicitly described as follows. Let k/kg be a finite extension of
kg. Write k = kx(a) and denote by f(X) € kx[X] the minimal polynomial of a.
Let f(X) € Ok[X] denote any lift of f(X). Then we associate to k the extension
L = K(a@), where @ is the unique root of ]T(X) whose reduction modulo my, is @. An
easy argument using Hensel’s lemma shows that L doesn’t depend on the choice of
the lift £(X).

Unramified extensions form a distinguished class of extensions in the sense of
[104]. In particular, for any finite extension L/K, one can define its maximal un-
ramified subextension Ly, as the compositum of all its unramified subextensions.
Then

S(L/K) =Ly : K], e(L/K) = [L: Ly].
The extension L/Ly; is totally ramified.

1.2.7. Assume that L/K is totally ramified of degree n. Let 77 be any uniformizer
of L, and let
FX) = X"+ ap X"+ +a1 X +ag € Og[X]
be the minimal polynomial of ;. Then f(X) is an Eisenstein polynomial, namely
vg(a) =1 forO0<i<n-1, and vg(ag) = 1.

Conversely, if « is a root of an Eisenstein polynomial of degree n over K, then
K(a)/K is totally ramified of degree n, and « is an uniformizer of K(a).

Definition 1.2.8. One says that an extension L/K is
i) tamely ramified if e(L/K) is coprime to p.
ii) totally tamely ramified if it is totally ramified and e(L/K) is coprime to p.

Using Krasner’s lemma, it is easy to give an explicit description of totally tamely
ramified extensions.

Proposition 1.2.9. If L/K is totally tamely ramified of degree n, then there exists a
uniformizer ng € K such that

L=K(np), n =7nk.
Proof. Assume that L/K is totally tamely ramified of degree n. Let I be a uni-
formizer of L and f(X) = X" +--- +a; X +qg its minimal polynomial. Then f(X) is
Eisenstein, and g := —ag is a uniformizer of K. Let @; € K (1 <i < n) denote the
roots of g(X) := X" +ag. Then
lg(IDI|x = g(ID) - f(IDIk < | max 1|aiHi|K <lmklx

SIsn—

n n

Since |g(IT)|x = [[d1—«;), and IT = (—1)"*[ ] @;, we have:

i=1 i=1

n n
[ [m-ailk <] ek
i=1 i=1
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Therefore there exists iy such that
(2) I — @yl < laylk-

Set 7, = a;,. Then
l_l(ﬂ'L —@) =g (n) =na} "
i#ig
Since (n,p) =1 and |7 — @;|x < |7L|k, the previous equality implies that

d := min|r, — ailk = |7Llk.
1#1o

Together with (2)), this gives:
IH - a’iolk <d.

Applying Krasner’s lemma, we find that K(r;) C L. Since [L: K] = [K(7.) : K] =n,
we obtain that L = K(7rz), and the proposition is proved.
O

1.2.10. Let L/K be a finite separable extension of local fields. Consider the bi-
linear non-degenerate form

3) trk - LXL— K, trk(x,y) = Trp g (xy),
where Trz/k is the trace map. The set
O :={xeL|tyk(x,y) €Ok, VYyeO;}
is a fractional ideal, and
Dk =0 i={xeL|x0) c O}
is an ideal of Oy.
Definition. The ideal Dk is called the different of L/ K.

If K ¢ L c M is a tower of separable extensions, then

4) Dm/x = DOm0k

(see, for example, [[106, Chapter 3, Proposition 5]).
Set

vi(Drx) =inf{vr(x) | x € Dk}

Proposition 1.2.11. Let L/K be a finite separable extension of local fields and
e = e(L/K) the ramification index. The following assertions hold true:

i)If Op = Oklal, and f(X) € Og[X] is the minimal polynomial of ., then Dy x =
(f" ().

ii) Ok = Ot if and only if L/ K is unramified.

i) vi(®rx) 2 e—1.

iv) vi(Dr k) =e—1if and only if L/ K is tamely ramified.
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Proof. The first statement holds in the more general setting of Dedekind rings (see,
for example, [[106, Chapter 3, Proposition 2]). We prove ii-iv) for reader’s conve-
nience (see also [106, Chapter 3, Proposition 8]).

a) Let L/K be an unramified extension of degree n. Write k; = kx (@) for some
@ € kr. Let f(X) € kg[X] denote the minimal polynomial of @. Then deg( f)=n.
Take any lift f(X) € Ox[X] of f(X) of degree n. By Proposition (Hensel’s
lemma) there exists a unique root @ € Op of f(X) such that @ = @ (mod mg). It’s
easy to see that Oy = Ogla]. Since F(X) is separable, f'(@) # 0, and therefore
f'(@) € Ur. Applying i), we obtain:

Dk = (f' (@) = Oy.

Therefore D7,k = Op if L/K is unramified.

b) Assume that L/K is totally ramified. Then Oy = Og|[n.], where nry is any
uniformizer of Oy. Let f(X) = X°+ o1 XV + -+ +a; X + ap be the minimal poly-
nomial of 7r;. Then

f(my) = eﬂi_l +(e— l)ae_lﬂz_2 +-ta.
Since f(X) is Eisenstein, vy (a;) > e, and an easy estimation shows that vy (f" (7)) >
e—1. Thus
vi(Dr/x) =vi(f'(@) > e-1.
This proves iii). Moreover, vy (f’(a)) = e— 1 if and only if (¢, p) = 1, i.e. if and only
if L/K is tamely ramified. This proves iv).

c) Assume that Dk = Or. Then vy (Dr/k) = 0. Let L, denote the maximal
unramified subextension of L/K. By (), a) and b) we have:

ve(®rk) =ve(®rL,) =2e—1.
Thus e = 1, and we showed that each extension L/K such that D;/x = Oy is un-
ramified. Together with a), this proves i). O
1.3. Ramification filtration.
1.3.1. Let L/K be a finite Galois extension of local fields. Set G = Gal(L/K). For
any integer i > —1 define
Gi={geGlvi(glx)—x)=i+1, VxeOr}.
Then G; are normal subgroups of G, called ramification subgroups. We have a
descending chain
G=G_1020Gy>G|D---2G,, ={1}
called the ramification filtration on G (in low numbering). From definition, it easily
follows that
Go = Gal(L/Lyy), G/Go = Gal(ky/kk).
Below, we summarize some basic results about the factors of the ramification fil-
tration. First remark that for each i > 0, one has:

G, = {geGO|vL(1—g(”L))>i}.

L
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Proposition 1.3.2. i) For all i > 0, the map

which sends g =g mod Gj;1 to s;(g) =

8(m) (mod U(Li+l) ), is a well defined monomor-
bis

L
phism which doesn’t depend on the choice of the uniformizer g, of L.
ii) The composition of s; with the maps () gives monomorphisms:

(6) 60 : Go/G1 = k*, 8 : Gi/Giyy — mie /miEl . foralli> 1.

Proof. The proof is straightforward. See [[142, Chapitre IV, Propositions 5-7]. O

An important corollary of this proposition is that the Galois group G is solvable
for any Galois extension. Also, since char(kg) = p, the order of G¢/G| is coprime
to p, and the order of G; is a power of p. Therefore Ly, = L°! is the maximal
tamely ramified subextension of L. From this, one can easily deduce that the class
of tamely ramified extensions is distinguished. To sup up, we have the tower of
extensions:

(N L

Definition 1.3.3. The groups Ik := Gy and Prjx := G| are called the inertia
subgroup and the wild inertia subgroup respectively.

1.3.4. The different D7,k of a finite Galois extension can be computed in terms
of the ramification subgroups.

Proposition 1.3.5. Let L/K be a finite Galois extension of local fields. Then
8) VLK) = D (G- 1).
i=0

Proof. Let Op = Ogla], and let f(X) be the minimal polynomial of @. For any
g €G, setir/x(g) = vr(g(a)— @). From the definition of ramification subgroups it
follows that g € G; if and only if i1/x(g) > i+ 1. Since

F@ =] J@-g@,

g#1
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we have:
VLK) =vi(f (@) = D vila—g@) = Y iyk(e) = D i+ DG -G
g#1 g#1 i=0
= >+ DG = D = (Gl = 1)) = D (1Gil - ).
i=0 i=0

O

1.3.6. We review Hasse—Herbrand’s theory of upper ramification. It is convenient
to define G, for all real u > —1 setting

G,=G;, where iis the smallest integer > u.

For any finite Galois extension the Hasse—Herbrand functions are defined as fol-
lows:

@ f” dt
L/k(U) = —
©) o o Go: Gy
Yk = ‘PZ/IK(U) (the inverse of ¢y /k).

Proposition 1.3.7. Let K C F C L be a tower of finite Galois extensions. Set G =
Gal(L/K) and H = Gal(L/F). Then the following holds true:

i) or/k = Qr/k O @L/F and Yk =Yr/F oY /K-

ii) (Herbrand’s theorem) For any u > 0,

G.H/H =~ (G/H)sOM/L(M)'

Proof. See [142, Chapter IV, §3]. O

Definition. The ramification subgroups in upper numbering G are defined by
G = GLZ’L/K(U)’
or, equivalently, by G¥Ux®) = G,,.

Therefore Herbrand’s theorem can be stated as follows:
(10) (G/H) =GV/GYNH,  Yv>0.

The Hasse—Herbrand function ¢,k can be written as
U
i) = f (G :G)ar.
0

1.3.8. Hebrand’s theorem allows to define the ramification filtration for infinite
Galois extensions. Namely, for any (finite or infinite) Galois extension of local
fields L/K define
) — 13 (v)

Gal(L/K)" = h%nGal(F/K) ,
where F runs through finite Galois subextensions of L/K. In particular, we can
consider the ramification filtration on the absolute Galois group Gk of K. This
filtration contains fundamental information about the field K. We discuss it in more
detail in Section
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Definition. A real number v > 0 is a ramification jump of a Galois extension L/K
if
Gal(L/K)"™® # Gal(L/K)®  forany &> 0.

1.3.9. Formula (8) can be written in terms of upper ramification subgroups:

vr(Dr/k) = f( |G(U)|)

In this form, it can be generalized to arbitrary finite extensions as follows. For any
v > 0 define

T
Then for any finite extension L/K one has:
a 1
(11) vi(Duk) = f [1 ——(v)]dv
-1 [L:LNK ]

(see [37, Lemma 2.1]).

1.3.10. The description of the ramification filtration for general Galois extensions
is a difficult problem (see Section [2.3]) below). Is is completely solved for abelian
extensions (see Section [2.2). In particular, the ramification jumps of an abelian
extension are rational integers (theorem of Hasse—Arf). For non-abelian extensions
we have the following result.

Theorem 1.3.11 (Sen). Let Ko/K be an infinite totally ramified Galois extension
whose Galois group G = Gal(K«/K) is a p-adic Lie group. Fix a Lie filtration
(G(n))ys0 on G. Then there exists a constant ¢ > 0 such that

Gk c G(n) c G, 9, Yn>0.
In particular, (G : GV) < +o0 for all v> 0
Proof. This is the main result of [134]. O

1.4. Norms and traces.

1.4.1. The results proved in this section are technical by the nature, but they play
a crucial role in our discussion of deeply ramified extensions and the field of norms
functor. Assume that L/K is a finite extension of local fields of characteristic O.
Lemma 1.4.2. One has:

Trp/x(m7) = my,

VL('DL/K)Hl]

where r = [ )

Proof. From the definition of the different if follows immediately that
TI'L/K(DZ/IK) = OK.
Set 6 = v (Dr/k) and e = e(L/K). Then:

my —TrL/K(meDL/K) TrL/K(mZe ‘5) C Tryk ( (@+n)- 6) TrL/K(mZ).
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Conversely, one has:
_ _ e _
Trz ke (mpmg’) = Tryyg(mimg®") € Trp g (my ") = Try k(D)) = Ok,
Therefore Try g (m}) C my, and the lemma is proved. O

1.4.3. Assume that L/K is a totally ramified Galois extension of degree p. Set
G = Gal(L/K) and denote by f the maximal natural number such that G, = G (and
therefore G, = {1}). Formula (8] reads:

(12) vi(Dp/x) = (p—- D@+ D).
Lemma 1.4.4. For any x € mJ,

NL/K(I +x)=1 +NL/1((X)+TI'L/K(X) (mod 111;(),

(p—l)(t+1)+2n]
|

Proof. Set G = Gal(L/K), and for each 1 < n < p denote by C, the set of all n-
subsets {g1,...,8,} of G (note that g; # g; if i # j). Then:

where s = [

Nyy(1+0) = [ ](1+800) = 1+ N1+ Trp e (x)
geG

) aWa@ et Y a@)gp (),
{81.82}€C2 {g1,.-8p-1}1€Cp-1
It’s clear that the rule

gx1{g1,....8n} =1881,-..,88n)

defines an action of G on C,,. Moreover, from the fact that |G| = p is a prime number,
it follows that all stabilizers are trivial, and therefore each orbit has p elements.
This implies that each sum

81(x) -+~ gn(x), 2<n<p-1
{gl ’-~~gn}ecn

can be written as the trace Trzx(x,) of some x, € mi". From 1i and Lemma
it follows that Trz/x(x,) € mj(. The lemma is proved. O

Corollary 1.4.5. Let L/K is a totally ramified Galois extension of degree p. Then

vk N x(14+29) =1 = Neyg(0) > 2 . =3

Proof. From Lemmas and if follows that

(p—-D@+1)
V(N (14 0) = 1= Ny() [p— ,
Since
-D(@+1 - 1)t 1| t#p-1
rp )+ 1) :[@ )+1__]>(p ).
D p p D
the corollary is proved. O

1.5. Witt vectors.
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1.5.1. In this subsection, we review the theory of Witt vectors. Consider the
sequence of polynomials wo(xp), w;(xg,x1),... defined by

wo(xo) = Xo,
wi (X0, X1) = X + pxi,

p? p, .2
wa(Xo, X1,X2) = X +px; +p X,

p" p"_l 2 p"“z n
Wn(X(),xl,...xn):xO +px] +pTxs e+,

Proposition 1.5.2. Let F(x,y) € Z[x,y] be a polynomial with coefficients in Z such
that F(0,0) = 0. Then there exists a unique sequence of polynomials

®o(x0,y0) € Z[x0,y0l,
@ (x0,y0,x1,¥1) € Z[x0,y0,x1, Y11,

such that
(13)
wn(@o, @1,...,DP,) = F(Wu(x0, X1, .., X0), Wn (Y0, Y15+ --5Yn))s  foralln>0.

To prove this proposition, we need the following elementary lemma.
Lemma 1.5.3. Ler f € Z[xy,...,x,]. Then
7" (x0s s = f7 (f,...,x0) (mod p™),  forallm> 1.
Proof. The proof is left to the reader. O

1.5.4. Proof of Proposition[l.5.2] 'We prove the proposition by induction on n. For
n =0 we have ®gy(xg,yo) = F(x0,y0). Assume that @y, D,...,D,_; are constructed.
From (T3) it follows that

1 n _
(14) @y = — (FOun(x0, X1, X0, Wa(Y0, V15 -, ) = (@ +++++ p" DL ).
pn

This proves the uniqueness. It remains to prove that @, has coefficients in Z. Since
Wi (X0, s Xn1,X0) = Wpo1(Xp,....x0_ ) (mod p™),
we have:
(5)  Fwn(x0, ..., Xn1,%n)s Wa (Y05 - - -, Yn-1,Yn))
= F(wn_l(xp,...,xﬁ_l),wn_l(yg,...,yf:_l)) (mod p").
On the other hand, applying Lemma[1.5.3]and the induction hypothesis, we have:

(16) ®f +---+p" 'O = wyy (O] 30, Pt (3,30, 30 )

n—

= FWuat (&, X Wt 08,32 )  (mod p™.
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From and we obtain that
F(wn(x0,- -+, Xn—1,Xn), Wn(yO, -5 Yn-1 ,yn)) = (Dg +-- +pn_l®5_1 (mod Pn)
Together with (I4), this whows that @, has coeffiients in Z. The proposition is

proved.

1.5.5. Let (S,)u=0 denote the polynomials (®,),>o for F(x,y) = x+y and (P,),>0
denote the polynomials (®,),so for F(x,y) = xy. In particular,
xp +yb = (x0+y0)”
S0(x0,¥0) = X0 +Y0, S 1(X0,Y0,X1,y1) = X1 + Y + ——2 » ,

Po(x0,y0) = Xo¥0,  P1(x0,Y0,X1,¥1) = Xgy1 + X1( + pxiy1.

1.5.6. For any commutative ring A, we denote by W(A) the set of infinite vectors
a = (ag,ay,...) € AN equipped with the addition and multiplication defined by the

formulas:
a+b = (So(ao,bo),S1(ap,bo,a1,by),...),

a-b = (Po(ag,bo), Pi(ao,bo,ai,by),...).
Theorem 1.5.7 (Witt). With addition and multiplication defined as above, W(A) is
a commutative unitary ring with the identity element
1=(1,0,0,...).
Proof. a) We show the associativity of addition. From construction it is clear

that there exist polynomials (u,),>0, and (v,),=0 With integer coefficients such that
Un, Uy € Z[X0,Y0,205- - - »Xn,Yn,2n] and for any a,b,c € W(A)

(a+Db)+c = (uo(ao, bo,co), ..., un(ao,bo,co,...,an, by, cp),...),
a + (b + C) = (UO(aO’bOa CO)7 ey Un(aO’b07CO’ o 7an,bna Cl’l)7 .. )

Moreover,

Wn(Uo, ..., un) = wu(fo(x0,¥0), f1(X0,Y0, X1, Y1), - - .) + Wu(Z0, - . ,20)
=Wn(X0, .+, X0) T Wu (Y0, - .-, Yn) + Wi(205 - - -, Z0)s

and

Wn(00s - -+ sUn) = Wn(X0, - .-, Xn) + Wa(fo(¥0,20), f1(V0, 20, Y1,21)s - )
= W(X0s ey X0) F Wi (V05 -+« o, Vi) + Wi(20, - - -, Zn)-
Therefore
wi(uo, ..., uy) = wy(vg,...,0n), Vn >0,

and an easy induction shows that u,, = v, for all n. This proves the associativity of
addition.
b) We will show the formula:

2
(17) (X0, X1, X2,...) - (¥0,0,0,...) = (X0Y0, X1)g- X1Yp »---)-

In particular, it implies that 1 = (1,0,0,...) is the identity element of W(A). We
have:
(x0,Xx1,X2,...)-(30,0,0,...) = (ho, hy,...),
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where hg,hy,... are some polynomials in yg, xp, X1 .... We prove by induction that
h, = xnyg. For n = 0, we have hy = go(xo,Y0) = xoyo. Assume that the formula is
proved for all i < n—1. We have:

Wn(h()’hla LR ’hn) = Wn(anxl, L axn)Wn()’O, Oa ce. ’0)
Hence:
n n—1 n n—1 n
hg +phf +odp"  hy 4 p'hy, = (xf)7 +pr 4o p" +p”xn)yg .
By induction hypothesis, h; = xiyg’ for 0<i<n-1. Then h, = x,,ygn, and the

statement is proved.
Other properties can be proved by the same method. O

1.5.8. Below, we assemble some properties of the ring W(A):
1) For any homomorphism ¢ : A — B, the map
W(A) - W(B), Y(ag,ai,...) = (Ylao), ¥(ar),...)

is an homomorphism.
2) If pisinvertible in A, then there exists an isomorphism of rings W(A) =~ AN.

Proof. The map
w: W) — AN, w(ag,ay,...) = (wolao), wi(ag, ar), wa(ag,ar,az),...)

is an homomorphism by the definition of the addition and multiplication in W(A).
If p is invertible, then for any (b, b1, bs,...), the system of equations

wo(xo) = bo,  wi(xo,x1) =b1,  walxo,x1,%2) = ba,...
has a unique solution in A. Therefore w is an isomorphism. O
3) For any a € A, define its Teichmiiller lift [a] € W(A) by
[a] = (a,0,0,...).

Then [ab] = [a][b] for all a,b € A. This follows from (17]).
4) The shift map (Verschiebung)

VW)= W@A),  (a,a1,0,...) = (0,a0,ai,...)

is additive, i.e. V(a+b) = V(a) + V(b). This can be proved by the same
method as for Theorem [1.3.7]
5) For any n > 0, define:

L(A) = {(ag,a1,...) € W(A) | a; = 0 for all 0 < i < ).

Then (1,(A)),>0 is a descending chain of ideals, which defines a separable
filtration on W(A). Set:

Wi(A) := W(A)/1,(A).

Then
W(A) = {in W(A)/1,(A).
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We equip W(A)/I,(A) with the discrete topology and define the standard
topology on W(A) as the topology of the projective limit. It is clearly Haus-
dorft. This topology coincides with the topology of the direct product on
W(A):

WA)=AXAXAX:---,
where each copy of A is equipped with the discrete topology. The ideals

I,(A) form a base of neighborhoods of 0 (each open neighborhood of 0
contains I,(A) for some n).

6) For any a = (ag,ay,...) € W(A), one has:
(ao,a1,a2,..) = ) V"[a,].
n=0

This can be proved by the same method as for Theorem
7) If A is a ring of characteristic p, then the map

¢ : WA) - W(A), (ap,ai,...)— (ag,af,...),
is a ring endomomorphism. In addition,
pV=Vy=p.
Proof. The map ¢ is induced by the absolute Frobenius
p:A—>A, o(x) = xP.
We should show that
plag,ay,...) = (O,ag,af,...).
By definition of Witt vectors, the multiplication by p is given by
plag,ay,...) = (ho(ao), hi(ag,ar),...),

where h,(xo,X1,...,X,) is the reduction mod p of the polynomials defined by the
relations:
wn(ho, hy, ... hy) = pwu(Xo, X1, .. Xn), n=0.

An easy induction shows that &, = xi _, (mod p), and the formula is proved. O

Definition. Let A be a ring of charactersitic p. We say that A is perfect if ¢ is an
isomorphism. We will say that A is semiperfect if ¢ is surjective.

Proposition 1.5.9. Assume that A is an integral perfect ring of characteristic p.
The following holds true:

i) "I W(A) = 1(A).

ii) The standard topology on W(A) coincides with the p-adic topology.

iii) Each a = (ag,ay,...) € W(A) can be written as:

(ag,ar,az,...) = Z[aﬁ_n]Pn-

n=0
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Proof. 1) Since ¢ is bijective on A (and therefore on W(A)), we can write:
p}’l+1 W(A) — Vn+l(p_(n+1)W(A) — Vn+l W(A) — In(A)

ii) This follows directly from i).
iii) One has:

(a0, ar,az,..) = Y V'l = Y p"¢ " (ax) = ) [a 1p".
n=0 n=0 n=0
O

Theorem 1.5.10. i) Let A be an integral perfect ring of characteristic p. Then there
exists a unique, up to an isomorphism, ring R such that:

a) R is integral of characteristic 0;

b) R/pR =~ A;

¢) R is complete for the p-adic topology, namely

~ 13 np.
n

ii) The ring W(A) satisfies properties a-c).
Proof. 1) See [142, Chapitre II, Théoreme 3].

ii) This follows from Proposition[I.5.9] o

1.5.11. Examples. 1) W(F)) ~Z,,.
2) Let F), be the algebraic closure of F,. Then W(F ) is isomorphic to the ring
of integers of the p-adic completion Q" of Q).

1.6. Non-abelian cohomology.

1.6.1. In this section, we review basic results about non abelian cohomology. We
refer the reader to [[119, Chapter 2, §2 and Theorem 6.2.1] for further detail.

Let G be a topological group. One says that a (not necessarily abelian) topolog-
ical group M is a G-group if it is equipped with a continuous action of G, i.e. a
continuous map

GXM— M, (g,m)— gm

such that
glmymy) = g(my) g(my), if geG, m,meM,
(8182)(m) = g1(g2(m)), if  g1,802€G, meM.

Let M be a G-group. A 1-cocycle with values in M is a continuous map f : G - M
which satisfies the cocycle condition

f(g182) = f(g1)(g1/(82)), 81.82€G.

Two cocycles fi and f; are said to be homologous if there exists m € M such that

H(g) =mfi(g)gm)™", geG.

This defines an equivalence relation ~ on the set Z' (G, M) of 1-cocycles. The first
cohomology H'(G, M) of G with coefficients in M is defined to be the quotient set
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ZY(G,M)/ ~ . It is easy to see that if M is abelian, this construction coincides with
the usual definition of the first continuous cohomology. In general, H'(G, M) is not
a group but it has a distinguished element which is the class of the trivial cocycle.
This allows to consider H'(G, M) as a pointed set. The following properties of the
non-abelian H' are sufficient for our purposes:

1) Inflation-restriction exact sequence. Let H be a closed normal subgroup of
G. Then there exists an exact sequence of pointed sets:

0— H'(G/H,M") 25 H'(G, M) =5 H (H,M)C/H.

2) Hilbert’s Theorem 90. Let E be a field, and F/E be a finite Galois extension.
Then GL,(F) is a discrete Gal(F/E)-group, and

HY(Gal(F/E),GL,(F)) =0, nx1.

1.6.2. A direct consequence of the non-abelian Hilbert’s Theorem 90 is the fol-
lowing fact. Let V be a finite-dimensional F-vector space equipped with a semi-
linear action of Gal(F/E):

glx+y)=gx)+g1), Yx,yeV,
glax) = g(a)g(x), Yae FNxeV.

Let {ey,...,e,} be a basis of V. For any g € Gal(F/E), let A, € GL,(F) denote the
unique matrix such that

gler,...,ep) = (e1,...,ex)Aq.

Then the map
f: Gal(F/E) - GL,(F), f(@)=A,
is a 1-cocyle. Hilbert’s Theorem 90 shows that there exists a matrix B such that the
(e1,...,e,)B is Gal(F/E)-invariant. To sum up, V always has a Gal(F/E)-invariant
basis.
Passing to the direct limit, we obtain the following result.

Proposition 1.6.3. i) H'(Gg,GL,(E*P)) =0 foralln > 1.
ii) Each finite-dimensional E3*P-vector space V equipped with a semi-linear dis-
crete action of Gg has a Gg-invariant basis.

1.6.4. Let E be a field of characteristic p, and let & be a complete unramified field
with residue field E. Let &"" denote the maximal unramified extension of &. The
residue field of &Y is isomorphic to E*P, and we have an isomorphism of Galois
groups:
Gal(&" /&) = Gg.

Let & denote the p-adic completion of &' and 5‘; its ring of integers. The
following version of Hilbert’s Theorem 90 can be proved from Proposition [1.6.3]
by devissage.

Proposition 1.6.5. i) H' (Gal(é"“r/éo),GLn(a‘(g)) =0foralln>1.
ii) Each free 5‘;-madule equipped with a semi-linear continuous action of Gg
has a Gg-invariant basis.
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2. GALOIS GROUPS OF LOCAL FIELDS

2.1. Unramified and tamely ramified extensions.

2.1.1. Inthis section, we review the structure of Galois groups of local fields. Let
K be alocal field. Fix a separable closure K*°P of K, and set Gg = Gal(K*P/K). Set
q = |kk|. Since the compositum of two unramified (respectively tamely ramified)
extensions of K is unramified (respectively tamely ramified,) we have the well
defined notions of the maximal unramified (respectively maximal tamely ramified)
extension of K. We denote these extensions by K" and K" respectively.

2.1.2. The maximal unramified extension K" of K is procyclic and its Galois
group is generated by the Frobenius automorphism Frg:

Gal(K™/K) — Z,
Frg «— 1.

Frg(x)=x? (mod ng), Vx € Oguwr.
2.1.3. Passing to the direct limit in the diagram (7), we have:

(18) K

Consider the exact sequence:
(19) 1 — Gal(K"/K"™) — Gal(K"/K) — Gal(K""/K) — 1.

Here Gal(K"/K) ~ Z. From the explicit description of tamely ramified extensions,
it follows that K" is generated over K" by the roots n}(/”, (n,p) = 1 of any uni-
formizer g of K. This immediately implies that

(20) Gal(K"/K™) ~ ]_[Z[.
{#p

Let 7k be a topological generator of Gal(K"/K"). Fix a lift of the Frobenius auto-
morphism Frg to an element Frg € Gal(K"/K). Analyzing the action of these ele-
ments on the elements n}(/", one can easily determine the structure of Gal(K"/K).
Proposition 2.1.4 (I’vi/asawa). The group Gal(K"/K) is topologically generated by
the automorphisms Frg and Tg with the only relation:

1

1) Frgtx Fry =74
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Proof. See [89]] or [119, Theorern 7.5.3]. From (19), it follows that Gal(K''/K) is
topologically generated by Frg and 7. The relation (2 . follows from the explicit
action of T¢ and FrK on ﬂ'K/ for (n,p) = 1. O

2.2. Local class field theory.

2.2.1. Let K denote the maximal abelian extension of K. Then Gal(K**/K)
is canonically isomorphic to the abelianization Gab Gk/lGk,Gk] of Gg. Lo-
cal class field theory gives an explicit description of Gal(K®/K) in terms of K.
Namely, there exists a canonical injective homomorphism (called the reciprocity
map) with dense image

Ok : K* - Gal(K*®/K)
such that:

i) For any finite abelian extension L/K, the homomorphism 6k induces an
isomorphism

01k : K*INpjk(L*) — Gal(L/K),

where Ny is the norm map;
ii) If L/K is unramified, then for any uniformizer m € K* the automorphism
01k () coincides with the arithmetic Frobenius Fryx;
iii) For any x € K*, the automorphism 6k (x) acts on K"" as:
Ok ()| g = Frik ™,
The reciprocity map is compatible with the canonical filtrations of K* and Gal(K*/K)®.

Namely, for any real v > 0 set U g) =Uy ) where n is the smallest integer > v. Then

(22) 0k (UY)) = Gal(K™®/K)®,  Vu>0.

For the classical proof of this result, see [[142, Chapter XV].

2.2.2. The theory of Lubin—Tate [111] (see also [140]]) gives an explicit construc-
tion of K in terms of torsion points of formal groups with a “big” endomorphism
ring, and describes the action of the Galois group Gal(K®*/K) on these points. In
particular, it gives a simple and natural proof of (22). This theory can be seen as
a local analog of the theory of complex multiplication, providing the solution of
Hilbert’s twelfth problem for local fields. We review it in Section [15|below.

2.2.3. Local class field theory was generalized to the infinite residue field case
by Serre, Hazewinkel and Suzuki—Yoshida [53} [138} [149]]. In another direction,
Parshin and Kato developed the class field theory of higher-dimensional local fields
[9111122,[123]]. We refer the reader to [63] for survey articles and further references.

2.3. The absolute Galois group of a local field.
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2.3.1. First, we review the structure of the Galois group of the maximal p-extension
of a local field. A finite Galois extension of K is a p-extension if its degree is a
power of p = char(kg). It is easy to see that p-extensions form a distinguished class,
and we can define the maximal pro-p-extension K(p) of K as the compositum of
all finite p-extensions. Set Gx(p) = Gal(K(p)/K).
First assume that char(K) = p. We have the Artin—Schreier exact sequence
0 F, — K(p) = K(p) =0,

where p(x) = x” — x. Taking the associated long exact cohomology sequence and
using the fact that H(Gg(p), K(p)) = 0 for i > 1, we obtain:

H'(Gk(p).F,)=K(p)/p(K(p)),  H*Gk(p).F,)=0.

General results about pro-p-groups (see, for example, [99, Chapter 6] say that
(23)
dimg, H ! (Gk(p),F)) = cardinality of a minimal system of generators of Gg(p);

dimg, H 2(GK(p), F,) = cardinality of a minimal relation system of Gg(p).

This leads to the following theorem:

Theorem 2.3.2. If char(K) = p, then Gg(p) is a free pro-p-group of countable
infinite rank.

The situation is more complicated in the inequal characteristic case. Let K be a
finite extension of Q,, of degree N. For any n, let u, denote the group of nth roots
of unity.

Theorem 2.3.3 (Shafarevich, Demushkin). Assume that char(K) = 0.

i) If K doesn’t contain the group u,, then Gk(p) is a free pro-p-group of rank
N+1.

ii) If K contains u,, then Gk(p) is a pro-p-group of rank N + 2, and there exists
a system of generators g1,82,...,8N+2 of Gx(p) with the only relation:

(24) 8" [81.821183.84] - [gn+1.8N+2] = 1,
where p* denotes the highest p-power such that K contains s

Comments on the proof. The Poincaré duality in local class field theory gives
perfect pairings:

H'(Gk(p).Fp) x H* (G (p).ptp) = H Gk (p)ptp) =Fp,  0<i<2.
Therefore we have:
H'(Gk(p),F,) = (K*/K*P)", H*(Gk(p),F,) = 1, (K)",

where ¥ denotes the duality of F,-vector spaces. Assume that K doesn’t contain
the group u,,. Then these isomorphisms give:

dimg, H'(Gk(p),Fp) =N +1,
H*(G(p).F,) = 0.
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Now from we obtain that Gg(p) is free of rank N + 1. Note that this was first
proved by Shafarevich [145] by another method.
Assume now that K contains y,. In this case, we have:

dimg, H'(Gk(p).F,) = N +2,
H*Gk(p).Fp) = 1.

Therefore Gg(p) can be generated by N + 2 elements g1,...,gy+2 With only one
relation. In [54], Demushkin proved that g1,...,gx+2 can be chosed in such a way
that (24) holds. See also [139] and [101].

2.3.4. The structure of the absolute Galois group in the characteristic p case can
be determined using the above arguments. One easily sees that the wild inertia
subgroup Pk is pro-p-free with a countable number of generators. This allows to
describe G as an explicit semi-direct product of the tame Galois group Gal(K"/K)
and Pk (see [98] or [119, Theorem 7.5.13]). The characteristic O case is much
more difficult. If K is a finite extension of Q,, the structure of the Gk in terms
of generators and relations was first described by Yakovlev [[163] under additional
assumption p # 2. A simpler description was found by Jannsen and Wingberg in
[90]. For the case p = 2, see [164} [165]].

2.3.5. The ramification filtration (G([?) on Gk has a highly non-trivial structure.
We refer the reader to [[79, [1}, 2, 4] [7] for known results in this direction. Abrashkin
[5] and Mochizuki [113] proved that a local field can be completely determined
by its absolute Galois group together with the ramification filtration. In another
direction, Weinstein [157] interpreted G, as the fundamental group of some “per-
fectoid” object.

3. Z,-EXTENSIONS

3.1. The different in Z ,-extensions.

3.1.1. The results of this section were proved by Tate [151]]. We start with il-
lustrating the ramification theory with the example of Z ,-extensions. Let K be a
local field of characteristic 0. Set e = e(K/Q)). Let vk : K — QU {+o0} denote the
extension of the discrete valuation on K to K.

Definition. A Z ,-extension is a Galois extension whose Galois group is topologi-
cally isomorphic to Z,,.

Let K /K be a Z,-extension. Set I = Gal(K/K). For any n, p"Z,, is the unique
open subgroup of Z, of index p", and we denote by I'(n) the corresponding sub-
group of I'. Set K, = Kgo("). Then K, is the unique subextension of K,/ K of degree
p" over K, and

Keoi= UKy Gal(Ky/K)=Z/p'"Z.
>3

nz
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Assume that K,/K is totally ramified. Let (v,),>0 denote the increasing sequence
of ramification jumps of K./K. Since I' ~ Z,,, and all quotients L) /) gre
p-elementary, we obtain that

r =p"Z, — V¥n>0.

Proposition 3.1.2. Let K./ K be a totally ramified Z,-extension.
i) There exists ngy such that

Unel =Up+e, Vn > ny.
ii) There exists a constant ¢ such that
vk(Dk, k) =en+c+pay,,
where the sequence (ay),o is bounded.

This is [151}, Proposition 5]. Below, we reproduce Tate’s proof, which uses local
class field theory. See also 73l Proposition 1.11].
The following lemma is a classical and well known statement.

Lemma 3.1.3. i) The series

log(1+x) = Z(—U’"“%

m=1
converges for all x € mg.
ii) The series

exp(x) = Z%

m=0 """

e
converges for all x such that vg(x) > o1

iii) For any integer n > p%l we have isomorphisms:
log : U™ - m” exp : m’ — UW
g- Uk K p Mg K>

which are inverse to each other.

an
p=1

(UY =Ug™.

Corollary 3.1.4. For any integer n > one has:

Proof. (Ug?))p and U g”e) have the same image under log. O

3.1.5. Proof of Proposition a) Let I' = Gal(K./K). By Galois theory, I' =
G%’ /H, where H C G?}’ is a closed subgroup. Consider the exact sequence
{1} - Gal(K*®/K"") —» G 5 Gal(K“"/K) — {1}.

Since K., /K is totally ramified, (K**)” N K" = K, and s(H) = Gal(K“"/K). There-
fore
[ ~ Gal(K®/K")/(H N Gal(K*®/K")).
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By local class field theory, Gal(K?/K") ~ Uk, and there exists a closed subgroup
N C Uk such that

I'~ Ug/N.
The order of Ug/ Ug(l) ~ ky is coprime with p. Hence the index of Ug) J(NNU 5(1)) in
Uk/N is coprime with p. On the other hand, Uk /N ~T is a pro-p-group. Therefore

U I(NNU)) = Ug/N,
and we have an isomorphism:
p:T=UY/NnUY).
b) To simplify notation, set:
— 77 ()
2V =UQINNUY), Vo>l
By and (10), we have:
pMN=® 1.

Let y be a topological generator of I'. Then y,, = ¥”" is a topological generator of
I'(n). Let ng be an integer such that

0(Yny) € U™,

with some integer mg > p%l Fix such ng and assume that, for this fixed ng, my is
the biggest integer satisfying this condition. Since v, is a generator of I'(n), this
means that

p@(ne) =%, but  p(T(ng)) # % ™*V.
Hence my is the no-th ramification jump for K./K, i.e.
mo = Upy.

We can write p(y,,) = %, where X = x (mod (NN UY)) and x € UV \ U+,
By Corollary[3.1.4]

eyt gt > 0.
Since p(ypy+n) = X° n, and y,,,+, 1s a generator of I'(mg + n), this implies that
p(T(ng+n)) =%+ and  p(L(ng +n)) £ % Morme,
This shows that for each integer n > 0, the ramification filtration has a jump at
mo + ne, and
0% = T(ng + n).
In other terms, for any real v > v,, = mo, we have:
'Y =Ty +n+1) if Upy + 1€ <V Uy, +(n+1e.

This shows that v+, = v,, + en for all n > 0, and assertion i) is proved.

¢) We prove ii) applying formula (TT). For any n > 0, set G(n) = I'/T'(n). We

have - .
D = 1—— |dv.
vk (Dk,/K) Il ( |G(n)<v)|) v
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By Herbrand’s theorem, G(n)® = T®/(T'(n) N\T™). Since I'® = I'(n), the ramifi-

cation jumps of G(n) are vg,vy,...,0,-1, and we have:
i if vl <o <,
(25) Gy =P BSOS
1, ifo>v,_;
(for i = 0, we set v;_1 := 0 to uniformize notation). Assume that n > ny. Then

Un—1 1
Dy k)= A+ 1-—|a
e =ar [ (1= oo
‘0

Up, 1
where A = f ’ 1 — ——— | dv. We evaluate the second integral using i) and (25):
-1 IG(m)®|

Un—1 n-1 1
fv (1 |G(n)(”)|) Z(v, v 1)( |G(7l)(”)|) Ze(l—pn_i),

o i=np+1 i=ng+1

Now an easy computation gives:

= 1 e 1
Z e( n_i):e(n—n0—1)+p_1(l—pn_no_l).

i=np+1
Settingc=A—e(ny+1)+ Iﬁ, we see that for n > ny,

1
vk(Dk, k) =c+en— ————.
/ (p=pr!
This implies the proposition.

O

Remark 3.1.6. Proposition shows that the ramified Z,-extensions are arith-
metically profinite in the sense of Section

3.2. The normalized trace.

3.2.1. In this section, K. /K is a totally ramified Z,-extension. Fix a topological
generator y of I'. For any x € K,, set:

1
Tk /k(x)= ETI'K,,/K(X)-
It is clear that this definition does not depend on the choice of n. Therefore we have
a well defined homomorphism
T Ke/K * K. — K.

Note that T, x(x) = x for x € K. Our first goal is to prove that Tg_, is continuous.
It is probably more natural to state the results of this section in terms of absolute
values rather that in terms of valuations. Let | - |¢ denote the absolute value on K
associated to vg.
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Proposition 3.2.2. i) There exists a constant ¢ > 0 such that
[Tk k(%) — xlg < cly(x)—xlk, Vx € Koo
ii) The map Tk /k is continuous and extends by continuity to Keo.

Proof. a) By Proposition 3.1.2) vk(®k,/k, ,) = ex + @,p~", Where «, is bounded.
Applying Lemma|I.4.2]to the extension K,/K,_i, we obtain that

(26) Trk, kOl <Iply 7'k, YxeKn,

with some constant b > 0 which does not depend on #.
b) Set y, = y”". For any x € K, we have:

p-1
TrKn/Kn—l ('x) = Z’Y;l_l (-x)’
i=0

Therefore
p-l p-l
Trg, 1k, (0= px= > (Vi 1 =0) = > (Lt ¥t ++ Y5 Y1 (1) = 1),
i=0 i=1

and we obtain that

<Iple Wno1()—xlg,  VxeK,.

1
_TrKn/Kn—l (x) - X
p

Since y,—1(x)—x=(1+y+--- +y1’"71‘1)(y(x) —X), we also have:

<lpl™ ) -xlk,  VxeK,.
K

¢) By induction on n, we prove that

1
@7) ‘;TrK,,/K,,_1<x)—x

(28) Tro/k () =g <co-y(@) =k, VxeK,,
where ¢| = |plg and ¢, = ¢;—1 - Ipll_{b/pn. For n = 1, this follows from formula .
For n > 2 and x € K,,, we write:
1 1
Tk k(x)—x= (l_)TrK,,/K,,_l (%)= X) +(Tko k() —Y), y= ;TrKn/K,,_l ().
The first term can be bounded using formula (27). For the second term, we have:

Tk k0) =k < Cnmtly() =k = ca-tlpl - Trg, ik, (v(0) = 0)lk
<cutlply " y(x) - k.
(Here the last inequality follows from (26))). This proves ([28).
d) Set ¢ = ¢y ﬁ Iplgb/pn = c1|p|1_(b/(p_1). Then ¢, < ¢ for all n > 1. From formula
(28), we obtain:n -
’TKw/K(x)—x|K<c-|'y(x)—x|1<, Vx € Ke.

This proves the first assertion of the proposition. The second assertion is its imme-
diate consequence. O
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Definition. The map Tk x : Ko — K is called the normalized trace.
3.2.3. Since Tk, k is an idempotent map, we have:

Ko = K®K2,
where Kg, = ker(Tk, k).

Theorem 3.2.4 (Tate). i) The operator y—1 is bijective, with a continuous inverse,
on Kg,.

ii) For any A € U;l) which is not a root of unity, the map y — A is bijective, with a
continuous inverse, on i(\oo.
Proof. a) Write K,, = K®K;,, where K, = ker(Tk,_,x) N K,. Since y —1 is injective

on K, and K, has finite dimension over K, y —1 is bijective on K, and on K2, =
UOKnO .Letp : K3, — K¢, denote its inverse. From Proposition (3.2.2] it follows that
nz

Ixlx < cl(y = DXk, Vx € K,
and therefore
lo(0)lx < clxlk, Vx e Kg,.
Thus p is continuous and extends to I?;’o. This proves the theorem for 4 = 1.
b) Assume that A € Ug) is such that

A-1lg <c L.

Then p(y — 1) = 1+ (1 —A)p, and the series

0= iu— !
i=0

converges to an operator 8 such that pf(y —A) = 1. Thus y — A is invertible on I?f,’o.
Since A # 1, it is also invertible on K.
¢) In the general case, we choose n such that [A”" — 1|x < ¢~!. By assumptions,

A" £ 1. Applying part b) to the operator " — 17", we see that it is invertible on
Eso. Since

-l

YA == ) )
i=0

the operator y — A is also invertible, and the theorem is proved. O
3.3. Application to continuous cohomology.

3.3.1. We apply the results of the previous section to the computation of some
continuous cohomology of I'. For any continuous character  : I' — Uk, we denote
by K (17) the group K, equipped with the natural action of I" twisted by 7:

(g0 () -gx), gel, xeK..

Let H'(I',—) denote the continuous cohomology of I' (see, for example, [119}
Chapter II, §7] for definition).
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Theorem 3.3.2 (Tate). i) H(T, I?oo) =K and H'T, I?oo(n)) = 0 for any continuous
character n : I = Uk with infinite image.

it) H\(T, f(\oo) is a one-dimensional vector space over K, and H'(T, f(\oo(n)) =0
for any character n : I’ — Uk with infinite image.

Proof. 1) The first statement follows directly from Theorem [3.2.4]

i1) Since I is procyclic, any cocycle f : ' — E(x,(n) is completely determined
by f(y). This gives an isomorphism between H'(T, Ew(n)) and the cokernel of
y—n(y). Applying again Theorem [3.2.4] we obtain ii). mi

4. DEEPLY RAMIFIED EXTENSIONS

4.1. Deeply ramified extensions.

4.1.1. In this section, we review the theory of deeply ramified extensions of
Coates— Greenberg [37]]. This theory goes back to Tate’s paper [151]], where the
case of Z,-extensions was studied and applied to the proof of the Hodge—Tate de-
composition for p-divisible groups.

Let K.,/K be an infinite algebraic extension of a local field K of characteristic
0. Recall that for each m, the number of algebraic extensions of K of degree m is
finite. Hence we can always write K, in the form

Ko = fJ’OKn, Ko=K, K,CKuy1, [Kn:K]<oo.
n=

Following [75], we define the different of K,/K as the intersection of the differents
of its finite subextensions:

Definition. The different of K /K is defined as:
Dk /K = nQO (Dk,/kOk.,)-

4.1.2. Let L, be a finite extension of K. Then L., = K. (@), where « is a root
of an irreducible polynomial f(X) € K[X]. The coefficients of f(X) belong to a
finite extension Ky of K. Set:

no = min{n € N | f(X) € K,[X]}.
Let L, = K,,(a) for all n > ny. Then

Lo= UL,

n=nq

In what follows, we will assume that ng = 0 without loss of generality. Note that
the degree [L, : K,,] = deg(f) does not depend on n > 0.

Proposition 4.1.3. i) If m > n, then

®,/k,0L, € OL,/k,-
ii) One has:
Drosks = U (®Pr,/k,0L,).
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Proof. i) We consider the trace pairing (3)):
IL,/K, - L,xL,— K,.

Let {ex};_, be a basis of Or, over Ok, , and let {¢;};_, denote the dual basis. Then

DLn/Kn = OLne’[ +--+ OLne’;.

Since {ek}fc: ] is also a basis of L, over K,,;, any x € DZI can be written as

m/Km
N
*
X = Zakek.
k=1

Then
akIZLm/Km(X,ek)EOKm, Y1<k<s,
and we have:

x €Ok

m

* * -1
e+ +0k, e, CD O

m-§ m*

-1 -1
Hence ©;  C D} OL,.

ii) By the same argument as in the proof of i), the following holds:

and therefore ©y, ,x, 01, C DL, /K, -

m

U (P11, 0L) © Do /K-

We need to prove that D k., C UO(D L,/k,OL.,) or, equivalently, that
n=
PN | -1
,QO(DL"/KHOLM) CO k.-

Letxe N (@ZI/K Or.)and y € Or_. Choosing n such that x € TDZI/K andy€ Oy,
n=0 n n n n
we have:
ILo/Ke(X,Y) = 11,/k,(X,y) € Ok, C Ok,,.

The proposition is proved. O

4.1.4. For any algebraic extension M/K of local fields (finite or infinite) we set:

vk(Dmyk) = inf{vg(x) | x € Dy}

Definition. i) We say that K,/ K has finite conductor if there exists v > 0 such that
Ko C E(v). If that is the case, we call the conductor of K« /K the number

c(Ke) = inf{o] Ko c K"

}.
ii) We say that K« /K is deeply ramified if it does not have finite conductor.

Below, we give some examples of deeply ramified extensions.
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4.1.5. Examples. 1) The cyclotomic extension K({~)/K is deeply ramified. This
follows from Proposition [3.1.2
2) Fix a uniformizer 7 of K and set &, = 7!/7". Then the infinite Kummer ex-

tension K(7'/P") = SlK(ﬂ'n) is deeply ramified. This can be proved by a direct
n=

computation or alternatively computing the different of this extension and using
Theorem below.

3) Let K.,/K be a totally ramified infinite Galois extension such that its Galois
group G = Gal(K«/K) is a Lie group. From Theorem|1.3.11] it follows that K../K
is deeply ramified. We will come back to this example in Section [6]

4.1.6. Now we state our main theorem about deeply ramified extensions.

Theorem 4.1.7 (Coates—Greenberg). Let Koo/ K be an algebraic extension of local
fields. Then the following assertions are equivalent:

i) vk(Dk., k) = +09;

ii) Koo/ K is deeply ramified;

iii) For any finite extension L /Ko one has:

vk(Dr,/k.) = 0;
iv) For any finite extension L. /K one has:
Trr k. (mp,) =mg,.
In sections [4.1.84.1.12| below, we prove the implications
) © i) = iii) = iv).
Lemma 4.1.8. For any finite extension M /K, one has:

c(M)
2

<vk(Dpyk) < c(M).

Proof. We have:
[M : Mﬂf(v)] =1, foranyv>c(M)-1;
(M:M0K"]>2, if-1<v<cM)-1.

Therefore

00 1 c(M)-1
vk (Dm/k) = f (1 - —_(v)]dv < f dv = c(M),
-1 [M:MNK 7] -1

00 1 1 c(M)—1 C(M)
VK(®M/K)=f [1——_(0))5102 Ef dv = >
-1 [M:MNK 7] -1

The lemma is proved. O

and
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4.1.9. We prove that i) < ii). First assume that vg(Dg, k) = +o0. For any ¢ > 0,
there exists K C M C K, such that vg(Dy k) > c. By Lemma c(M) > c. This
shows that K.,/ K doesn’t have finite conductor.

Conversely, assume that K,/ K doesn’t have finite conductor. Then for each ¢ >

0, there exists a non-zero element 8 € Ko, ﬂE(C). Let M = K(B). Then v (Dpyx) = %
by Lemma Therefore v (Dk,,/x) = +0o.

Lemma 4.1.10. Assume that w is such that L C E(w). Then for any n > 0,
[Ly:L,n K=K, : K,n K™,

Proof. Since E(w) /K is a Galois extension, K,, and E(w) are linearly disjoint over
K, ﬂf(w). Therefore K, and E(w) N L, are linearly disjoint over K, ﬂf(w). We have:

(29) (K, : K, K" 1=K, - & L) : ®" (L.

Clearly K, - (E(w) NL,)C L,. Conversely, from L, = K,,- L and L C f(w), it follows
that L, € K- (K" (1 L,). Thus

L=k, K" nL,).

Together with (29), this proves the lemma. mi

4.1.11. We prove that ii) = iii). By the multiplicativity of the different, for any
n > 0, we have:

vk(®Dr,/k,) = vk(®r,/k) — vk (Pk,/k)-

Let w be such that L C f(w). Using formula li and Lemma4.1.10} we obtain:

© 1 1
vk(®r,/k,) = f ( —o — ]dv =
“T\[K,: (K,NK )] [L,: (L,NK )]

fw[ 1 — _ 1 — Jdv < fw dv —
“I\[K, : (K,NK )] [Ly:(L,NK )] -1 (K, : (K,NK )]

Since [K}, : (K, ﬁf(v))] > [K, : (K, ﬁf(w))] if v <w, this gives the following estimate
for the different:

w+1

(K, : (K,nKE")]

ve(®r,/k,) <

Since K. /K doesn’t have finite conductor, for any ¢ > 0 there exists n > 0 such
that [K,, : (K}, ﬂf(w))] > ¢, and therefore vg(®y,/k,) < (w+ 1)/c. This proves that
V(DL k) = 0.
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4.1.12.  We prove that iii) = iv). We consider two cases.

a) First assume that the set {e(K,,/K) | n > 0} is bounded. Then there exists ny € 1
such that e(K,,/K,,) = 1 for any n > ng. Therefore e(L,/L,,) = 1 for any n > ng, and
by the mutiplicativity of the different

DL,,/K,, = ®Ln0 /Kno OLn’ vn > no‘

From Proposition 4.1.3] and assumption iii), it follows that Dy, /k, = Oy, for all
n > ng. Therefore the extensions L, /K, are unramified, and Lemma [T.4.2] (or just
the well known surjectivity of the trace map for unramified extensions) gives:

Trz, /k,(mg,) = mg,, for all n > ny.

Thus TrLoo/Koo(mLoo) =Mk, .
b) Now assume that the set {e(K},/K) | n > 0} is unbounded. Let x € mg_. Then
there exists n such that x € mg,. By Lemma|[[.4.2]

v, (®r,/k,)+1
e(L,/K,)

From our assumptions and Proposition 4.1.3] it follows that we can choose n such
that in addition

Try, ik, (M) =mg . 1y = [

vk(®r,/k,) + <vg(x).

1
e(L,/K)
Then

"y < VL,,(DL,l/Kn)+1 1
e(Ly/Ky) e(L,/K)
Since Try, /k,(mz,) is an ideal in Ok, this implies that x € Trz, /k,(my, ), and the
inclusion mg,, C Try k. (mz.) is proved. Since the converse inclusion is trivial,
we have mg, =Trz k. (mr.).

= (VK(EL,,/K,,) + )B(Kn/K) < Vg, (X).

4.2. Almost étale extensions.

4.2.1. In this section, we introduce, in our very particular setting, the notion of
an almost étale extension.

Definition. A finite extension E[F of non archimedean fields is almost étale if and
only if
Tre/r(me) = mp.

It is clear that an unramified extension of local fields is almost étale. Below, we
give two other archetypical examples of almost étale extensions.

4.2.2. Examples. 1) Assume that F is a perfect non-archimedean field of charac-
teristic p. Then any finite extension of F' is almost étale.

Proof. Let E/F be a finite extension. It is clear that Trg;r(mg) C mp. Moreover,
Trg/r(mg) is an ideal of OF, and for any @ € mg, one has:

lim |TrE/p<p_"(oz)|p =0.
n—+oo

This implies that mr C Trg;r(mg), and the proposition is proved. O
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2) Assume that K, is a deeply ramified extension of a local field K of charac-
teristic 0. By Theorem 4.1.7] any finite extension of K, is almost étale.

4.2.3. Following Tate [151]], we apply the theory of almost étale extensions to the
proof of the theorem of Ax—Sen-Tate. Let K be a perfect complete non archimedean
field, and let Cx denote the completion of K. For any topological group G, we de-
note by H"(G, —) the continuous cohomology of G.

Theorem 4.2.4. Assume that F is an algebraic extension of K such that any finite
extension of F is almost étale. Then

H(GF,Cx) =F.
We first prove the following lemma. Fix an absolute value | - [ on K.

Lemma 4.2.5. Let E/F be an almost étale Galois extension with Galois group G.
Then for any a € E and any ¢ > 1, there exists a € F such that

a—a| <c-max| a —a| .
o -l < - max]g(@)-al,

Proof. Let ¢ > 1. By Theorem iv), there exists x € O such that y = Trg,p(x)
satisfies

l/e<lylk <1
Set: a = —Zg(a/x) Then
geG
o —alg = Zg(x) - —Zg(ax) = Zg(x)(a 2(@)
gGG geG geG K
max gla)—a
The lemma is proved. O

4.2.6. Pr00]i of Theorem Let a € CgF . Choose a sequence (@y)neN Of ele-
ments «, € K such that |, —a|x < p™". Then

lg(an) —aulk =gl — @) — (a, — )|k <P_n, Vg € Gr.
By Lemma4.2.5] for each n, there exists 3, € F such that |3, — a,|x < p™". Then

a= lim B, €F.

n—+oo

The theorem is proved.
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4.277. Now we compute the first cohomology group H'(Gr,Ck).

Theorem 4.2.8. Under the assumptions and notation of Theorem mpH (Gp,Oc¢ )=
{0} and H' (G, Ck) = {0}.

The proof will be given in Sections below. For any map f : X —
Oc,, where X is an arbitrary set, we define |f] := sup x| f(%)lk.

Lemma 4.2.9. Let E/F be a finite Galois extension with Galois group G. Then for
any map f . G — Og and any y € mp, there exists @ € Og such that

yvf = hal <10k,
where hy : G — Og is the 1-coboundary hy(g) = g(a) —a and 4(f) : GXG — Of
is the 2-coboundary d(f)(g1,82) = §1/(g2) — f(g182) + f(g1)-

Proof. Since E/F is almost étale, there exists x € Og such that y = Trg,r(x). Set:

== 2(0f ().

geG

An easy computation shows that for any 7 € G, one has:

(@) - =yf(1)- ) 18(x)-d()(Tg).

geG

This proves the lemma. O

4.2.10. Proof of Theoremf{d.2.8 Let f : Gr — Oc, be a 1-cocycle. Fix y € mp. By
continuity of f, for any n > 0O there exists a map f : Gr — O such that |f — f] <
p™", and f factors through a finite quotient of G. Note that |0(f)| < p™ because
d(f) = 0. By Lemma[4.2.9] there exists a € mg such that

|yf_hw| < Ia(f)| < p_".

Using this argument together with successive approximation, it is easy to see that y-
cl(f) = 0. This proves that mpH'(GF, Oc, ) = {0}. Now the vanishing of H'(GF, Ck)
is obvious.

O
The following corollary should be compared with Theorem[I.1.§]
Corollary 4.2.11. Let F be a complete perfect non archimedean field of charac-
teristic p. Then the following holds true:
i) H'(GF,Cp) = F;
ii) mp -H'(Gr,Oc;) = 0;
iii) H' (Gr,Cr) = 0.

4.3. Continuous cohomology of Gg.
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4.3.1. Assume that K is a local field of characteristic O.

Theorem 4.3.2 (Tate). i) Let Ko/K be a deeply ramified extension. Then
H°(Gk.,Ck) = Koo and H' (Gg_,Cx) = 0.

ii) HY(Gg,Cg) = K, and H (Gk,Ck) is the one dimensional K-vector space
generated by any totally ramified additive charactern : Gx — Z,,.

iii) Let n : Gx — Z,, be a totally ramified character with infinite image. Then

H(Gk,Cx(n) = 0, and H' (G, Ck (1)) = 0.

Proof. 1) The first assertion follows from Theorems and[4.2.8]
i) Let K, = Eker(n). Then K. /K is a Z,-extension, and we set I' = Gal(K /K).
By Proposition . Ko /K is deeply ramified. Hence H’(Gg_.,Ck) = Ko by The-

orem Applying Theorem , we obtain that HO(Gg,Cg) = H'(I', K.) = K.
To compute the first cohomology, consider the inflation-restriction exact sequence:

0— H'(,Cy*) — H'(Gk,Ck) - H'(Gk...Cx).
By assertion 1), Cg’“’" = EX,, and Hl(GKN,CK) = 0. Hence
H'(G,Ck) =~ H'(T', Koo).

Applying Theorem 3.3.2, we see that H'(Gg, Ck) is the one-dimensional K-vector
space generated by n : Gx — Z,.
iii) The last assertion can be proved by the same arguments. O

4.3.3. The group G acts on the groups p,» of p"-th roots of unity via the char-
acter yx : Gg — Z;‘, defined as:

g() = @, VgeGk, {€pum, n>1.
Definition. The character xx : Gk — Z,, is called the cyclotomic character.

It is clear that log y  is an additive character of Gx with values in Z,,.

Corollary 4.3.4. H'(Gk,Ck) is the one-dimensional K-vector space generated by
logxk.

4.3.5. Let E/K be a finite extension which contains all conjugates 7K of K over
Q,. We say that two multiplicative characters ¢1,y> : Gg — Uk are equivalent
and write Y1 ~ ¢y if Cx(¢1) =~ Ck(¢2) as Gg-modules. Theorem [4.3.2]implies the
following proposition, which will be used in Section

Proposition 4.3.6. The conditions a) and b) below are equivalent:
a) oy ~ 7oy forall t € Hom(K, E).
b) The characters Y| and Y, coincide on an open subgroup of Ig.

Proof. See [143] Section A2]. O
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4.3.7. Using Tate’s method, Sen proved the following important result.
Theorem 4.3.8 (Sen). Assume that K« /K is deeply ramified. Then
H'(Gk,,.GLx(Cx)) = {1}.

Proof. For deeply ramified Z,-extensions, it was proved in [136]], and the proof is
similar in the general case. O

5. FrROM CHARACTERISTIC ) TO CHARACTERISTIC P AND VICE VERSA I: PERFECTOID FIELDS

5.1. Perfectoid fields.

5.1.1. The notion of perfectoid field was introduced in Scholze’s fundamental
paper [130] as a far-reaching generalization of Fontaine’s constructions [66], [[70].
Fix a prime number p. Let E be a field equipped with a non-archimedean absolute
value | - |g : E — R, such that |p|g < 1. Note that we don’t exclude the case of
characteristic p, where the last condition holds automatically. We denote by Og
the ring of integers of £ and by mg the maximal ideal of Og.

Definition. Let E be a field equipped with an absolute value | - |g : E — R, such
that |p|g < 1. One says that E is perfectoid if the following holds true:
i)| - |g is non-discrete;
ii) E is complete for | - |g;
iii) The Frobenius map
¢ : Op/pOg — Og/pOE, @(x) = xP
is surjective.

We give first examples of perfectoid fields, which can be treated directly.

5.1.2. Examples. 1) A perfect field of characteristic p, complete for a non-archimedean
valuation, is a perfectoid field.

2) Let K be a non archimedean field. The completion Ck of its algebraic closure
is a perfectoid field.

3) Let K be a local field. Fix a uniformizer 7 of K and set 7, = 7'/”". Then

the completion of the Kummer extension K (n'/P7y = O_leK (m,) is a perfectoid field.
This follows from the congruence "
m P m
[Z[ai]n;;] = > la)’x,, (mod p).
i=0 i=0
5.1.3. The following important result is a particilar case of [[78], Proposition 6.6.6].

Theorem 5.1.4 (Gabber—Ramero). Let K be a local field of characteristic 0. A
complete subfield K C E C Cg is a perfectoid field if and only if it is the completion
of a deeply ramified extension of K.

5.2. Tilting.
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5.2.1. In this section, we describe the tilting construction, which functorially as-
sociates to any perfectoid field of characteristic 0 a perfect field of characteristic
p. This construction first appeared in the pionnering papers of Fontaine [64), 66].
The tilting of arithmetically profinite extensions is closely related to the field of
norms functor of Fontaine—Wintenberger [161]. We will come back to this ques-
tion in Section|6] In the full generality, the tilting was defined in the famous paper
of Scholze [130] for perfectoid algebras. This generalization is crucial for geo-
metric application. However, in this introductory paper, we will consider only the
arithmetic case.

5.2.2. Let E be a perfectoid field of characteristic 0. Consider the projective limit

b1 1 i LA
(30) Of =1limOg/pOg = im(Of/pOf < Op/pOg < -++),
¢

where ¢(x) = xP. It is clear that 0*1’5 is equipped with a natural ring structure. An
element x of O% is an infinite sequence x = (x,),>0 of elements x, € Og/pOg such
that xfl +1 = Xu for all n. Below, we summarize first properties of the ring O%:
1) For all m € N, choose a lift X,, € Og of x,. Then for any fixed n, the
sequence Gcf;nm)mo converges to an element

mn

M — 1im %
x"=limx,_, €Og,
m—oo

which does not depend on the choice of the lifts X,,. In addition, (x("))p =
XD folalln > 1.

Proof. Since x . = X,1n-1, we have X/,

Tiin = Xm+n—1 (mod p), and an easy induc-
1

tion shows that X/, = 355’“;!_1 (mod p™). Therefore the sequence (X%, )m=0 con-

verges. Assume that X,, € O are another lifts of x,,, m € N. Then X,,, =%,, (mod p)

and therefore X, =%, (mod p™*1). This implies that the limit doesn’t depend
on the choice of the lifts. O

2) For all x,y € Og one has
31) (4™ = Tim (x4 Y)Y Gy = Xy,

Proof. Itis easy to see that xX*” € Op is a lift of x,,. Therefore x""*™ +y("+™ s a lift
of Xp4m + Ynirm» and the first formula follows from the definition of (x +y)"™. The
same argument proves the second formula. O

3) The map x - (x™),50 defines an isomorphism

T
(32) 0}, = lim O,
xPe—x
where the right hand side is equipped with the addition and the multiplica-
tion defined by formula (31).

Proof. This follows from from 2). O
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Set:
|- 1p : Of — RU{+o0},
%l = Ol
Proposition 5.2.3. i) | - | is a non-archimedean absolute value on Opy.
ii) OE’E is a perfect complete valuation ring of characteristic p, with maximal
ideal m, = {x € O% | |x|p» < 1} and residue field k.
iii) Let E" denote the field of fractions ofO%. Then |Eb|Eh =|E|g.
Proof. i) Let x,y € 0?5. It is clear that

Oyl = kO y Ol

eyl = 100) Qg = |x = |xl oyl o

One has:
4yl =1+ 0)@lp =1 lim 4y ™) g = im0y

< lim max{lxX™e, X1 = lim_max{|)7"| [y )
m—+oo

= max{’(x(o))|E, '(x(o))|E} = max{|x|g, |ylg» -

This proves that | - |» is an non-archimedean absolute value.
ii) We prove the completeness of O% (other properties follow easily from i) and
properties 1-3) above. First remark that if y = (yg,y1,...) € ObE, then

(33) =0 & Dlp<Ipl.

Let (x,)nen be a Cauchy sequence in 0%. Then for any M > 0, there exist N such
that for all n,m > N
pM
1%n = Xmlp> < Iply -

Write x, = (Xp,0,Xn,1,-..) and X, = (X0, Xm.1,-..). Using formula (33)), we obtain
that for all n,m > N

Xni=Xy; forall O0<i<M.

Hence for each i > 0 the sequence (X, ;)eN is stationary. Set a; = limy,—c0 Xy ;-
Then a = (ag,ai,...) € O, and it is easy to check that lim,,_, ;o X, = a. O

Definition. The field E* will be called the tilt of E.
Proposition 5.2.4. A perfectoid field E is algebraically closed if and only if E" is.

Proof. The proposition can be proved by successive approximation. We refer the
reader to [60, Proposition 2.1.11] for the proof that E' is algebraically closed if E
is and to [130, Proposition 3.8], and [60, Proposition 2.2.19, Corollary 3.1.10] for
two different proofs of the converse statement. See also [23]]. O

5.3. The ring Aj,;(E).
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5.3.1. Let F be a perfect field, complete for a non-archimedean absolute value
| - |F. The ring of Witt vectors W(F') is equipped with the p-adic (standard) topology
defined in Section Now we equip it with a coarser topology, which will be
called the canonical topology. It is defined as the topology of the infinite direct
product

W(F) = FN,

where each F is equipped with the topology induced by the absolute value | - |f.
For any ideal a € O and integer n > 0, the set

Ui ={x=(x0,x1,...) e W(F)|x;ea forall0<i<n}

is an ideal in W(F'). In the canonical topology, the family (U, ,) of these ideals
form a base of the fundamental system of neighborhoods of 0.

5.3.2. Let E be a perfectoid field of characteristic 0. Set:
Aint(E) := W(Op).
Each element of Aj,¢(E) is an infinite vector
a = (ap,ay,as,...), a, € 0?5,

which also can be written in the form

a=>lal"1p"
n=0

Proposition 5.3.3 (Fontaine, Fargues—Fontaine). i) The map

O : Aint(E) = Of
given by

0
5 [Z[an]p"] =>a)p"

n=0 n=0

is a surjective ring homomorphism.

ii) ker(6g) is a principal ideal. An element Y, [a,|p" € ker(0F) is a generator of

n=0

ker(0g) if and only if |aolgs = |plE-

Proof. 1) For any ring A, set W,(A) = W(A)/I,,(A). From the definition of Witt
vectors, it follows that for any n > 0, the map

wy : Wp1(Ofg) — Og,

P P! n
wa(ao,ai,...,ap) =4y +pa; +---+p-ay

is a ring homomorphism. Consider the map:

M © Wai1(Og/pOg) — Og/p"*' O,

i
M@0, a1,....an) =@y +pa;  +---+ p"ay,
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where a; denotes any lift of a; in Og. It’s easy to see that the definition of 7, does
not depend on the choice of these lifts. Moreover, the diagram

Wy

W,41(OE) Ok

| |

W1 (O pOr) —— Og | p"™1 O

commutes by the functoriality of Witt vectors. This shows that 7, is a ring homo-
morphism. Let g, : Wy (O%) — Og/ p”“OE denote the reduction of 8 modulo
p"“. From the definitions of our maps, it follows that 6, coincides with the com-
position

‘pin T]’l
Wn+l(0bE) — Wn+l(0bE)—> W,41(Og/pOEg) — OE/pn+]OE.

This proves that 6, is a ring homomorphism for all n > 0. Therefore 6 is a ring
homomorphism.
The surjectivity of g follows from the surjectivity of the map

Ok : 0% — Og/pOg.
ii) We refer the reader to [66, Proposition 2.4] for the proof of the following

statement: an element }; [a,]p" € ker(6g) generates ker(6g) if and only if |ag|g =
n=0

IplE-
Since |E’| = |E| there exists apy € Op such that

laolgr = |ple. Then Og([agl)/p € Uk, and by the surjectivity of g, there exists
b € Ajns(E) such that 0g(b) = 0e([agl)/ p. Thus x = [ag] — pb € ker(6E). Since |ag| g =
|p|E, the above criterion shows that x generates ker(dg). See [60, Proposition 3.1.9]
for further detail. O

5.4. The tilting equivalence.

5.4.1. We continue to assume that E is a perfectoid field of characteristic 0. Fix
an algebraic closure E of E and denote by Cg its completion. By Proposition ,
C% is algebraically closed and we denote by EP the algebraic closure of E” in CI}E‘

Let Cpy := E denote the p-adic completion of E". We have the following picture,
where the horizontal arrows denote the tilting:

Cp ~4C,
E~2~ E.

Let & be a complete intermediate field E c § c CB’E. Fix a generator ¢ of ker(0g).
Set:

O = 6c(W(0y)),
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where we write ¢ instead 6¢,, to simplify notation. Consider the diagram:

O

00— §Ainf\(E) Ainff(\E) 0};; 0

0 —— éW(0p) W(03) of, 0
2]

0 — EAini(Cr) — Aini(Cr) — O, 0

Note that O% = W(0g)/éW(O5). Set:

& = 0L11/pl.
Proposition 5.4.2. § is a perfectoid field, and (F*)" = §.

Proof. a) First prove that O% is complete. For each n > 1, we have an exact se-
quence

0 = £W,(05) = Wa(05)— OL/p" 0% -0,

where W,, = W/ p"W. Since the projection maps W, 1(Ogx) — W, (Og) are surjective,
the passage to inverse limits gives an exact sequence

0 — £W(0) = W(O5) — lim 0% / p" 0% — 0.

n
Hence O% = llnn 0%_ / p”O%, and Og is complete.
b) Fix a valuation vg on E. We prove that for any x € W(Og),

ve(Oc (X)) = n-ve(p) = x € p"W(O0gz) +EW(Og).

(o]
It’s sufficient to prove this assertion for n = 1. Let x = }} [xk]pk be such that
k=0

vg(Oc(x)) = ve(p). If xo = 0, the assertion is clearly true. " Assume that xo # 0.

Then vE(xg))) > ve(p). By Proposition [5.3.3] £ = 3, [ax]p* with VE(aBO)) =ve(p).
k=0

Hence
X0 = Aoy, for some y € O,
and
x =&yl + pz, for some z € W(Og).

This shows that x € pW(Og) + EW(O0g).

c) Assume that @ € Tyﬁ belongs to the valuation ring of ?gﬁ. Write @ = 8/ p" with
B =06c(x), x€ W(Og). Then ve(6c(x)) > n-ve(p). By part b), there exists y € W(Og)
such that O¢c(x) = p"0c(y). Therefore a = O¢c(y) € 0%. This proves that O% is the

valuation ring of F*.
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d) From a) and c), it follows that T is a complete field with the valuation ring
0%. In addition, the induced valuation on §* is clearly non-discrete. Writing ¢ in

the form & = ) [ax] pk, we see that
k=0

0 /pOL, = 05/agO5.
This implies that Fisa perfectoid field. Moreover, it is easy to see that the map

O3 = 1limOg/a05, 2+ (¢™"(2) mod (a905)),¢
12

is an isomorphism. Therefore ()" = &, and the proposition is proved.

Proposition 5.4.3. One has C% =Cp.

Proof. Since E’ C C%, and CB’E is complete and algebraically closed, we have
Cp C C%. Set § := Cp». By Proposition , (FH" = . Since § is complete and
algebraically closed, & is complete and algebraically closed by Proposition
Now from 8ﬁ c Cg, we deduce that 8ﬁ = Cg. Therefore
§=@" =Cj.
The proposition is proved. O
Now we can prove the main result of this section.

Theorem 5.4.4 (Scholze, Fargues—Fontaine). Let E be a perfectoid field of char-
acteristic 0. Then the following holds true:

i) One has Gg ~ Gpy.

ii) Each finite extension of E is a perfectoid field.

iii) The tilt functor F +— F° realizes the Galois correspondence between the
categories of finite extensions of E and E" respectively.

iv) The functor

F g F = (W(05)/EWO05)[1/p]

is a quasi-inverse to the tilt functor.

Proof. The proof below is due to Fargues and Fontaine [60, Theorem 3.2.1].
a) We prove assertion i). The Galois group Gg = Gal(E/E) acts on Cg and C:’E.

To simplify notation, set F = Cp. By Proposition , C'}E =F, and we have a
map

(34) G — Aut(Ch/E") 5 Aut(F/E") 5 Aut(E"/E”) = G .
Conversely, again by Proposition [5.4.3] we have an isomorphism

(35) W(Or)/EW(Or) = Ocy,

which induces a map

Gp — Aut(F/E") - Aut(Cg/E) — GE.
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It is easy to see that the maps and are inverse to each other. Therefore
Gg~Gp,

and by Galois theory we have a one-to-one correspondence

(36) {finite extensions of E} © {finite extensions of E}.

b) Let §/E” be a finite extension. By Proposition , & is a perfectoid field,
and

@ =%
Consider the exact sequence:
&
0 — W(Op)[1/p]l = W(Op)[1/p] = W(Op)/EW(Op)[1/p] = 0.
By Corollary 4.2.11|{ (Ax—Sen—Tate in characteristic p), one has:
H’(G5. W(OR)) = W(Op).

By the same corollary, mg - H'(Gg, O) = 0. Using successive approximation, one
verifies that [a]- H 1(G;g, W(Or)) = 0 for any a € mg. The generator ¢ € ker(6g) can
be written in the form & = [a] + pu, where a € my, and u is invertible in Ajpr(E). If

fe ker(H1<Gg, W(Op)[1/p] > H(G5, W(Op)[1 /p]),
then [a]f =0, £f =0, and therefore f = 0. Hence

ker(H' (G, W(Op)I1/p] 5 H'(Gg W(Op))I[1/p]) =0.

Therefore the long exact sequence of cohomology associated to the above short
exact sequence gives an isomorphism:

(W(Op)/EW(Op)I1/p)Ts = W(O3)/EW(O)[1/p].
The isomorphism Gg ~ Gp» identifies Gg with an open subgroup of Gg. By Theo-
rem (Ax—Sen-Tate in characteristic 0), CgR ~ (E)Y5. Since
Ce = (W(Op)/sW(Op) [1/p],
one has: o
E = W(0y)/éWORI1/p] =: &.
We have proved that the Galois correspondence associates to &/E" the exten-
sion %ﬂ/ E.
—\Gr
c¢) Conversely, let F' be a finite extension of E. Set & = (E b) . From part b), it

follows that F = §*. Applying Proposition , we obtain that F is a perfectoid
b
field and that F® = (iﬁ) = §. This concludes the proof of the theorem. O

Remark 5.4.5. For the theory of almost étale extensions in the geometric setting
and Scholze’s theory of perfectoid algebras we refer the reader to (159, [[78l] and
[130]. See also [95). In another direction, further development of these ideas led
to the theory of diamonds [132], closely related to the theory of Fargues—Fontaine
[601].
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6. FrROM CHARACTERISTIC () TO CHARACTERISTIC p AND VICE VERSA II: THE FIELD OF
NORMS

6.1. Arithmetically profinite extensions.

6.1.1. In this section, we review the theory of the arithmetically profinite exten-
sions and the field of norms construction of Fontaine—Wintenberger [161]. Let K
be a local field of characteristic O with residue field of characteristic p.

Definition. An algebraic extension L/K is called arithmetically profinite (APF) if
and only if

Gk :GYGL) < +00,  Vuz-l.
If L/K is a Galois extension with G = Gal(L/K), then it is APF if and only if
(G:GY) <400,  Yox-l.

It is clear that any finite extension is APF. Below, we give some archetypical ex-
amples of APF extensions.

6.1.2. Examples. 1) Any totally ramified Z,-extension is APF (see Section [3.1).
2) The p-cyclotomic extension K({,~)/K is APF. This easily follows from the
fact that K({,~)/K({}) is a totally ramified Z,-extension. See also Proposition@
below.
3) Let 7 be a fixed uniformizer of K, and let K; be the maximal abelian extension
of K such that r is a universal norm in K, namely that

e Npg(F), forall K c F C K.
By local class field theory, K, /K is totally ramified and one has:
Gal(K./K)” =~ UY,  Vu>0.

Therefore, K;/K is APF.

4) More generally, from Sen’s Theorem [1.3.T1] it follows that any totally ram-
ified p-adic Lie extension is APF. The converse is false in general (see [61] for
examples).

5) Let 7 be a fixed uniformizer of K. The associated Kummer extension K( "°\°/7_r)
is an APF extension, which is not Galois. This can be proved by showing first that
the Galois extension K({~, ’yr) is APF. The last assertion can be either proved
by a direct computation or deduced from Sen’s theorem. The extension K( "y/7)
plays a key role in Abrashkin’s approach to the ramification filtration [4] 5, 7] and
in integral p-adic Hodge theory [29],[33l], [97].

6.1.3. We analyze the ramification jumps of APF extensions. First we extend the
definition of a ramification jump to general (not necessarily Galois) extensions.

Definition. Let L/K be an algebraic extension. A real number v > —1 is a ramifi-
cation jump of L/ K if and only if

GU9GL£GVG,  Ve>O.

If L/K is a Galois extension, this definition coincides with Definition|1.3.8



AN INTRODUCTION TO p-ADIC HODGE THEORY 47

Proposition 6.1.4. Let L/K be an infinite APF extension, and let B denote the set
of ramification jumps of K. Then B is a countably infinite unbounded set.

Proof. a) Let L/K be an APF extension. First we prove that B is discrete. Let
vy > v1 > —1 be two ramification jumps. Then
(Gk : GYG1) < Gk : GG < +o0,
and
(GYGL: GG < +oo.
Therefore there exists only finitely many subgroups H such that
GYGL c HcGYG.

This implies that there are only finitely many ramification jumps in the interval
(v1,02).

b) Assume that B is bounded above by a. Then G1Gy’ = NG1Gy™. Let g €
GLG%). Then for any n > 0, we can write g = x,,y, with x, € Gy and y, € G([?+”).
Since G, is compact, we can assume that (x,),>o converges. Hence (v,),>0 con-
verges to some y € nQOGE?Jr"). From nQOGE?Jr") = {1}, we obtain that g € G;. This

shows that GLG([?) = G. Therefore

Gk : GLGY) = (G : GL) = +oo,
which is in contradiction with the definition of APF extensions. O
6.1.5. Let L/K be an infinite APF extension. We denote by B* = (b,,),>1 the set

of its strictly positive ramification jumps. For all #n > 1, set:

_GLG(bn)
K,=K % .

Proposition 6.1.6. The following statements hold true:
i)L= UIK,,.
n=
ii) K1 is the maximal tamely ramified subextension of L/ K.
iii) For alln > 1, K,+1/K,, is a non-trivial finite p-extension.
iv) Assume that L/ K is a Galois extension. Then for alln > 1, the group Gal(K,+1/Ky)

has a unique ramification jump. In particular, Gal(K,+1/K,) is a p-elementary
abelian group.

Proof. We prove assertion ii). The maximal tamely ramified subextension of L/K
is
—GLP
Le=K"",
where Pk is the wild ramification subgroup. From the definition of the ramification
filtration, it follows that Pk is the topological closure of UOGg? in Gg. This implies
v>

that G, Pg = G,G"", and ii) is proved.

The assertions 1), iii) and iv) are clear. O

Corollary 6.1.7. An infinite APF extension is deeply ramified.
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Proof. Proposition shows that such extension does not have finite conductor.
o

Remark 6.1.8. The converse of this corollary is clearly wrong. However Fesenko
[61]] proved that every deeply ramified extension L]/ K of finite residue degree and
with discrete set of ramification jumps is APF.

6.1.9. We record some general properties of APF extensions.

Proposition 6.1.10. Let K C F C L be a tower of extensions.
i)If F/K is APF and L/F is finite, then L/K is APF.
ii) If F/K is finite and L/ F is APF, then L/K is APF.
iii) If L/ K is APF, then F/K is APF.

Proof. See [161., Proposition 1.2.3]. O

6.1.11. The definition of Hasse-Herbrand functions can be extended to APF ex-
tensions. Namely, for an APF extension L/K, set:

v, ifUE[_laOL
_ v
Yr/k(v) f (G}?) . G(L())G%))dt, ifv>0,
0

oLk () = Y] (w).
It is not difficult to check that if K ¢ F' c L with [F : K] < +oo, then one has:

Yk =YL/FoYF/K, $L/K = PF/K O PLIF-
6.2. The field of norms.

6.2.1. In this section, we review the construction of the field of norms of an APF
extension. Let &(L/K) denote the directed set of finite subextensions of L/K.

Theorem 6.2.2 (Fontaine—Wintenberger). Let L/F be an infinite APF extension.
Set:
Z (LK) = lin E*U{0}.
Ee&(L/K)
Then the following assertions hold true:
i) Let @ = (ap)Eesw/k) and B = (Be)Eesw/k)- Set:

(aP)E := @gPE,
(@+P)E = E,G%{?/E)NE'/E(QE' +BE).

Then aff := ((aB)E)Ecs/k) and a+f := ((a + B)E)Eesw k) are well-defined ele-
ments of 2" (L/K).

ii) The above defined addition and multiplication equip 2 (L/K) with a struc-
ture of a local field of characteristic p with residue field ki .

iii) The valuation on Z (L/K) is given by

v(a@) = ve(ag),

forany K| C E C L. Here K| denotes the maximal unramified subextension of L/ K.
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iv) For any & € kg, let [£] denote its Teichmiiller lift. For each K| C E C L set:

i
Then the map
kL — Z(L/K), & (€p)Eesw/ky)
is a canonical embedding.

The proof occupies the remainder of this section. See [[161} Section 2] for detail.

Definition. The field 2 (L/K) is called the field of norms of the APF extension
L/K.

6.2.3.  We start by writing Theorem [6.2.2]in a slightly different form, which also
makes more clear its relation to the theory of perfectoid fields.
For any APF extension E/F (finite or infinite), set:
i(E/F) = sup{v| G5GY = Gr)
If EC E’ C E” is a tower of finite extensions, then the relation Yg»/g = Y g ©
Y g implies that
(37) i(E"” |E) <min{i(E"/E),i(E" |E")}.

. . . -G G(bn)
Let B = (b,)n>0 denote the set of ramification jumps of L/K and let K, = K e

Since
Y k) =Yk, k), Yv e [-1,b,],

from Y1k = Y1k, ¥k, k. it follows that ¢k, (v) = v for v € [-1,¥1/k(b,)], and
Y1k, (V) # v forv >y k(by,). Therefore

(38) i(L/Ky) = YL/ (bn), nzl.

In particular, i(L/K,) — +o0 when n — +oco.

6.2.4. Forany E € &L/Ky), set:

(p—1DI(L/E)
p b

r(E) := smallest integer >

and
5E = OE/ng).
Theorem 6.2.5. Let L/K be an infinite APF extension. Then:
i) For all finite subextensions E C E’ of L/ K, the norm map induces a ring ho-
momorphism
NEI/E . OE/ - OE.
ii) The projective limit
A(L/K):= lim O
—
E€&(L/KY)
is a discrete valuation ring of characteristic p with residue field k; .
iii) The map

k> AL/K), € (& modm®

_ 1/[E:K ]
" )Eem/m &x = [£]

is a canonical embedding.
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6.2.6. The proof of Theorem[6.2.5|relies on the following proposition:

Proposition 6.2.7. Let E’/E be a finite totally ramified p-extension. Then
i) For all o, € Og,

-1i(E'/E
ve(Ngrje(a@+B) — N/ jp(@) — Neje(B)) 2 M

ii) For any a € Og, there exists « € O such that
(p—Di(E'/E)
p

Proof. a) Assume first that £’/ E is a Galois extension of degree p. From Lemma
it follows that for any x € O/, one has:

VE(Ngrjg(a)—a) >

VE(Ng /(1 +x)—1=Ngjp(x)) > w

Assume that vg: (@) > ve/(B). Setting x = a/B, we obtain 1).
Let g be any uniformizer of E’. Set ng = Ng//g(ng). Write a € O in the form:

-1
[Ens, & ekg.

M'%

a =

T
=

Then again by Lemma|[I.4.5] we have:

-1
(p— DI(E'[E) S
VEWNE (@) —a) > = fora= ) [&]"/"n,.
p k=0
Therefore the proposition is proved for Galois extensions of degree p.

b) Assume that the proposition holds for finite extensions E’’/E’ and E’/E. Then
for @, € Og» we have:

Ng»jp(a+B) = Ng»jp(@) + Nerjpr(B) +y,
and
Ngjp(a+pB) = Ngvjg(@) + Ngv g (B) + Ngrjg(y) +6,

where vg: (y) > %EU/E/) and vg(6) = (P—U;M Since E’/E is totally ramified,

one has ve(Ng e(y)) = wf"m), and from li it follows that

_1 s E/l E
VE(Ng»/e(a+ ) — Ngrjp(a) — Nerjp(B)) > M

Therefore the proposition holds for all finite p-extensions.
c) The general case can be reduced to the case b) by passing to the Galois closure
of E’. See [[161}, Section 2.2.2.5] for detail.
O
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6.2.8. Sketch of proof of Theorem From Proposition if follows that
A(L/K) is a commutative ring. Let x = (xg)g € A(L/K). If x # 0, the there exists
E € E(L/K}) such that xg # 0. For any E’ € E(L/E), let Xg» € Op be a lift of xg .
Then v(x) := vg/(xg/) does not depend on the choice of E” and defines a discrete
valuation of A(L/K). It is easy to see that the topology defined by this valuation co-
incides with the topology of the projective limit of discrete sets on A(L/K). Hence
A(L/K) is complete. Lemmal6.2.9below shows that the element x = (Xg)ges(L/;)»
with xg = p mod ng) for all E, is zero in A(L/E). Therefore A(L/E) is a ring of
characteristic p. For all £1,&, € kg, the congruence [€] + &>] = [£1] + [£2] (mod p)
together with Lemma[6.2.9]imply that the map

kp — A(L/K), Evs (€ mod Ty pesw k), &g = [£)V/1EK

is an embedding of fields. Finally, from the definition of the valuation on A(L/K),
we see that its residue field is isomorphic to k7. Theorem[6.2.5]is proved.

O

Lemma 6.2.9. Let L/E be a totally ramified APF pro-p-extension. Then

- Di(L/E
VE(p)>(p JiL/E)

Proof. First assume that F/E is a Galois extension of degree p. From elementary
properties of the ramification filtration, it follows that G; = {1} for all i > p"’TFl, where
er is the absolute ramification index of F (see [142, Exercise 3, p. 79]). This
implies that vg(p) > (p_l);w for such extensions.

Now we consider the general case. Take the Galois closure M of L over E and
denote by M, /E its maximal tamely ramified subextension. It is clear that M| /E
is linearly disjoint with L/E. From Galois theory, it follows that LM /M, has a
Galois subextension F of degree p over M;. Then the inequality implies that

S (p— Di(F/M)) S (p_l)i(LMl/Ml).

ve(p)
4
Since the extensions M1 /E and LM /L are tamely ramified, from ¢7ps, /m, o m, /£ =
Yim, Lo e it follows that i(LM1 /M) = i(F/E). The lemma is proved. O

6.2.10. Sketch of proof of Theorem [6.2.2] We will use repeatedly the following
inequality: if F/FE is a totally ramified p-extension, then for all x,y € Op one has:

(39) VE(NF/E(X) = Np/e(V) 2 0pie(),  ifvp(x—y) >t

This estimation can be proved by induction using Corollary[I.4.5] See [142) Chap-
ter V,§6] for the Galois case. The general case can be treated by passing to the
Galois closure.

Leta= (a’E)EeS(L/K) and,B = (ﬁE)EeS(L/K) S @EGS(L/K) OE. From PI‘OpOSitiOH@
and formula (39), it follows that for all intermediate finite subextensions K C E C
E’ C E” c L one has:

ve (Ngrje(agr +Ber) — Nprjp(ag +Be) = e e(r(E')) = ok (r(E")).
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Since r(E’) — +oc0 when E’ runs over &(L/E), this proves the existence of the limit

a+ = lim  Ngplap +BE).
(@+PB)E I e /E(@E +BE)

Therefore the addition and the multiplication on 2 (L/E) are well defined.
Consider the map

(40) @1 Or — A(L/K), (@E)Ecsw/k) P (XE)Ecs(L/K))>
E€&(L/K)

where ag = ag mod ng) . Proposition shows that this map is compatible
with the addition and the multiplication on the both sets.

Now let x = (xg)g € A(L/K). For all E, choose a lift Xz € Og. Applying again the
inequality , we see that for all E, the sequence Ng//g(Xgr) converges to some
ag € Og. From our constructions, it follows that the map

A(L/K) = lim O, x > (@E)Ees(L/K))
E€&(L/K))
is the inverse of the map (40). Now the theorem follows from Theorem

6.3. Functorial properties.

6.3.1. In this section, L/K denotes an infinite APF extension. Any finite exten-
sion M of L can be written as M = L(«), where « is a root of an irreducible poly-
nomial f(X) € L[X]. The coefficients of f(X) belong to some finite subextension
F € &L/K). For any E € EL/F), one has:
F(@)NE=F,
and we set:
E' = E(a).
The system (E")geg(r/k) is cofinal in E&(M/K). Consider the map
JmiL s Z(LIK) - Z (M/K)
which sends any @ = (@g)eeg/k) € Z (L/K) to the element B = (Be/)eregm/k) €
Z (M/K) defined by
B =ag if ' = E(a) with E € E(L/F).
The previous remarks show that jy, is a well-defined embedding.
The following theorem should be compared with Theorem [5.4.4]
Theorem 6.3.2 (Fontaine—Wintenberger). i) Let M/L be a finite extension. Then
2 (M/K)] Z (L/K) is a separable extension of degree [M : L]. If M/L is a Galois
extension, then the natural action of Gal(M/L) on % (M/L) induces an isomor-
phism
Gal(M/L) =~ Gal(Z (M/K)] Z (L/K)).
ii) The above construction establishes a one-to-one correspondence
{finite extensions of L} < {finite separable extensions of % (L/K)},

which is compatible with the Galois correspondence.
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Proof. We only explain how to associate to any finite separable extension .#
of Z°(L/K) a canonical finite extension M of L of the same degree. Let .# =
Z(L/K)(@), where « is a root of an irreducible polynomial f(X) with coeffi-
cients in the ring of integers of 2 (L/K). We can write f(X) as a sequence f(X) =
(fE(X))Eesw/k)> where fp(X) € E[X]. Then M = L(@), where @ is a root of fg(X),
and E is of “sufficiently big” degree over K. See [161, Section 3] for a detailed
proof. O

6.3.3. From this theorem, it follows that the separable closure 2 (L/K) of 2 (L/K)
can de written as:

L/K)y= U M/K).
ZLK= U 2 MK
Corollary 6.3.4. The field of norms functor induces a canonical isomorphism of
absolute Galois groups:
Gawrk =GL.

6.3.5. Let L/K be an infinite totally ramified Galois APF extension. The Galois
group Gal(L/K) acts naturally on 2" (L/K). Fixing an uniformizer of 2 (L/K), we
idenfify Z"(L/K) with the local field kx((x)) of Laurent power series. Let T be an
automorphism of kg((x)). If 7 acts trivially on kg, then it is completely determined
by the power series 7(x) = ayx+ar x> +--- € kg[[x]] with a; # 0. Consider the group
of formal power series

ENE {f(x) = iaix" lay # 0}
i=1

with respect to the substitution group law f o g(x) = f(g(x)). We have an injective
map

41) Gal(L/K) — Aut (kK((x))).

This map encodes important information about the ramification filtration on Gal(L/K).
Recall that for any automorphism g of a local field E we defined:

ip(g) = ve(g(mg) —mE).

Now we define this function on the infinite level, setting:
ix(g) = ord,(g(x)—x),  geGal(L/K).

Then there exists F' € &(L/K) such that for any Galois extension E € &(L/F), one
has:

i£(8) = ix(g)
(see [161), Proposition 3.3.2]).
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6.3.6. The map (#I) can be described explicitly for cyclotomic extensions of
unramified local fields. Assume that K is unramified, and set Ko, = K({)~). Let
I'k = Gal(K«/K). The action of I'x on K, is given by the cyclotomic character:

XK - FK—>Z;, T({pn):é’[)gf(ﬂ, Telk.
Set:
(42) €= ({pnz0 € Z (Koo K).

Then x = £—1 is a uniformizer of 2 (K« /K), and 2 (K /K) = kg((x)). The action
of 'y on 2 (K /K) is given by

(43) 7(x) =1+ 2P -1 (mod p), relk.

This explicit formula can be generalized to the case of maximal abelian totally
ramified extensions using the Lubin—Tate theory.

We refer the reader to [[133]], [62], [LO7], [108], [159]], [160] for further results
about the connection between Galois groups and automorphisms of local fields of
positive characteristic.

6.3.7.  We discuss the compatibility of reciprocity maps in characteristics 0 and p
with the field of norms functor. Let L/K be an APF extension. For any E € &(L/K)
we have the reciprocity map

O : E* — G®.
Passing to projective limit, and identifying @EGS(L/K)E with 2" (L/K)*, we ob-

tain an injective homomorphism:
O : 2 (L/K)" — G2

By Corollary , the Galois group sz is canonically isomorphic to G*;‘zf(L 1K)
Let

Qﬁ?,/(L/K) : %(L/K)* - G?%(L/K)
denote the reciprocity map for the field of norms 2 (L/K).
Theorem 6.3.8 (Laubie). The diagram

2 (LJK) —= G
W jw
b
G?&”(L/K)
commutes.
Proof. See [107, Théoreme 3.2.2]. O

6.4. Comparison with the tilting equivalence.
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6.4.1. Recall that an infinite APF extension if deeply ramified, and therefore its
completion Lisa perfectoid field. We finish this section with comparing the field
of norms with the tilting construction. A general result was proved by Fontaine
and Wintenberger for APF extensions satisfying some additional condition.

Definition. A strictly APF extension is an APF extension satisfying the following

property:
v

oo (10 . A0 @y T
=t (GO GOGY)
From Sen’s theorem [1.3.T1] it follows that if Gal(L/K) is a p-adic Lie group,
then L/K is strictly APF.

6.4.2. Let L/K be an infinite strict APF extension. Recall that we denote by K;
the maximal tamely ramified subextension of L/K. For E € &L/K,), set d(E) =
[E : K;]. Foreachn > 1, set:

En ={E € &(L/K,) | p" divides d(E)}.

Let @ = (@p)ees/k) € Z (L/K). It can be proved (see [161, Proposition 4.2.1])
that for any n > 1, the family

AP peg,

converges to some x;, € L. Once the convergence is proved, it’s clear that x}, = xg .
for all n, and therefore x = (x,,),>1 € IP. This defines an embedding

X (LIK) — L.
Theorem 6.4.3 (Fontaine—Wintenberger). Let L/K be an infinite strict APF exten-
sion. Then -

X (LK™ =T
Proof. See [161, Théoréeme 4.3.2 & Corollaire 4.3.4]. O

Remark 6.4.4. In [61], Fesenko gave examples of deeply ramified extensions which
do not contain infinite APF extensions.

7. {-ADIC REPRESENTATIONS
7.1. Preliminaries.

7.1.1. Let E be a complete normed field, and let V be a finite-dimensional E-
vector space. Each choice of a basis of V fixes a topological isomorphism V ~ E"
and equips V with a product topology. Note that this topology does not depend on
the choice of the basis.

Definition. A representation of a topological group G on 'V is a continuous homo-
morphism

p:G— AutgV.
Fixing a basis of 'V, one can view a representation of G as a continuous homomor-
phism G — GL,(E).
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Let K be a field and let K be a separable closure of K. We denote by G the abso-
lute Galois group Gal(K/K) of K. Recall that G is equipped with the inverse limit
topology and therefore is a compact and totally disconnected topological group.

Definition. Let € be a prime number. An {-adic Galois representation is a repre-
sentation of Gk on a finite dimensional Q¢-vector space equipped with the {-adic

topology.

Sometimes it is convenient to consider representations with coefficients with a
finite extension E of Q,. Below, we give some archetypical examples of £-adic
representations.

7.1.2. One-dimensional representations. Let V be a one-dimensional Galois rep-
resentation. Then the action of Gk on V is given by a continuous character 7 :
Gk — Z;‘;, and we will write Q,,(7) instead V.

7.1.3. Roots of unity. The following one-dimensional representations are of par-
ticular importance for us. Let £ # char(K). The group Gk acts on the groups s of
{"-th roots of unity via the {-adic cyclotomic character yg ¢ : Gk > Z, :

g =9 VoG, € pp.

Set Z,(1) = lﬁl e and Qp(1) = Ze(1) ®z, Q,. Then Qp(1) is a one dimensional
n

Q-vector space equipped with a continuous action of Gx. The homomorphism

Gk — Autg,Qc(1) = Q; concides with yx .

7.1.4. Abelian varieties. Let A be an abeli_an variety over K, and let £ # char(K).
The group A[¢"] of £"-torsion points of A(K) is a Galois module, which is isomor-
phic (not canonically) to (Z/ {"Z)*? as an abstract group. The ¢{-adic Tate module
of A is defined as the projective limit
— 15 n
Ti(A) = h;nA[{’ 1.
n

T¢(A) is a free Z,-module of rank 2d equipped with a continuous action of Gg. The
associated vector space Vi(A) = T¢(A)®z, Q¢ gives rise to an {-adic representation

PAL - Gk — AthEV[(A).

Note that T/(A) is a canonical Gg-lattice of Vy(A). The reduction of 7¢(A) modulo
¢ is isomorphic to A[£].

7.1.5. {-adic cohomology. Let X be a smooth projective variety over K. Fix £ #
char(K). The Galois group Gk acts on the étale cohomology HY, (X Xk K,Z/{"Z).
Set:
H}(X) = lim H (X x x K.Z/0"7)®z, Q;.
n
It is known that the Q,-vector spaces H}(X) are finite dimensional and therefore
can be viewed as {-adic representations of Gg:

(44) G — Autg,H} (X).
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These representations contain fundamental informations about the arithmetic of
algebraic varieties. If X is a smooth proper scheme over a finite field F, of char-
acteristic p, then the geometric Frobenius Fr, acts on H; (X), and the zeta-function
Z(X/F4,1) has the following cohomological interpretation envisioned by Weil and
proved by Grothendieck:
2d
Z(X /¥ty = | [ (1-Frgt | H}(X)
i=0

)(—1>"+1

Katz’s survey [93] contains an interesting discussion of what is known and not
known about ¢-adic cohomology over finite fields.

Let now X be a smooth projective variety over a number field K. For any fi-
nite place p of K, we can consider the restriction of the representation on the
decomposition group at p. This gives a representation of the local Galois group
Gk, = Gal(K,/Ky):

Gk, — Autg, H;(X).
If p4 ¢ and X has a good reduction X, at p, the base change theorem says that
H{(X) is isomorphic to Hj(Xy). In particular, H;(X) is unramified at p, i.e. Gk,
acts on Hy(X) through its maximal unramified quotient Gal(K}'/Ky). The converse
holds for abelian varieties: if V;(A) is unramified, then A has good reduction at
p 1 £ (criterion of Néron—-Ogg—Shafarevich [144]).

If p 1 £, and X has bad reduction at p, an important information about the action
of Gk, is provided by Grothendieck £-adic monodromy theorem (Theorem [7.2.3
below). The case p | £ can be studied by the tools of p-adic Hodge theory. This is
the main subject of the remainder of these notes.

7.1.6.  We denote by Repg),(Gk) the category of {-adic representations of the ab-
solute Galois group of a field K. Some of its first properties can be summarized in
the following proposition:

Proposition 7.1.7. Repqy,(Gk) is a neutral Tannakian category.

We refer the reader to [51] for the tannakian formalism. In particular, Repg, (Gk)
is an abelian tensor category. If V| and V, are £-adic representations, the Galois
group G acts on Vi ®q, V> by

g(v1 ®vy) = gv; ® guy, VgeGg, vi€V], vy€eV,.
Rep(,(Gk) is equipped with the internal Hom:
Hom(V1,V>) := Homg,(V1, V2).
The Galois group acts on Hom(Vy, V») by
gNw)=gf(g"v),  VgeGk, feHom(Vi,Va), vieVr
For any £-adic representation V, we denote by V* its dual representation
V" := Hom(V,Qy) := Homgq,(V, Qy),

where Q, denotes the trivial representation of dimension one.
For any positive n, we set Qg(n) = Q(1)®" and Q(—n) = Q(n)*.
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7.1.8.  We will also consider Z,-representations. Namely, a Z,-representation of
Gk is a finitely generated free Z,-module equipped with a continuous linear action
of Gk. The category Repy (Gk) of Z,-representations is abelian. It contains the
tannakian subcategory Repy,(Gg) of representations of Gk over the finite field
F, = Z/¢Z. We have the reduction-modulo-¢ functor

Repz, (Gk) — Repg, (Gk),
T—T ®z, F,.
The following proposition can be easily deduced from the compactness of G :

Proposition 7.1.9. For any {-adic representation V, there exists a Ly-lattice stable
under the action of G. In particular, the functor

Repyz,(Gk) — Repg, (Gk),
T—T ®z, Q/
is essentially surjective.

7.2. (-adic representations of local fields (¢ # p).

7.2.1. From now on, we consider {-adic representations of local fields. Let K
be a local field with residue field kx of characteristic p. To distinguish between the
cases ¢ # p and ¢ = p, we will use in the second case the term p-adic keeping £-adic
exclusively for the inequal characteristic case.

7.2.2.  We consider the ¢-adic case. Recall that for the tame quotient of the inertia
subgroup we have the isomorphism (20):

Gal(K"/K™) ~ l—[Zq.
q#p
Let ¢ denote the projection
We : Ix = Gal(K"/K"™) — Z,.
The following general result reflects the Frobenius structure on the tame Galois

group.
Theorem 7.2.3 (Grothendieck £-adic monodromy theorem). Let

p: Gg — GL(V)

be an {-adic representation. Then the following holds true:

i) There exists an open subgroup H of the inertia group Ix such that the auto-
morphism p(g) is unipotent for all g € H.

ii) More precisely, there exists a nilpotent operator N : V — V such that

p(g) = exp(NY(g)),  VgeH.

iii) Let l?rK € Gk be any lift of the arithmetic Frobenius Frg. Set F = p(l?rK).
Then
FN =¢gNF,

where q = |kg|.
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Proof. See [144] for details.
a) By Proposition[7.1.9] p can be viewed as an homomorphism

p G]( e GLd(Z{)).

Let U = 1 +¢*My(Z;). Then U has finite index in GL4(Z,), and there exists a finite
extension K’/ K such that p(Gg-) C U. Without loss of generality, we may (and will)
assume that K’ = K.

b) The wild ramification subgroup Pk is a pro-p-group. Since U is a pro-£-group
with £ # p, we have p(Pk) = {1}, and p factors through the tame ramification group
Gal(K"/K). Since Gal(K"/K") ~ []Z,, the same argument shows that p factors

q

through the Galois group of the extension K{Er /K, where
Kg = K" (7', m is a uniformizer of K.

Let 7, be the automorphism that maps to 1 under the isomorphism G.al(Kz,r /K" ~
Z. By Proposition 2.1.4, Gal(K}'/K) is the pro--group topologically generated by
7, and by any lift f; of the Frobenius automorphism, with the single relation:

(45) freefi =l

c¢) Set X = p(7,) € U. The {-adic logarithm map converges on U, and we set:
X X-1
N :=log(X) = (-1 =——.

0g(X) (=D -

n=1

Then for any g € Ik, we have:

p(g) = p(t!“®) = exp(Nye(g)).

Moreover, applying the identity log(BAB~!) = Blog(A)B™! to and setting F =
p(fr), we obtain:
FNF~' =¢4N.

d) From the last formula, it follows that N and gN have the same eigenvalues.
Therefore they are all zero, and N is nilpotent. The theorem is proved. O

8. CLASSIFICATION OF P-ADIC REPRESENTATIONS

8.1. The case of characteristic p.

8.1.1. In this section, we turn to p-adic representations. It turns out, that it is
possible to give a full classification of p-adic representations of the Galois group
of any field K of characteristic p in terms of modules equipped with a semi-linear
operator. This can be explained by the existence of the Frobenius structure on K. To
simplify the exposition, we will work with the purely inseparable closure F := K™
of K. However, it is not absolutely necessary (see [69]]). On the contrary, it is often
preferable to work with non-perfect fields. We will come back to this question in
Section
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8.1.2. Consider the ring of Witt vectors

Oz =W(F)
Recall that O # is a complete discrete valuation ring of characteristic 0 with maxi-
mal ideal (p) = pO 4 and residue field F. Its field of fractions .% = O #[1/p] is an

unramified discrete valuation field. The field F = Erad is an algebraic closure of F,
and the Galois groups of K/K and F/F are canonically isomorphic. Set:

O =W(F),  F"=0%[1/pl.

Then .7 is a complete unramified discrete valuation field with residue field F
and therefore can be identified with the completion of the maximal unramified
extension of .%. The field F is equipped with the following structures:

— The action of the absolute Galois group Gg;

— The absolute Frobenius automorphism ¢ : F — F, ¢(x) = xP.
The actions of Gx and ¢ commute to each other. On has:

F*=Fr  F7'=F,
These actions extend naturally from F to 52 and .7, and one has:
05 =07, (0% =2,

Definition. Let A = F, Og or F. A p-module over A is a finitely generated A-
module D equipped with a semi-linear injective operator ¢ : D — D. Namely, ¢
satisifies the following properties:

p(x+y) =) +¢(y), VYx,yeD,

plax) = p(a)p(x), YaeA,xeD.

A morphism of ¢-modules is an A-linear map f : D; — D, which commutes
with ¢ :
fled) =¢(f(d),  VYdeD.

8.1.3. Consider A as an A-module via the Frobenius map ¢ : A — A. For a ¢-

module D, let D®, , A denote the tensor product of A-modules D and A. We con-
sider D®, 4 A as an A-module:

Ad®a)=d® Aa, 1A€A d®aeD®y,A.
Then the semi-linear map ¢ : D — D induces an A-linear map
®:D®y,A— D, d®aw ap(d).
Definition. i) Let A=F or Ogz. A p-module D over A is étale if the map @ :

D®s A — D is an isomorphism.
ii) A p-module over .F is étale if it has an étale O z-lattice.

Let A = F or O#, and assume that D if free over A. Then D is étale if and only
if the matrix of ¢ : D — D is invertible over A. Note that this property does not
depend on the choice of the A-base of D.
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8.1.4. Wedenote by Mﬁ’ét the category of étale p-modules over A = F,0 z, % . We
refer the reader to [69] for a detailed study of these categories. All these categories
are abelian. They are equipped with the tensor product:

Dy ®4 Da, @(d1 ®dr) = p(d1) ® p(d>)
and the internal Hom :
Hom(Dy, D;) := Homa (D1, D»).
The action of ¢ on Hom(D1, D) is defined as follows. Let f : Dy — D,. Then ¢(f)
is the composition of maps:
@-! feid )
o(f) : D1 — D1 ®s A — Dry®s A — Ds.
The categories Mﬁ’ét and M‘;’,ét are neutral tannakian. If A = F or .%, then for any
De Mﬁ’ét, we denote by D* the dual module:
D* = Homyu(D,A).

8.1.5. The term étale can be explained as follows. Let D be a ¢-module over F.
Fix a basis {eq,...,e,} of D. Write:

n
w(e) = Zaijej, ajj€F, I1<i<n.
i=1

Let I C F[Xy,...,X,] denote the ideal generated by

N

n
X;’—Zainj, 1<i<n.
i=1

Then the algebra A := F[X1,...,X,]/I is étale over F if and only if D is an_étale ©-
module. Consider the F,-vector space Homp(D, F y¥=1. Let f e Homp(D, F). Then
©(f) = f if and only if the vector (f(ey),... f(en)) € F" is a solution of the system

n
Xf—Za,-ij:O, 1<i<n.
i=1

Therefore we have isomorphisms:
Homp(D,F)¥~!' = Homp_alg(A,f) = Spec(A)(F).

Note that if D is étale, then the cardinality of Spec(A)(F) is p", and Homg(D, F)#=!
is a F,-vector space of dimension 7.

8.1.6. For the dual module D*, we have a canonical isomorphisms:
D®p F ~ Homp(D*, F)®p F ~ Homp(D*, F).
Then
(D@r F)*~! =~ Homp(D", F)*™",

and applying the previous remark to D*, we see that (D®y F)¥=! is a F,-vector
space of dimension 7.
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8.1.7. Following Fontaine [69], we construct a canonical equivalence be}ween
the category Repr (Gk) of modular Galois representations of Gx and Mfiet. For
any V e Repr(GK), set:

Dr(V) = (Ve&r, F)°F.
Since G acts trivially on F, it is clear that D¢(V) is an F-module equipped with
the diagonal action of ¢ (here ¢ acts trivially on V). For any D € M2 set:

Vr(D) = (Der F)*"".

Then Vg(D) is an F-vector space equipped with the diagonal action of Gk (here
Gk acts trivially on D).

Theorem 8.1.8. i) Let V € RepFP(GK) be a modular Galois representation of di-
mension n. Then Dg(V) is an étale p-module of rank n over F.

iit) Let D € M%ét be an étale p-module of rank n over F. Then V p(D) is a modular
Galois representation of G of dimension n over F),.

iii) The functors D and V establish equivalences of tannakian categories

Dy : Repp (Gx) > MEY, Vi : M4 - Repy (Gi).

which are quasi-inverse to each other. Moreover, for all T € Repr(GK) and D €

Mfiet, we have canonical and functorial isomorphisms compatible with the actions
of Gk and ¢ on the both sides:

Dp(T)® F ~T®y, F,

Vr(D) ®F,, F ~ D®p f
Proof. a) Let V € Repy (Gg) be a modular representation of dimension n. The
Galois group GF acts semi-linearly on V ®p, F. From Hilbert’s Theorem 90 (The-

orem , it follows that Dp(V) = (V ®r, F)CF has dimension n over F, and that
the multiplication in F induces an isomorphism

(Ver, F)°" ® F > V&g, F.

Hence:
Dr(V)®FrF — V&, F.

This isomorphism shows that the matrix of ¢ is invertible in GL, (F) and therefore
in GL,,(F). This proves that Dg(V) is étale.
Taking the ¢-invariants on the both sides, one has:

(46) VeDp((V)) = Dp(V)®F F)*~' = (Veg, F)*~' = V.

b) Conversely, let D € Mi’ét. We already know (see Section [8.1.6)) that V(D) is
a F,-vector space of dimension n. Consider the map

47) a: (D®FF)*~' @, F > D& F,
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induced by the multiplication in F. We claim that this map is an isomorpism. Since
the both sides have the same dimension over F, it is sufficient to prove the injec-
tivity. To do that, we use the following argument, known as Artin’s trick. Assume
that f is not surjective, and take a non-zero element x € ker(«) which has a shortest
presentation in the form

m
X = Zd,’@di, dieVi(D), a;€ f
i=1

Without loss of generality, we can assume that a,, = 1 (dividing by a,,). Note that
©(x) — x € ker(a). On the other hand, it can be written as:

m—1

m
px)—x= ) di®pla)—a) = ) d;®(p(a)-a).
i=1 i=1
By our choice of x, this implies that ¢(a;) = a;, and therefore a; € F, for all i. But
in this case x € Vp(D), and x = a(x) = 0. This proves the injectivity of (7).
c¢) By part b), we have an isomorphism:

Vr(D)®r, F—D®rF.
Taking the Galois invariants on the both sides, we obtain:
(48) Dr(Vr(D)) = (Vi(D)®F, F)°" = (D& F)°" = D.

From (#6) and (@8), it follows that the functors D and Vg are quasi-inverse to
each other. In particular, they are equivalences of categories. Other assertions can
be checked easily. O

.t

8.1.9. Now we turn to Z,-representations. For all T € Repr(GK) and D € MOg ,

set: _

Do, (T) = (T ®z, 0%)°F,

Vo, (D)= (D&, 0'%)*".
The following theorem can be deduced from Theorem by devissage.
Theorem 8.1.10 (Fontaine). i) Let T € Repzp (Gk) be a Z,-representation. Then

Do, (T) is an étale p-module over O .
ii)Let D€ M‘g’;t be an étale p-module over O zz. Then Vo ;. (D) is a Z,-representation

OfGK.

iit) The functors Do, and Vo, establish equivalences of categories
Do, : Repy (Gx)— M*g;f, Vo, : M*g; — Repy (Gx),
which are quasi-inverse to each other. Moreover, for all T € Repr(GK) and D €

0
of Gk and ¢ on the both sides:

M‘p’;, we have canonical and functorial isomorphisms compatible with the actions

Do, (T)®0, O ~T®z,0%,

Vo (D)®z, 0" ~D®¢., O'%.
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For p-adic representations, we have the following:

Theorem 8.1.11. i) Let V be a p-adic representation of Gk of dimension n. Then
Dz (V)=(V®q, # uN\Gx s an étale p-module of dimension n over 7 .
ii) Let D € Mf;,let be an étale p-module of dimension n over % . Then V z(D) =
(D®q, F u\e=1is a p-adic Galois representation of Gk of dimension n over Q D
iii) The functors
D7 : Repq, (Gx) —» M%7,
V7 : M%" - Repg, (Gr).

are equivalences of tannakian categories, which are quasi-inverse to each other.
Moreover, forall V € RepQ (Gx)and D € M‘a € e have canonical and functorial
isomorphisms compatible with the actions of GK and ¢ on the both sides:

Dy (Vo7 7" = Ve, 7",
V#(D)®q, 7" =D&z F".

8.2. The case of characteristic 0.

8.2.1. In this section, K is a local field of characteristic 0 with residual charac-
teristic p. Let Ko = K({)) denote the p-cyclotomic extension of K. Set Hg =
Gal(K/Ks) and T = Gal(K«/K). Then Ko /K is a deeply ramified (even an APF)
extension, and we can consider the tilt of its completion:

F:=K’

The field F is perfect, of characteristic p, and we apply to F the contructions of
Section[8.1] Namely, set Oz = W(F) and .% = O #[1/p]. These rings are equipped
with the weak topology, defined in Section[5.3| By Proposition[5.4.3] the separable

closure F of F is dense in Cb and we have a natural inclusion 0ur C W(C ). The
Galois group Gk acts naturally on the maximal unramified extens1on F ur of ¥

in W(C K)[l/ p] and on its p-adic completion ﬁ Y By Theorem this action
induces a canonical isomorphism:

(49) Hy ~ Gal(F"|.F).

In particular, (ﬁ unHx = # . The cyclotomic Galois group I'x acts on F and there-
fore on 04 and %

Definition. Let A = F,O 4, or 7. A (¢,I'x)-module over A is a g-module over A
equipped with a continuous semi-linear action of I'x commuting with ¢. A (¢,I'k)-
module is étale if it is étale as a p-module.

We denote by Mﬁ’r’ét the category of (¢,['x)-modules over A. It can be easily

seen that Mﬁ’r’et is an abelian tensor category. Moreover, if A = F or .7, it is
neutral tannakian.
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8.2.2. Now we are in position to introduce the main constructions of Fontaine’s
theory of (¢,I'x)-modules. Let T be a Z,-representation of Gg. Set:

Do (T) = (T'®z, 05)"x.

Thanks to the isomorphism (#9) and the results of Section[8.1} Do, (T') is an étale
¢-module. In addition, it is equipped with a natural action of 'k, and therefore we
have a functor
JL,é
Do, : Repz (Gx) - MJ, .
Conversely, let D be an étale (¢,I'x)-module over O . Set:
Vo (D)= (D®z, 0%)*".

By the results of Section @ Vo, (D), is a free Z,-module of the same rank.
Moreover, it is equipped with a natural action of Gg, and we have a functor

Voo : Mg’;ét — Repy, (Gx).

Theorem 8.2.3 (Fontaine). i) The functors Do, and Vo, are equivalences of
categories, which are quasi-inverse to each other.

ii) Forall T € RepZ (Gg) and D € M‘pz we have canonical and functorial
isomorphisms compatlble with the actions of Gg and ¢ on the both sides:

Dog (T) ®09 Ol;; =~ T®Zp OUJ@,

(50) — _
Vo, (D)®z, 0% ~ D&, O.

Here Gg acts on (¢,I'x)-modules through I'k.

Proof. Theorem provide us with the canonial and functorial isomorphisms
@]), which are compatible with the action of ¢ and Hg. From construction, it
follows that they are compatible with the action of the whole Galois group Gk on
the both sides. This implies that the functors Do, and Vo, are quasi-inverse to
each other, and the theorem is proved. O

Remark 8.2.4. We invite the reader to formulate and prove the analogous state-
ments for the categories Repr(GK) and Repr (Gg).

8.2.5. One can refine this theory working with the field of norms rather that with
the perfectoid field EEO To simplify notation, let Ex denote the field of norms of
K /K. We recall that by Theorem E;?d is dense in k\i’o We want to lift Eg to
characteristic 0. First, we consider the maximal unramified subextension K of K.
Let Ky /Ko denote its p-cyclotomic extension. SetI'x, = Gal(Ko,./Ko) and Hg, =
Gal(E/Ko,oo). Let Eg, denote the field of norms of Ko «/Ko. Then Eg, = kg ((x)),
where x = &—1 and & = ({,1)n>0 (see (@). Take the Teichmiiller lift [e] € O# of
and set X = [¢] — 1. The Galois group and the Frobenius automorphism act on [&]
and X through Ik, as follows:

g(le]) = [e]0®, g €Gg,, o([e]) =[],
gX)=(1+XX®—1, geGg,, X)) =1+X)-1,
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where xo : Gk, — Z), denote the p-adic cyclotomic character for K. The ring of
integers Ok, = W(kg) is a subring of O #. We define the following subrings of O # :

A} = Ok, [IX],
Ak, = AJr ,[1/X] = p-adic completion of Ag [1/X].
Note that Ak, is an unramified discrete valuation ring with residue field Eg,. It can

be described explicitely as the ring of power series of the form

E a, X", ay € Ok, and lim a, =0.
n——oo
nerz

It is crucial that Ag, is stable under the actions of I'x, and ¢. Set Bg, = Ag,[1/p].
Then B, is an unramified discrete valuation field with the ring of integers Ak, .

8.2.6. By Hensel’s lemma, for each finite separable extension E/E, there exists
a unique complete subring A C Ouj_ containing Ak, and such that its residue field
A/pA is isomorphic to E. We denote by Aur the compositum of all such extensions

in 0; and set B?(ro = A}‘{ro[l /p]. Then BY is the maximal unramified extension of
Bk, and A“Kr0 is its ring of integers. Let B and A denote the p-adic completions
of B‘I’g0 and A‘;;O respectively. All these rings are stable under the natural action of
Gk, By the theory of fields of norms, this action induces canonical isomorphisms:

Hy, ~ Gal(Ek,/Ex,) = Gal(BY, /Bx,).
8.2.7. Recall that X is a totally ramified extension of Kj. Set:
Ag=A"r, By =Ak[l/p].
Then By is an unramified extension of Bk, with residue field Ex. One has:
Bk : Bkl = [Ex : Eg)] = [Keo @ Ko,00]-

These constructions can be summarized in the following diagram, where the hori-
zontal maps are reductions modulo p :

A E

AKﬁE[(

AKo I E[(O

8.2.8. The notion of an (étale) (¢,I'x)-module extends verbatim to the case of
modules over Ak (respectively Bx). We denote by Mﬁ’it and M]‘/;’[‘:“t the resulting
categories. For any Z,-representation T of G, set:

D(T) = (T ®z, A)"¥.
Conversely, for any étale (¢,'x)-module D over A, set:

V(D) = (D®z, A"



AN INTRODUCTION TO p-ADIC HODGE THEORY 67

Theorem 8.2.9 (Fontaine). The functors D and V define equivalences of categories
D : Repz (Gk) — M“”ff, V: Mﬁ’? — Repy (Gx),

which are quasi-inverse to each other.
ii) For all T € Repr(GK) and D € M‘p’zt, we have canonical and functorial
isomorphisms compatible with the actions of Gk and ¢ on the both sides:

D(T)®a, A = T ®g, A,
V(D) ®z, A=Dep, A.

Proof. The theorem can be proved by the same arguments as used in the proofs of
Theorems [8.1.8]and [8.2.3] above. For details, see [69, Théoreme 3.4.3]. mi

Remark 8.2.10. We invite the reader to formulate and prove the analogous state-
ments for the categories Repr (Gg) and Repr (Gg).

8.2.11. We remark that for all T € Repr (Gk), one has:
Do (T) = D(T)®4, O5.
Analogously, for all D € Mi’?, one has:
V(D) = Vo, (D, 07).

Contrary to Do, (T'), the module D(T) is defined over a ring of formal power
series. This allows to use the tools of p-adic analysis and relate (¢, 'x)-modules to
the theory p-adic differential equations (Fontaine’s program). See also Section [13]
for further comments.

9. B-ADMISSIBLE REPRESENTATIONS
9.1. General approach.

9.1.1. The classification of all p-adic representations of local fields of characteris-
tic 0 in terms of (¢, 'k )-modules is a powerful result. However, the representations
arising in algebraic geometry have very special properties and form some natural
subcategories of Repr(GK). Moreover, as was first observed by Grothendieck in
the good reduction case, it should be possible to classify them in terms of some ob-
jects of semi-linear algebra, such as filtered Dieudonné modules (Grothendieck’s
mysterious functor). In this section, we consider Fontaine’s general approach to
this problem. See [[71] for a detailed exposition.

9.1.2. In this section, K is a local field. As usual, we denote by K its separable
closure and set G = Gal(K/K). To simplify notation, in the remainder of this paper
we will write C instead of C for the p-adic completion of K. Since the field of
complex numbers will appear only occasionally, this convention should not lead to
confusion.

Let B be a commutative Q,-algebra without zero divisors, equipped with a Q-
linear action of Gg. Let C denote the field of fractions of B. Set E = B,. We adopt
the definition of a regular algebra provided by Brinon and Conrad in [32], which
differs from the original definition in [71].
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Definition. The algebra B is Gg-regular if it satisfies the following conditions:

l) BGK — CGK,'

it) Each non-zero b € B such that the line Q,b, is stable under the action of G,
is invertible in B.

If B is a field, these conditions are satisfied automatically.

9.1.3. In the remainder of this section, we assume that B is Gg-regular. From the
condition ii), it follows that E is a field. For any p-adic representation V of Gg we
consider the E-module

Dy(V) = (V®q, B)°X.
The multiplication in B induces a natural map

ap : Dp(V)®r B — V®Qp B.

Proposition 9.1.4. i) The map ap is injective for all V € RepQP(GK).
ii) dimg D(V) < dimg, V.

Proof. See [32, Theorem 5.2.1]. Set D¢(V) = (V ®q, C)°¥. Since BO¥ = C¥,
Dc(V) is an E-vector space, and we have the following diagram with injective
vertical maps:

Dp(V) —= V®q, B

.

Dc(V) —= V&g, B.

Therefore it is sufficient to prove that a¢ is injective. We prove it applying Artin’s
trick. Assume that ker(a¢) # 0 and choose a non-zero element

m
x= ) d;i®c; € ker(ac)
i=1
of the shortest length m. It is clear that in this formula, d; € D¢c(V) are linearly
independent. Moreover, since C is a field, one can assume that c¢,, = 1. Then for all
g€Gk
m—1
g —x= > di®(glc)—c)) € ker(ec),
i=1
This shows that g(x) = x for all g € Gk, and therefore that ¢; € CC = E for all
1 <i<m. Thus x € Dc(V). From the definition of a, it follows that ac(x) = x,
hence x = 0. o

Definition. A p-adic representation V is called B-admissible if
dimg Dp(V) = dimg, V.

Proposition 9.1.5. If V is admissible, then the map ap is an isomorphism.
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Proof. See [[11} Proposition 1.4.2]. Let v = {vi}l’.’:1 and d = {d,-}?:1 be arbitrary bases
of V and Dp(V) respectively. Then v = Ad for some matrix A with coeflicients in B.
The bases x= A\"_,d; € \"Dp(V)andy= A_, v; € \" V are related by x = det(A)y.
Since Gk acts on y € A"V as multiplication by a character, the Q,-vector space
generated by det(A) is stable under the action of Gg. This shows that A is invertible,
and ap is an isomorphism. O

9.1.6. We denote by Rep;(G) the category of B-admissible representations. The
following proposition summarizes some properties of this category.

Proposition 9.1.7. The category Repg(Gk) is a tannakian subcategory of all p-
adic representations RepQP(GK). In particular, the following holds true:
i) If in an exact sequence

0>V ->V-oV'-0

V is B-admissible, then V' and V'’ are B-admissible.
ii) If V' and V" are B admissible, then V' ®q ) V" is B admissible.
iii) V is B-admissible if and only if the dual representation V* is B-admissible,
and in that case Dg(V*) = Dg(V)*.
iv) The functor
D3 : Repyp(Gg) — Vectg

to the category of finite dimensional E-vector spaces, is exact and faithful.

Proof. The proof is formal. See [71}, Proposition 1.5.2]. O

9.1.8.  We can also work with the contravariant version of the functor Dp :
Dj(V) = Homg, (V, B).
From definitions, it is clear that
Dy(V) =Dp(V*).
In particular, if V (and therefore V*) is admissible, then
Dy(V) =Dp(V)" := Homg(Dp(V), E).

The last isomorphism shows that the covariant and contravariant theories are equiv-
alent. For an admissible V, we have the canonical non-degenerate pairing

(,): VxD*(V) - B, W, f) = f),
which can be seen as an abstract p-adic version of the canonical duality between
singular homology and de Rham cohomology of a complex variety.

9.2. First examples.

9.2.1. B=K, where K is of characteristic 0. The K-admissible representations
are p-adic representations having finite image. Indeed, since the action of Gk is
discrete, each K-admissible representation has finite image. Conversely, if V has
finite image, it is K-admissible by Hilbert’s theorem 90.
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92.2. B= W(EK)[I/ pl. The B-admissible representations are unramified p-adic
representations. This follows from Proposition[1.6.3]

9.2.3. B=.Z". Let K be alocal field of characteristic p,and let Fur = WK™ [1/p].
By Theorem 8.1.11} each p-adic representation of Gk is .# " -admissible.

9.2.4. B=C, where K is of characteristic 0. Sen proved ( see Corollary
below) that V is C-admissible if and only of Ik acts on V through a finite quo-
tient. The sufficiency of this condition can be proved as follows. Set n = dimg, V.
Assume that p(Ix) is finite. Let U C Ix be a subgroup of finite index such that
p(U) = {1}. By the theorem of Ax—Sen-Tate, (V®q, C)V = Vg, L, where L = &
Applying Hilbert’s Theorem 90 to the extension L/K™, we obtain that (V ®Q,
C)’x is a n-dimensional vector space over KU equipped with a semi-linear ac-
tion of Gal(K""/K). Now from Proposition 1.6.5]it follows that (V ®q, C)’* has a
Gal(K"/K)-invariant basis, and therefore dimg D¢(V) = n.

The necessity is the difficult part of Sen’s theorem, and we prove it only for
one-dimensional representations.

Proposition 9.2.5. If the one-dimensional representation Q,(n) is C-admissible,
then n(Ig) is finite.

Proof. a) If n(Ix) is infinite, then from Theorem |4.3.2] it follows that C(1)°% = 0.
Hence Q,(n) is not C-admissible. O

9.2.6. Consider the multiplicative group G,, over the field of complex numbers C.
Then G,,(C) = C* is the punctured complex plane, and the Betti homology H,(G,,)
is the one-dimensional Q-vector space generated by the counter-clockwise circle
centered at 0. The de Rham cohomology HéR(Gm) is generated over K by the class

of the differential form dyx. The integration yields a non-degenerate bilinear map:

()¢ : Hi(Gp) X Hip(Gy) - C,
(51)
(¥, w)c = fa).
Y

The p-adic realization of G,, is its Tate module:

Tp(Gm) = lln,upn ~ Z[,(l)

n

The p-adic analog of the pairing should be a non-degenerate bilinear map
()t Tp(Gm) X Hyp(Gn) = B,

with values in some ring B of “p-adic periods”, compatible with the Galois action
on 7,(G,,) and B. Proposition shows that in the field C, there doesn’t exist a
non-zero element ¢ such that

g0 =xk(@n, g € Gg.

Therefore the ring of p-adic periods should be in some sense “bigger” that C.
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10. TATE—SEN THEORY
10.1. Hodge-Tate representations.

10.1.1. 'We maintain notation and conventions of Section The notion of a
Hodge-Tate representation was introduced in Tate’s paper [151]. We use the for-
malism of admissible representations. Let K be a local field of characteristic 0.
Let

Bur = Cl1,17']
denote the ring of polynomials in the variable # with integer exponents and coeffi-
cients in C. We equip Byt with the action of Gk given by

g(D ai)= > g@axi(®f,  geG,
where y x denotes the cyclotomic character. Therefore Gk acts naturally on C, and

t can be viewed as the “p-adic 27i”” — the p-adic period of the multiplicative group
Gyy,. For any p-adic representation V of Gg, we set:

Dur(V) = (V®q, Bur)**.
Proposition 10.1.2. The ring Byt is Gx-regular and B% =K.

Proof. a) The field of fractions Fr(Bgr) of Byt is isomorphic to the field of rational
functions C(r). Embedding it in C((z)), we have:

BJX  Fr(Bur)“* c C((1))°%.

From Theorem4.3.2] it follows that (C#)°% = K if i = 0, and (C))°¥ = 0 otherwise.
Hence Bfg = C((1))°* = K. Therefore

Fr(Bur)°* = BSX = K.

b) Let b € Byr \ {0}. Assume that Qb is stable under the action of Gg. This
means that

(52) g(b) =n(g)b, Vg e Gk

for some character p : Gx — Z,,. Write b in the form
b= Zaiti.
i
We will prove by contradiction that all, except one monomials in this sum are zero.
From formula (52), if follows that for all i one has:

gaix(e) =am(g),  g€GCk.
Assume that a; and a; are both non-zero for some i # j. Then

2@xi(g)  gapi(s)
a; B aj

, Vg € Gg.

Setc =a;/ajand m = i— j# 0. Then c is a non-zero element of C such that

glewg(g)=c,  VgeGg.
This is in contradiction with the fact that C(m)®% = 0 if m # 0.



72 DENIS BENOIS

Therefore b = a;t' for some i € Z and a; # 0. This implies that b is invertible in
Byr. The proposition is proved. O

10.1.3. Let Gradg denote the category of finite-dimensional graded K-vector
spaces. The morphisms in this category are linear maps preserving the grading.
We remark that Dygr(V) has a natural structure of a graded K-vector space:
_ . NG
Dir(V) = @ er'Dur(V). g’ Dun(V) = (Veq, Cr) ™.
1
Therefore we have a functor
DHT . Repr(GK) i GradK.

Note that this functor is clearly left exact but not right exact (see Example [10.2.13]
below).

Definition. A p-adic representation V is a Hodge—Tate representation if it is Byr-
admissible.

We denote by Repy(Gk) the category of Hodge—Tate representations. From the
general formalism of B-admissible representations, it follows that the restriction of
Dyt on Repyr(Gg) is exact and faithful.

10.1.4. Set:
v =xe V®q, Clg(x) =xx(g)'x, VgeGgl, i€Z,
Viiy = V@ C.
It is clear that V¥ ~ gr'Dyr(V). Moreover, the multiplication in C induces linear
maps of C-vector spaces V{i} — V®q, C. Therefore one has a C-linear map:
(53) ® Vii} - V®q,C.
i€Z

The following proposition shows that our definition of a Hodge—Tate representation
coincides with Tate’s original definition:

Proposition 10.1.5. i) For any representation V, the map is injective.
i) V is a Hodge-Tate if and only if is an isomorphism.
Proof. 1) By Proposition[9.1.4] for any p-adic representation V, the map
ayr : Dur(V)®k Bur — V&, Bur

is injective. The restriction of ayr on the homogeneous subspaces of degree O
coincides with the map (53). Therefore is injective.

ii) By Proposition[9.1.5] V is a Hodge-Tate if and only if gy is an isomorphism.
We remark that agr is an isomorphism if and only if the map is. This proves
the proposition. O

Definition. Let V be a Hodge—Tate representation. The isomorphism
Veg, C= @ Vi
Q i€Z { }

is called the Hodge—Tate decomposition of V. If V{i} # 0, one says that the integer
i is a Hodge—Tate weight of V, and that d; = dimc V{i} is the multiplicity of i.
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We will use the standard notation C(i) = C(X%) for the cyclotomic twists of C.
Then V{i} = C(i)% as a Galois module. The Hodge-Tate decomposition of V can
be written in the following form:

Ve, C= 1 C@i)%.

10.1.6. Examples. 1) Lety : Gx — Z,, be a continuous character. Then Q,,(y) is
a Hodge-Tate of weight i if and only if

Ul =Xkl

for some open subgroup I of the inertia group Ig. This follows from Proposi-
tion[9.2.3

2) Assume that E is a subextension K such that TE C K for each conjugate of E
over Q,. Let ¢ : Gk — O}, be a continuous character. Then E(i) can be seen as a
p-adic representation of dimension [E : Q,] with coefficients in Q,, and

EW)®q,C= P Caow).

reHomg, (E.K)
Therefore E(y) is of Hodge—Tate if and only if for each 7
C(roy) = C(xy), for some n; € Z.
We come back to this example in Section

10.2. Sen’s theory.

10.2.1.  Let V be a Galois representation of Gg. Then V®q, C can be viewed as an
object of the category Rep(Gk) of finite-dimensional C-vector spaces equipped
with a semi-linear action of Gg. This category was first studied by Sen [136].
Let Koo = K({~) denote the cyclotomic extension of K. Set I'x = Gal(K/K) and

Hg = Gal(E/Koo). Let W € Rep(Gk). Sen’s method decomposes into 3 steps:

10.2.2. Descent to Koo Set Weo = WHE. By Theorem and the inflation-restriction
exact sequence, one has:
H'(Tx.GL(Kw)) = H' (Gk.GLa(C)).
Therefore the natural map
Woo ®EM C-Ww

is an isomorphism. Let Repg (I'x) be the category of finite-dimensional Keo-
vector spaces equipped with a semi-linear action of I'x. Then the functor

Repc(Gx) > Repg (Tx), W W

is an equivalence of categories. Its quasi-inverse is given by extension of scalars
X Xop C.
o
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10.2.3. Undoing the completion. For any Ew—representation X, let X denote the
union of all finite-dimensional K-vector subspaces of X. Sen proves that the map

Xy 0k, Ko — X
is an isomorphism. The key tool here is the canonical isomorphism
H' (T, GLy(Kw)) = H' (T, GL, (Keo))

(see [136, Proposition 6]). This implies that the functors X — Xy and U — U ®k,,
K are mutually quasi-inverse equivalences between Repg (I'k) and Repg(I'x).

10.2.4. Infinitesimal action of T'x. Let U be a K-representation of I'x. If y € 'y
is close to 1, the formal power series

(o)

log(y) 1 1 (=D
= -1 _
log(xyk(y))  loglyk(y)) Z( )

defines a K -linear operator ® on U, which does not depend on the choice of y.
There exists an open subgroup I  I'x such that

(@) = exp(log(yx(1)©)(x)  Vyel’,xeU.

Let Sk, denote the category of finite dimensional K.,-vector spaces equipped with
a linear operator. The morphisms of Sk, are defined as K..-linear maps which
commute with the action of underlying operators. Using Hilbert’s Theorem 90, it
can be checked that the functor

n=1

Repy (I'g) — Sk, U (U,0B)

is exact and fully faithful.

10.2.5. Combining previous results, one can associate to any C-representation W
the Ko -vector space Wo, = (Ww) s equipped with the operator ®. The main result
of Sen’s theory states as follows:

Theorem 10.2.6 (Sen). The functor
Agen : Repe(Gk) — Sk, W (We,0)
is exact and fully faithful.
Proof. See [136]. O

Remark 10.2.7. Let Oc : W — W denote the linear operator obtained from © by
extension of scalars. The map

WOk @y C > W

is injective and identifies WOk ®x C with ker(®c). In particular, WOk is a finite-
dimensional K-vector space.
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10.2.8. We discuss some applications of Sen’s theory to p-adic representations.
To any p-adic representation p : Gg — Autq,V, we associate the C-representation
W =Vgq, C and set:

Dsen(V) = Agen(W).

Hodge-Tate representations have the following characterization in terms of the op-
erator O :

Proposition 10.2.9. V is a Hodge-Tate representation if and only if the operator
® : Dsen(V) = Dsen(V) is semi-simple and its eigenvalues belong to Z.

Proof. See [136| Section 2.3]. O

10.2.10. We come back to general p-adic representations. The operator ® allows
to recover the Lie algebra of the image p(/k) of the inertia group:

Theorem 10.2.11 (Sen). The Lie algebra g of p(Ix) is the smallest of the Q,-
subspaces S of Endq, (V) such that ©® € § ®q, C.

Proof. See [136, Theorem 11]. O
The following corollary of this theorem generalizes Proposition[9.2.5]
Corollary 10.2.12. p(Ix) is finite if and only if ® = 0.

10.2.13. Example. Let V be a two dimensional Q ,-vector space with a fixed basis
{e1,e2}. Let p : Gk — GL(V) be the representation given by

Prove that V is not Hodge-Tate. Let e; = e; (mod Qey). Since V sits in the exact
sequence

in the basis {e, e2}.

0—Qpe; =»V—-Qpe; -0,

we have an exact sequence:

0 — Dut(Qpe1) = Dur(V) — Dur(Qpen).
Here Qe and Q,e; are trivial p-adic representations, and

Dut(Qpe1) = Key, Dur(Qpez) = Keo.
Therefore Dy(V) has dimension 2 if and only if e, lifts to an element

x=ey+A®e; € Dyr(V), A € Byr.
The condition x € Dy(V) reads:
g —-A=logxk(g),  VYg€Gk.

Therefore logy is a coboundary in C, but this contradicts to Theorem §.3.2]
Hence V is not Hodge—Tate. This example also shows that Repy1(Gk) is not stable
under extensions.

Finally remark that in the same basis, the operator ® reads:

@:(8 }))
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In particular, it is not semi-simple, and the above arguments agree with Proposi-

tion|10.2.9

11. RINGS OF p-ADIC PERIODS
11.1. The field Byr.

11.1.1. In this section, we define Fontaine’s rings of p-adic periods Bgr, By and
B_.;s. For proofs and more detail, we refer the reader to [66], [68] and [[70].

Let K be a local field of characteristic 0. Recall that the ring of integers of the
tilt C* of C was defined as the projective limit

O¢ =limO¢/pOc,  ¢(x) ="
@

(see Section . By Propositions and , ObC is a complete perfect val-

uation ring of characteristic p with residue field kg. The field C” is a complete
algebraically closed field of characteristic p.

11.1.2.  We will denote by Ay, the ring of Witt vectors
Aint(C) = W(OQ).

Recall that Aj,¢ is equipped with the surjective ring homomorphism 6 : Aj,s — O¢
(see Proposition[5.3.3] where it is denoted by ). The kernel of 6 is the principal
ideal generated by any element ¢ = } [a,]p" € ker(6) such that a; is a unitin Ocs.

n=0
Useful canonical choices are:
— £ =[p]-p, where p = (p"/""),50;
p-l
— w= Y [€]?, where ¢ = (£pIn>0-
i=0
Let Ky denote the maximal unramified subextension of K. Then Ok, = W(kk) C
Ajnr, and we set Ajpr g = Ajnf ®0x, K. Then 6 extends by linearity to a sujective
homomorphism
0®idg : Ajr(C) ®0K0 K- C.

Again, the kernel Jx :=ker(f®idg) is a principal ideal. It is generated, for example,
by [7r] — nr, where & is any uniformizer of K and 7 = ("/P"),150. The action of Gg
extends naturally to Ajyr x, and it’s easy to see that Ji is stable under this action.

Let BER, ¢ denote the completion of Ay k for the Jx-adic topology:

+ .
Big k= lim Ain /T
n

+
dR.K*

+

R Are summarized

The action of Gk extends to B
in the following proposition:

The main properties of B

Proposition 11.1.3. i) BY; . is a discrete valuation ring with maximal ideal

+
MJR,Kk = JKBdR,K-

The residue field By, /MR k is isomorphic to C as a Galois module.



AN INTRODUCTION TO p-ADIC HODGE THEORY 77

ii) The series

_ _N gy e ="
t—log([g])_;( 1) .

iR k> and the Galois group

converges in the Jx-adic topology to a uniformizer of B
acts on t as follows:

8 =xk(@t,  geGk.

iii) If L/K is a finite extension, then the natural map B;R’K - BgR’L is an iso-

* . depends only on the algebraic closure K of K.

dR,K
iv) There exists a natural Gg-equivariant embedding of K in B

morphism. In particular, B

+

dRK and

(Bix) ™ = k.

11.1.4. We refer the reader to [66] and [[70] for detailed proofs of these properties.
Note that if L is a finite extension of K, then one checks first that BgR x C BgR Iz
From assertions i) and ii), it follows that this is an unramified extension of discrete

valuation rings with the same residue field. This implies that B, . =B, . Since

e dR,K ~ PdR,L*
Lc By, forall L/K, this proves that K C Bjy .

11.1.5.  The above proposition shows that B}, , depends only on the residual

characteristic of the local field K. By this reason, we will omit K from notation and
write B := B -
Definition. The field of p-adic periods Bgr is defined to be the field of fractions of
B+
dr°

11.1.6. The field Bgr is equipped with the canonical filtration induced by the
discrete valuation, namely

Fil'Ber =B}y,  i€Z.
In particular, Fil’Bgg = BgR and Fil' Bgg = mgr. From Proposition|11.1.3} it follows
that

Fil'Bar /Fil " 'Bgr = C(i).
Therefore for the associated graded module we have

gr*(Bar) = Bur.

Note that from this isomorphism it follows that Bglf = K as claimed in Proposi-
tion|11.1.3] iii).

11.1.7. Recall that Ay is equipped with the canonical Frobenius operator ¢. Set
X =[g]-1. Then

_eX) _ d+X)P-1
== = ¥ =

From this formula it follows that ker(6) is not stable under the action of ¢, and
therefore ¢ can not be naturally extended to Bgr.

p(w)

p+(12))X+---+X”‘1.
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11.1.8. The field Bgr is equipped with the topology induced by the discrete val-
uation. Now we equip it with a coarser topology, which is better adapted to the
study of Bggr. Recall that the valuation topology on C” induces a topology on Ajny,
which we call the canonical topology (see Section [5.3). This topology induces a
topology on Ainr x. The canonical topology on BgR = 1(£1n Ainf,x /J§ 18 defined as
the topology of the inverse limit, where Ajnf x/J% are equipped with the quotient
topology. We refer the reader to [32, Exercise 4.5.3] for further detail.

11.2. The rings B.,;s and B,

11.2.1. We define the ring Bs of crystalline p-adic periods, which is a subring
of Bgr equipped with a natural Frobenius structure. The map 6 : Ajyr — Oc is

the universal formal thickening of Oc in the sense of [70], and we denote by AT>

the PD-envelop of ker(d) in Ajy¢ (see, for example, [22] for definition and basic
properties of divided powers). Recall that

&=[pl-p €A

is a generator of the ker(#). Then Aﬁl? can be seen as the submodule of BgR defined
as:

From the formula
fn é'_-m 3 n+m é'_-n+m
nlm! \ n |(m+m)!

it follows that AE}‘? is a subring of Bgr. Let

+ ._APD _1:  APD/ nAPD
Acris = App = lim A2 /p Ay

n

denote its p-adic completion.

Proposition 11.2.2. Aﬁll? is stable under the action of ¢. Moreover, the action of ¢
extends to a continuous injective map ¢ : A*. — A*

Proof. We have
&) =[plP—p=E+p)l-p=£&"+pz

for some z € Aj,r. Hence

n!

Lé:n) = p—n(1+(p—1)!§—p) .
n! p!

Since Aif;l? is a ring, and % € Z,, this implies the proposition. O
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11.2.3. It can be shown that the inclusion AP c B} extends to a continuous

inf

embedding
A:ris c B;R’
where A and BJ; are equipped with the p-adic and canonical topology respec-

tively. In more explicit terms, A’ can be viewed as the subring

[ee) gn

+ . +

Acris = E an=— | an € Aint, lim a,=0; C B -

0 I’l! n——+o0o
n:

The element ¢ = log[&] belongs to A, and one has:

@(t) = pt.
Definition. Set B]. = A’. [1/p] and Besis = B!, [1/1]. The ring Beyis is called the

ring of crystalline periods.

It is easy to see that the rings B:ris and B, are stable under the action of Gg.

The actions of Gk and ¢ on B.j; commute to each other. The inclusion B¢s C Bgr
induces a filtration on B;s which we denote by Fil'Bsis. Note that B:ris C FilByis
but the latter space is much bigger. Also the action of ¢ on B is not compatible
with filtration i.e. go(Filchris) ¢ Fil'Bgsis. We summarize some properties of B in
the following proposition.

Proposition 11.2.4. The following holds true:
i) The map
K®Ko Beiis = Bar, a®x— ax
is injective.
e
iii) Fil Bfris =Q,.
iv) Beyis is Gg-regular.

Proof. See [[10], especially Theorems 4.2.4 and 5.3.7. O

11.2.5. The main information about the relationship between the filtration on B
and the Frobenius map is contained in the fundamental exact sequence:

(54) 0— Q, — B¥>' — B /Fil’Bgg — 0.

cris
The exactness in the middle term is equivalent to Proposition [[1.2.4] iii) above. In
addition, says that and the projection Bfr:isl — Bar/BJ is surjective. We refer
to [70]] and [28]] for proofs and related results.
11.2.6. The importance of the ring B, relies on its connection to the crystalline
cohomology [74]. On the other hand, the natural topology on B is quite ugly
(see [40]]). Sometimes, it is more convenient to work with the rings

(o) fn

Al = E a,=— |a, € Ajps, lim a, =03,

p” n—+oco
n=0

Br-;lax = Artlax ®Zp QP’
Bmax = B;ax[l/t],



80 DENIS BENOIS

which are equipped with a natural action of ¢ and have better topological proper-
ties. One has:

@(Bmax) C Beris € Biax-
In particular, Bﬁ;i = Bf;l, and in the fundamental exact sequence Bs can be re-
placed by Bpnay. Note that the periods of crystalline representations (see Section[13))
live in the ring

ﬁrig = iQO‘)Dn(Bcris) = iDOSOn(BmaX)-
We refer the reader to [40]] for proofs and further results about these rings.

11.3. The ring By.

11.3.1. Morally By; is the ring of p-adic periods of varieties having semi-stable
reduction modulo p. The simplest example of such a variety is provided by Tate
elliptic curves E,/K. Tate’s original paper dated 1959 appeared only in [152],
but an exposition of his theory can be found in [127]]. See also [147]] and [142].
For each g € K* with |g|, < 1, Tate constructs an elliptic curve E, with modular
invariant given by the usual formula

1
j(@) = — +744 + 196884q + ...
q

and having multiplicative split reduction modulo p. If E is an elliptic curve with
modular invariant j(E) such that |j(E)|, > 1, then j(E) = j(g) for some ¢, and E
is isomorphic to E, over a quadratic extension of K. The group of points Eq(E)

of E, is isomorphic to E*/qz, and the associated p-adic representation V,(E) is
reducible and sits in an exact sequence

0—-Q,(1)— Vy(E)—Q,—0.
There exists a basis {ej,ez} of V,(E) such that the action of G is given by
gler) =xk(@er, glex) =ex+y (e, g € Gg,
where ¢, : Gk — Z,, is the cocycle defined by
() = 41 .
11.3.2. Thering By is defined as the ring Bis[u] of polynomials with coefficients
in B¢rs. The Frobenius map extends to By by ¢(u) = pu. One equips By by a

monodromy operator N defined by N = T The operators ¢ and N are related by
the formula:
No=peN.
This formula should be compared with the formulation of the £-adic monodromy
theorem (Theorem . One extends the Galois action on By setting:
gu)=u+y,(t,  geGg,
where ¢, : Gg — Z,, is the cocycle defined by

g(pD) =[e1"®¥[pl,  geGk.
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There exists a Gg-equivariant embedding of By in Bgr which sends u onto the

element
(_ l)n—l @ . n
. .

p
We remark that this embedding is not canonical and depends on the choice of
log p. In particular, there is no canonical filtration on Bg. Note that it is customary
to choose logp = 0.

Finally we remark that sometimes it is more natural to work with the ring
B.st = Biax[u] instead By, which is equipped with the same structures but has
better topological properties.

log[p] =logp+ >
n=1

12. FurERED (¢, N)-MODULES

12.1. Filtered vector spaces.

12.1.1. In this section, we review the theory of filtered Dieudonné modules. The
main reference is [71]]. We also refer the reader to [8]] for the general formalism of
slope filtrations. Let K be an arbitrary field.

Definition. A filtered vector space over K is a finite dimensional K-vector space
A equipped with an exhaustive separated decreasing filtration by K-subspaces
(Fil'A)jez.:
.OFIT'TAS FIAD F*'AS .., NFil'A={0}, UFil'A=A.
i€Z i€Z

A morphism of filtered spaces is a linear map f : A’ — A” which is compatible

with filtrations:
F(Fil'A") Cc Fil'A”, VieZ.

If A’ and A” are two filtered spaces, one defines the filtered space A’ ®x A" as the
tensor product of A’ and A” equipped with the filtration

Fil'(A’ @ A”) = Z Fil' A’ @k Fil"" A”.
i+ =i
The one-dimensional vector space 1x = K with the filtration
; K ifi<0
Filllg=J" '
0 ifi>0
is a unit object with respect to the tensor product defined above, namely
A®glg ~A for any filtered module A.

One defines the internal Hom in the category of filtered vector spaces as the vector
space Hom, (A’,A”) of K-linear maps f : A" — A" equipped with the filtration

Fil’ (Hom K(A’,A”)) ={f €e Hom,(A",A”) | f(FiVA") cFi'"(A”) VjeZ}.

In particular, we consider the dual space A* = Hom(A,1k) as a filtered vector
space.
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We denote by MFg the category of filtered K-vector spaces. It is easy to check
that the category MFg is an additive tensor category with kernels and cokernels,
but it is not abelian.

12.1.2. Example. Let W be a non-zero K-vector space. Let A” and A” denote W
equipped with the following filtrations:

. ifi <0, o (wifi<
Filiar = 1 Fil'A” = i
0, ifi>1, 0, ifi=2.

The identity map idy : W — W defines a morphism f : A" — A’ in MFk. It is easy
to check that ker(f) = 0 and coker(f) = 0. Therefore f is both a monomorphism
and an epimorphism, but A” # A”.

12.1.3.  We adopt the following general definition:
Definition. Let € be an additive category with kernels and cokernels. A sequence
0-xLxsx 5o
of objects in € is exact if X’ =ker(g) and X" = coker(f).
The following proposition describes short exact sequences in MFg :

Proposition 12.1.4. i) Let f : A" — A’ be a morphism of filtered vector spaces.
The canonical isomorphism

coim(f) = A’/ ker(f) — Im(f)

is an isomorphism if and only if

(55) FFIIA") = f(A)NFil'A”, VieZ.
ii) A short sequence of filtered spaces
(56) 0-AN—>A->AN"—=0

is exact if and only if for each i € Z the sequence
0 — Fil'A” - Fil'A - Fil'A” - 0
is exact.

Proof. The proof is left as an exercise. See also [50, Section 1]. O

12.1.5. For each filtered space, set:

ta(A) = Zi dimg (gr'),

i€Z

where gr'A = Fil' A/Fil"*1A.
Proposition 12.1.6. i) The function ty is additive, i.e. for any exact sequence of
filtetred spaces ([56)) one has:

tm(A) = ta(A") + ta(A”).

ii) tu(A) = tg(A?A), where d = dimg A.
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Proof. 1) From the definition of an exact sequence it follows that the sequence
0— gr'A — gr'A - gr'A” =0
is exact for all i. Therefore
dimg(gr'A) = dimg(gr'A") + dimg(gr'A”).
This implies 1).
i1) For each i, choose a base {e; J'};li=1 of gr'A and denote by {e; J'};li=1 its arbitrary

lift in Fil'A. Then e = Ae;; is a basis of AZA. This description shows that #3(A) is
LJ

the unique filtration break of A?A. O
12.2. ¢-modules.

12.2.1. In this section, we study in more detail the category of ¢-modules over
the field of fractions of Witt vectors, which was defined in Section [8.1] Here we
change notation slightly and denote by k a perfect field of characteristic p and
by Ky the field W(k)[1/p]. This notation is consistent with the applications to the
classification of p-adic representations of local fields of characteristic O which will
be discussed in Section[I3] As before, ¢ denotes the automorphism of Frobenius
acting on K. Recall that a ¢-module (or an ¢-isocrystal) over Kj is a finite dimen-
sional Ky-vector space D equipped with a p-semi-linear bijective map ¢ : D — D.
The category of ¢-modules M"ID(0 is a neutral tannakian category. In particular, it is
abelian.

12.2.2. The structure of ¢-modules is described by the theory of Dieudonné-
Manin. Let v, denote the valuation on Kj. First assume that D is a ¢-module of
dimension 1 over K. If d is a basis of D, then ¢(d) = Ad for some non-zero A € Ky,
and we set 1n(D) = vj(4). Note that v,(1) does not depend on the choice of d.
Now, if D is a p-module of arbitrary dimension n, its top exterior power A"D is a
one-dimensional vector space and we set

in(D) = tn(A" D).

More explicitly, tn(D) = v,(A), where A is the matrix of ¢ with respect to any basis
of M. The function #y is additive on short exact sequences: if

0->D ->D—->D"-0
is exact, then tn(D) = tn(D') + tn(D”).
Definition. i) The slope of a non-zero p-module D is the rational

N (02
s(D) = dimg, D’

ii) A p-module D is pure (or isoclinic) of slope A if s(D") = A for any non-zero
submodule D' C D.

If D is isoclinic, we will write its slope A in the form:

A:%, (@b)=1, b>0.
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Theorem 12.2.3 (Dieudonné—Manin). i) D is isoclinic of slope A = a/b if and only
if there exists an Og,-lattice L C D such that ©’(L) = p°L.
ii) For all a,b € Z such that b > 0 and (a,b) = 1, the p-module

Da = Kolgl/(¢" - p*)

is isoclinic of slope A = a/b. Moreover, if k is algebraically closed, then each iso-
clinic ¢-module is isomorphic to a direct sum of copies of D,.
iii) Each p-module D over Ky has a unique decomposition into a direct sum

D= & D),
A€Q*

where D(Q) is isoclinic of slope A.
Proof. See [112, Section 2]. See also [56]. O

Corollary 12.2.4. If k is algebraically closed, the category of ¢-modules over Ky
is semi-simple. Its simple objects are Dieudonné modules which are isomorphic to
D,.

Remark 12.2.5. 1) A p-module is étale in the sense of Section[8.1|if and only if it
is isoclinic of slope 0.
2) The theorem of Dieudonné—Manin allows to write tn(D) in the form

(D) = ) Adimg, D(A).
A

3) Kedlaya [94] extended the theory of slopes to the category of o-modules over
the Robba ring.

12.3. Slope filtration.

12.3.1. Slope functions appear in several theories. Important examples are pro-
vided by the theory of vector bundles (Harder—Narasimhan theory [83]]), differ-
ential modules [[155],[110] and euclidian lattices [80],[148]. A unified axiomatic
treatement of the theory of slopes was proposed by Y. André [8]]. In this section, we
discuss this formalism in relation with the examples seen in the previous sections.
We work with additive categories and refer to [8] for the general treatement.

Definition. Let € be an additive category with kernels and cokernels.

i) A monomorphism f : X — Y is strict if there exists g : Y — Z such that 0 —

XLYiZﬁOisexact.

ii) An epimorphism g : Y — Z is strict if there exists f : X — Y such that
fo, 8 .
0->X—>Y—>Z-—>0isexact.
iii) € is quasi-abelian if every pull-back of a strict epimorphism is a strict epi-
morphism and every push-out of a strict monomorphism is a strict monomorphism.

Note that in the category MFg, a monomorphism (respectively epimorphism)
f X — Y is strict if and only if it satisfies the condition (55).
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12.3.2. Let ¥ be a quasi-abelian category. Assume that % is essentially small,
i.e. that it is equivalent to a small category. A rank function on ¥ is a function
rk : ¥ — N such that:

1) rk(X) =0 if and only if X = 0;

2) rk is additive, i.e. for any exact sequence

0-x Lx5 x50
one has:
rk(X) = rk(X") +rk(X").
We can now define the notion of a slope function.

Definition. A slope function on € is a function u : € \ {0} — R such that:
1) The associated degree function

deg=rk-u:% —->N
(taking value O at the zero object) is additive on short exact sequences;

2) For any morphism [ : X — Y which is both a monomorphism and an epimor-
phism, one has:

u(X) < p(Y).

An object Y € ¢ is called semi-stable if for any subobject X of ¥, u(X) < w(Y).
We can now state the main theorem of this section.

Theorem 12.3.3 (Harder—Narasimhan, André). For any X € €, there exists a unique
filtration
X=X03X1 D...DXkZ{O}
such that:
1) X1+ is a strict subobject of X; for all i,
2) The quotients X;/X;+ are semi-stable, and the sequence u(X;/X;+1) is strictly
increasing.

Proof. The theorem was first proved for the category of vector bundles on a smooth
projective curve over C [85]. André [I8] extended the proof to the case of general
quasi-abelian (and even proto-abelian) categories. O

We call the canonical filtration provided by Theorem|[I2.3.3|the Harder—Narasimhan
filtration.

12.3.4. Examples. 1) Let € = MFg. Set rk(A) = dimg A and deg(A) = 5 (A). Then
(A)
A) =
)= Ginea
is a slope function. Semi-stable objects are filtered vector spaces with a unique
filtration break. The Harder—Narasimhan filtration coincides (up to enumeration)

with the canonical filtration on A.
2)Let € = M‘;}O. Set rk(D) = dimg, D and deg(D) = —tn(D). Then

iN(D)
dimKO D

pn(D) = s(D) =
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is a slope function. Semi-simple objects are isoclinic ¢p-modules. On the other
hand, it’s easy to see that —s(D) is also a slope function, which provides the oppo-
site filtration on M and therefore its splitting in the direct sum of isoclinic compo-
nents. This gives an interpretation of the decomposition of Dieudonné—Manin in
terms of the slope filtration.

3) Let ¥ = Bun(X) be the category of vector bundles on a smooth projective
curve X/C. To each object E of this category one associates its rank rk(E) and
degree deg(E) := deg(A®F)E). Then
deg(E)
rk(E)
is a slope function. This is the classical setting of the Harder—Narasimhan theory
[85]. The semi-stable objects of % are described in [118]]. The analog of this
filtration in the setting of the curve of Fargues—Fontaine plays an important role in
[60].

12.4. Filtered (¢, N)-modules.

HHN(E) =

12.4.1. Let K be a complete discrete valuation field of characteristic O with per-
fect residue field k of characteristic p, and let Ky denote the maximal unramified
subfield of K.

Definition. i) A filtered p-module over K is a p-module D over K together with a
structure of filtered K-vector space on Dx = D®g, K.

ii) A filtered (¢, N)-module over K is a filtered o-module D over K equipped
with a Ko-linear operator N : D — D such that

Ne=peN.

Note that the relation N = po N implies that N : D — D is nilpotent.
12.4.2. A morphism of filtered ¢p-modules (respectively (¢, N)-modules) is a Ko-
linear map f : D’ — D" which is compatible with all additional structures. Filtered
¢-modules (respectively (¢, N)-modules) form additive tensor categories which we
denote by MF?} and MF‘;(’N respectively. Note that these categories are not abelian.

12.4.3. We define some subcategories of MF}‘J< and MF‘I‘;’N, which play an im-

. . . . : . ® @-N
p(?rtant role in the classification of p-adic representations. Equip MF}, and MF
with the functions

k(D) := dimg, K, deg(D) := ty(D) — tn(D).
Proposition 12.4.4. y(D) = deg(D)/rk(D) is a slope function.

Proof. We only need to prove that if f : D" — D” is both a monomorphism and

an epimorphism, then u(D") < u(D’"). We remark that such f is an isomorphism of

¢-modules; hence un(D’) = un(D"). Set d := dimg, D" = dimg, D”. Then we have

a monomorphism of one-dimensional filtered spaces AYD’ — AYD”’, and therefore
(D) = tu(AD") <t (AID") = (D).

Hence u(D") < u(D’"), and the proposition is proved. O
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Definition. A filtered p-module (respectively (¢, N)-module) is weakly admissible
if it is semi-stable of slope 0.

More explicitly, D is weakly admissible if it satisfies the following conditions:
1) ta(Dk) = tn(D);
2) tu(D}) < tn(D') for any submodule D’ of D.
This is the classical definition of the weak admissibility [65]], [71]. We denote by
MF*I‘;’f and MF?N’f the resulting subcategories of MFSI‘J< and MF}O{’N.

Proposition 12.4.5. i) The categories MFf(’f and MF“;(’N’f are abelian.
ii) If D is weakly admissible, then its dual D* is weakly admissible.
iii) If in a short exact sequence

0->D ->D—->D"-0
two of the three modules are weakly admissible, then so is the third.

Proof. This is [65, Proposition 4.2.1]. See also [32, Proposition 8.2.10 &Theo-
rem 8.2.11] for a detailed proof. O

Remark 12.4.6. The tensor product of two weakly admissible modules is weakly
admissible. See [153] for a direct proof of this result. It also follows from the
theorem “weakly admissible = admissible” of Colmez—Fontaine [48)]. Therefore

the categories MFS;(’f and MFQ;(’N’f are neutral tannakian.

13. THE HIERARCHY OF P-ADIC REPRESENTATIONS
13.1. de Rham representations.

13.1.1. In this section, we come back to classification of p-adic representations.
Let K be a local field. We apply the general formalism of Section to the rings
of p-adic periods constructed in Section

13.1.2. Recall that Bgr is a field with Bgl{‘ = K. In particuler, it is Gg-regular. To
any p-adic representation V of Gx we associate the finite-dimensional K-vector
space
Dar(V) = (V®q, Bar)**.
We equip it with the filtration induced from Bgg:
Fil'Dgr(V) = (V&q, Fil'Bgr)“¥.
The mapping which assigns Dyr(V) to each V defines a functor of tensor categories
DdR : RepQP(GK) - MFK.

Definition. A p-adic representation V is called de Rham if it is Bqr-admissible,

ie if
dimg Dgr(V) = dimg, (V).

We denote by Repr (Gg) the category of de Rham representations. By Proposi-
tion9.1.7] it is tannakian and the the restriction of Dgr on Repyr(Gg) is exact and
faithful.
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Proposition 13.1.3. Each de Rham representation is Hodge—Tate.
Proof. Recall that we have exact sequences

0 — Fil""'Bgr — Fil'Bgr — Cf' — 0.
Tensoring with V and taking Galois invariants we have

dim (gr'Dar(V)) < dimg(V ®q, Ct).
From Byt = e Ct it follows that

dimg Dar(V) = ) dimg (21'Dar(V)) < dimg Dyr(V) < dimg, (V).
1€Z

The proposition is proved. O

Remark 13.1.4. The functor Dgr is not fully faithful. A p-adic representation
cannot be recovered from its filtered module.

13.1.5. Using the fundamental exact sequence, one can construct Hodge—Tate
representations which are not de Rham. Fix an integer r > 1 and consider an exten-

sion V of Q, by Q,(-7):
0-Qu(-r)>V—->Q,—0.

Such extensions are classified by the first Galois cohomology group H'(Gg,Q p(=7)),
which is a one-dimensional K-vector space. Assume that V is a non-trivial exten-
sion. Since the Hodge—Tate weights of Q,, and Q,(—r) are distinct, V is Hodge—
Tate. However it is not de Rham (see [28] Section 4] for the proof).

13.2. Crystalline and semi-stable representations.

13.2.1. Recall that B.js is Gg-regular with BCGrfS = Ky. Therefore for each p-adic
representation V, the Ky-vector space

Dcris(V) = (V ®Qp Bcris)GK

is finite-dimensional with dimg, Dis(V) < dime(V). The action on ¢ on B in-
duces a semi-linear operator on D(V), which we denote again by ¢. Since ¢ is
injective on By, it is bijective on the finite-dimensional vector space D¢is(V). The
embedding K ®k, Beris — Bgr induces an inclusion

K ®k, Deris(V) <= Dgr(V).
This equips Deis(V)x = K ®k, Deris(V) with the induced filtration:
Fil'Deris(V)k = Deris(V)k NFil'Dgr(V).
Thereore D5 can be viewed as a functor
Dcris : Repq, (Gk) — MF*I‘;.
Definition. A p-adic representation V is crystalline if it is Beris-admissible, i.e. if

dimg, Deis(V) = dimg, V.
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By Proposition[9.1.5] V is crystalline if and only if the map
(57) Qeris © Deris(V) ®k, Beis — V®Qp Beris

is an isomorphism. We denote by Rep_;.(G k) the category of crystalline represen-
tations. From the general formalism of B-admissible representations it follows that
Rep,;(Gk) is tannakian.

13.2.2. Similar arguments show that for each p-adic representation V the Kjy-
vector space

Dy (V) = (V®q, By)*
is finite-dimensional and equipped with a natural structure of filtered (¢, N)-module.
Since BY=0 = B, we have:

Desis(V) = Dg(V)V=0.

Definition 13.2.3. A p-adic representation is called semi-stable if it is Bg-admissible,
i.e. if dimg, Dy (V) = dimg, V.

By Proposition[9.1.5] V is semi-stable if and only if
(58) as : Dg(V) ®K, By — V®Qp By

is an isomorphism. We denote by Rep,,(Gg) the tannakian category of semi-stable
representations. The inclusions

K®Ko Bcris — K®KO Bst — BdR

show that

K®KO Dcris(V) — K®Ko Dst(v) — DdR(V)
Therefore each crystalline representation is semi-stable, and each semi-stable rep-
resentation is de Rham.

13.2.4. Example. The representation V,(E) constructed in Section[TT.3] gives an
example of semi-stable representation which is not crystalline.

Definition. A filtered p-module (respectively (¢, N)-module) D is called admissi-
ble if it belongs to the essential image of Deis (respectively Dy ). In other words,
D is admissible if D ~ D¢s(V) (respectively D ~ Dy(V)) for some crystalline (re-
spectively semi-stable) representation V.

We denote by MF%“ and MF%™ the resulting subcategories. The following
proposition shows that semi-stable representations can be recovered from their
(¢, N)-modules.

Proposition 13.2.5. The functors
Deris : Repyio(Gx) » MFE?, Dy : Repy(Gk) — MFg™
are equivalences of categories. The mappings
Vais : D= Fil(Deg, Bo)?=', Vg : D — Fil'(D®g, By)V=0¢"!

define quasi-inverse functors of D¢is and Dy;.
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Proof. This follows from the equalities
Fil’(By)"="¢=" = Fil’(Beis)*~' = Q).
Namely, assume that V is crystalline. Then using (58), we have
VerisDeris (V) = Fil’ Deris (V) @, Beris)?~' = Fil’(V®q, Beris)*~' = V.

The same argument applies in the semi-stable case. O

13.2.6. Asin Section one can also consider the contravariant functors

D*

cris

D; : Repg (Gx) > MFY, D, (V) = Homg, (V,B).

: Repr(GK) — MF}, > DZris(V) = HOH’IGK(V, Beiis),

If V is crystalline (respectively semi-stable), there is a canonical isomorphism

D*

aris(V) = Deris(V)*
(respectively D3, (V) = Dg(V)*). The tautological map

Veq, Dy (V) — By, * € {cris, st}
can be viewed as an abstract p-adic integration pairing.

Proposition 13.2.7. Each admissible (¢, N)-module is weakly admissible.

Proof. This is [65 Proposition 4.4.5]. We refer the reader to [32, Theorem 9.3.4]
for a detailed proof. O

13.2.8. The converse statement is a fundamental theorem of the p-adic Hodge
theory, which was first formulated as a conjecture in [63].

Theorem 13.2.9 (Colmez—Fontaine). Each filtered weakly admissible module is
admissible, i.e. we have equivalences of categories:

e.a @.f o.Na _ @.N.f
MFK —MFK , MFK —MFK .

This theorem was first proved in [48]]. Further development of ideas of this proof
leads to the theory of p-adic Banach spaces [41] and almost C,-representations
[72], [[17]. Another proof, based on the theory of (¢,I')-modules was found by
Berger [18]]. A completely new insight on this theorem is provided by the theory
of Fargues—Fontaine [60]. See [55] and [[114] for an introduction to the work of
Fargues and Fontaine.

Remark 13.2.10. The theorem of Colmez—Fontaine implies that the tensor product
of two weakly admissible modules is weakly admissible. Recall that there exists a
direct proof of this result [153l].

13.3. The hierarchy of p-adic representations.
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13.3.1. Let L be a finite extension of K. If p : Gx — Autg,V is a p-adic rep-
resentation, one can consider its restriction on G; and ask for the behavior of the
functors Dgr, Dy and D.;is under restriction. Set:

D,/ (V)=(V®q, B.),  *e{dR, st cris}.
Applying Hilbert’s theorem 90 (Theorem[1.6.3)), we obtain that
Dyr/(V) = Dgr(V) ®k L.

In particular, V is a de Rham representation if and only if its restriction on G is a
de Rham.

13.3.2.  One says that a p-adic representation p is potentially semi-stable (respec-
tively potentially crystalline) if there exists a finite extension L/K such that the
restriction of p on G is semi-stable (respectively crystalline). Applying Hilbert’s
theorem 90 (Theorem [1.6.3]), we obtain that in the case L/K is unramified, p is
crystalline (respectively semi-stable) if and only if it’s restriction on Gy, is. The
following proposition shows that ramified representations with finite image pro-
vide examples of potentially semi-stable representations that are not semi-stable.

Proposition 13.3.3. A p-adic representation p : Gg — Autq,V with finite image
is semi-stable if and only if it is unramified.

Proof. Let p be a representation with a finite image. Let L/K be a finite extension
such that VUL = V. Then

Dy(V) = Veq, B = Veq, Lo,
where L is the maximal unramified subfield of L. One has:
Dy(V) = Dsy(V))¥ = (V@q, Lo) /™.

Therefore V is semi-stable if and only if it is Lp-admissible if and only if it is
unramified (see Example[9.2.2)). O

13.3.4. Set:

Dpst(V) = li_n}DSt/L(V)’
L/K

where L runs all finite extensions of K. Then Dpy (V) is a finite dimensional K-
vector space endowed with a natural structure of filtered (¢, N)-module. In ad-
dition, it is equipped with a discrete action of the Galois group Gk such that
Dy (V) = Dpst(V)GK. This Galois action allows to define on D,y (V) the stucture
of a Weil-Deligne representation. One can see Dy as a functor to the category of
filtered (¢, N,Gg)-modules. One says that V is potentially semi-stable if and only
if dingr Dy (V) = dimq, (V). The functor Dpeis can be defined by the same way.
See [71] for more detail.

The hierarchy of p-adic representations can be represented by the following
diagram of full subcategories of Repq, (Gk):
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Repg, (Gx)

Repy1(Gk)

Repyr(Gk)

Rep,(Gx)

N

Reppcris (Gk) Repst(GK)

\/

Repcris (Gk)

Finally, the categories Rep,(Gk) and Repyr(Gk) coincide as the following
fundamental theorem shows:

Theorem 13.3.5 (p-adic monodromy conjecture). Each de Rham representation is
potentially semi-stable.

This theorem was formulated as a conjecture by Fontaine. It can be seen as a
highly non-trivial analog of Grothendieck’s ¢-adic monodromy theorem in the case
{ = p. The first proof, found by Berger [[15]], uses the theory of (¢, x)-modules (see
below). Colmez [43]] gave a completely different proof, based on the theory of p-
adic Banach Spaces. See [60, Chapter 10] for the insight provided by the theory of
Fargues—Fontaine.

13.3.6. Recall that Theorem 8.2.9|classifies all p-adic representations in terms of
(¢, I'k)-modules. It is natural to ask how to recover D¢;s(V), Dg(V) and Dgr(V)
from the étale (¢, 'k )-module D(V). This question is known as Fontaine’s program.
As afirst step, Cherbonnier and Colmez [35] proved that each p-adic representation
is overconvergent. As a second step, Berger [[15] showed how to construct Dis(V),
Dy (V) and D4r(V) in terms of the overconvergent lattice D(V) of D(V) using the
Robba ring Zx. Moreover, the infinitesimal action of T'x on D'(V) ®q, Kk gives
rise to a structure of a differential ¢-module and associates to V a p-adic differential
equation. This reduces the p-adic monodromy conjecture to a conjecture of Crew
on p-adic differential equations. This last conjecture was proved by Kedlaya [94]].
We refer the reader to [42] for a survey of these results. In another direction, the
theory of (¢,I'x)-modules is closely related to the p-adic Langlands program for
GL»(Q)) [45, 146, 147].

13.4. Comparison theorems.
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13.4.1. In [151] Tate considered the p-adic analog of the following situation. Let
X be a smooth proper scheme over the field of complex numbers C. To the analytic
space X(C) on can associate on the one hand, the singular cohomology H"(X(C), Q)
and on the other hand, the de Rham cohomology Hy, (X/C) defined as the hyper-
cohomology of the complex QF of differential forms on X. The integration of
differental forms against simplexes gives a non-degenerate pairing

(59) H,(X(C), Q)X Hip (X/C) — C,
which induces an isomorphism (comparison isomorphism):

H"(X(C),Q)®qC =~ H(X/C)
The spectral sequence

EY = HI(X,Q},0) = Hy/(X/C)

defines a decreasing exhaustive filtration F ngR(X /C) on HJf (X/C) such that
gr' HL (X/C) = H'/(X, Q).
By Hodge theory, this filtration splits canonically and gives the decomposition of
H (X/C) into direct sum (Hodge decomposition):
Hi(X/C)= & H/(X,QY).
i+j=n

Therefore one has the decomposition:

H'(X(C),Q)®C=~ & H/(X,Q)).
i+j=n

13.4.2. Now assume that X is a smooth proper scheme over a local field K of
characteristic 0. The de Rham cohomologies Hy, (X/K) are still defined as the hy-
percohomology of €5 /K Contrary to the complex case, the filtration F ng’R(X /K)
has no canonical splitting H One has:
g Hypy(X/K)= & HI(X,Q ).
i+j=n

In the p-adic situation the singular cohomology is not defined, but it can be replaced
by the p-adic étale cohomology H,(X), which has the additional structure of a p-
adic representation. The following result formulated by Tate as a conjecture was
proved in full generality by Faltings [57].

Theorem 13.4.3 (Faltings). There exists a functorial isomorphism

® (H/(X.Ql )@k C(=i)).

+j=n

H;(X) ®q, C =~ i
In particular, H)(X) is of Hodge-Tate, and
Dyt (HA(X)) = gr* Hijp (X/K).

2However, see [162].
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Tate proved this conjecture for abelian varieties having good reduction using his
results about the continuous cohomology of Gk (see Section [4.3)). Faltings’ proof
relies on the higher-dimensional generalization of Tate’s method of almost étale
extensions. The theory of almost étale extensions was systematically developped
in [[78]]. See [130] for further generalization of Faltings’ almost purity theorems.

13.4.4. Inspired by Grothendieck’s problem of mysterious functor [83]], [84]],
Fontaine [66], [71] formulated more precise conjectures, relating étale cohomology
to other cohomology theories via the rings B.s, Bg; and Bgr. These conjectures
are actually theorems, which can be formulated as follows:

13.4.5. Etale cohomology vs. de Rham cohomology. Recall that the ring Bgr is
equipped with a canonical filtration and a continuous action of the Galois group
Gg.

Theorem 13.4.6 (Cqr-conjecture). Let X/K be a smooth proper scheme. There
exists a functorial isomorphism

(60) H(X)®q, Bar = Hip (X/K)®k Bar,

which is compatible with the filtration and the Galois action. In particular, H;(X)
is de Rham, and

Dyg (Hp(X)) = Hijp (X/K).

Using the isomorphism gr*Bgr =~ & C(i) it is easy to see that this theorem im-
i€Z
plies Theorem[13.4.3]

13.4.7. Etale cohomology vs. crystalline cohomology. Let X/Og be a smooth
proper scheme having good reduction. The theory of crystalline cohomology [20]
associates to the special fiber of X finite-dimensional Kp-vector spaces Héris(X)
equipped with a semi-linear Frobenius ¢. By a theorem of Berhtelot—Ogus [22]],
there exists a canonical isomorphism

Hx(X/K) =~ H., (X)®, K,

ris

which equips H’

ois (X) ®k,, K with a canonical filtration.

Theorem 13.4.8 (Cis-conjecture). Let X/Og be a smooth proper scheme having
good reduction.
i) There exists a functorial isomorphism

(61) H}(X)®q, Beris = H.; (X) ®k, Beris,

which is compatible with the Galois action and the action of ¢. In particular, H;,(X )
is crystalline, and

Deris (Hp(X)) ~ H.

cris

X).

ii) The isomorphism (60) can be obtained from (62)) by the extension of scalars
Bcris ®Ko Kc BdR-
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13.4.9. Etale cohomology vs. log-crystalline cohomology. Let X/Og be a proper
scheme having semi-stable reduction. The theory of log-crystalline cohomology
[92] associates to X a finite-dimensional Kp-vector spaces H{Og_cris(X) equipped
with a semi-linear Frobenius ¢ and a monodromy operator N such that No = ppN.
A theorem of Hyodo—Kato [87]] shows the existence of an isomorphism

H'x(X/K) =~ H] X)®k, K,

og —cris

which equips Hfog_criS(X) ®k, K with the induced filtration. Note that if X has
good reduction, then N = 0, and the log-crystalline cohomology coincides with the

classical crystalline cohomology of X.

Theorem 13.4.10 (C-conjecture of Fontaine—Jannsen). Let X/Og be a proper
scheme having semi-stable reduction.
i) There exists a functorial isomorphism

(62) H,,(X)®q, Bst = Hjy, _is(X) ®x, By,

which is compatible with the Galois action and the actions of ¢ and N. In particu-
lar, H;,(X) is semistable, and

D, (H;;(X)) = HL ().

13.4.11. These conjectures were first proved by two completely different meth-
ods:

— The method of almost étale extensions (Faltings [58, 59]);
— The method of syntomic cohomology of Fontaine—Messing (Fontaine—Messing,
Hyodo—Kato, Tsuji [[74], [154]).
Alternative proofs were found by Niziot[120} [121] and Beilinson [26, 27]. The
theory of perfectoids gave a new impetus to this subject [24} 25| [34] 49| [131]].
The generalization of comparison theorems to cohomology with coefficients is in-

timately related to the theory of p-adic representations of affinoid algebras [31} 19,
95,196, 115].

13.4.12.  Over the field of complex numbers, the comparison isomorphism can
be alternatively seen as the non-degenerate pairing of complex periods (59). In
the p-adic case, such an interpretation exists for abelian varieties. Namely, if A
is an abelian variety over K, then the p-adic analog of H{(A(C),Q) is the p-adic
representation V),(A) := T(A) ®z, Q. For the first p-adic cohomology of A, one
has:

H)(A) = V,(A)".
The theory of p-adic integration [38. 39, |67] provides us with a non-degenerate
pairing
Hig(A) X TH(A) > B,
which gives an explicit approach to the comparison theorems for abelian varieties.
The simplest case of p-divisible formal groups will be studied in the next section.
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14. p-DIVISIBLE GROUPS

14.1. Formal groups.

14.1.1. In this section, we make first steps in studing p-adic representations aris-
ing from p-divisible groups. Such representations are crystalline and the associated
filtered modules have an explicit description in geometric terms. We will focus our
attention on formal groups because in this case many results can be proved by ele-
mentary methods, without using the theory of finite group schemes. We start with
a short review of the theory of formal groups.

Definition. Ler A be an integral domain. A one-dimensional commutative formal
group over A is a formal power series F(X,Y) € A[[X, Y]] satisfying the following
conditions:

i) F(F(X.Y),Z) = F(X,F(Y,2));

ii) F(X,Y) = F(Y,X);

iii) F(X,0) =X and F(0,Y)=7Y;

iv) There exists i(X) € XA[[X]] such that F(X,i(X)) =0.

It can be proved that ii) and iv) follow from i) and iii) (see [109]). We will often
write X + Y instead F(X,Y).

14.1.2. Examples. 1) The additive formal group @G(X, Y)=X+Y Here i(X)=-X.
2) The multiplicative formal group G,,(X,Y) = X+ Y + XY. Note that G,,(X,Y) =

X
(1+X)(1+Y)—1.Here i(X) = %
3) More generally, for each a € A, the power series

F(X,Y)=X+Y +aXY
X

is a f 1 A. Here i(X) = — .
is a formal group over ere i(X) T ax

14.1.3. We introduce basic notions of the theory of formal groups. An homo-
morphism of formal groups F — G over A is a power series f € XA[[X]] such that
foF(X,Y)=G(f(X),f(Y)). The set Homu(F,G) of homomorphisms ¥ — G is an
abelian group with respect to the addition defined by the formula

feg=G(f(X),g(X)).
We set Ends(F) = Homy (F, F). Then End4 (F) is a ring with respect to the addition
defined above and the multiplication defined as the composition of power series:

fogX) = f(g(X)).

14.1.4. The module ﬁl&uXJ ! of formal Kéahler differentials of A[[X]] over A is the
free A[[X]]-module generated by dX.

Definition. We say that w(X) = f(X)dX € ﬁix[[X]] is an invariant differential form
on the formal group F if
WX +rY)=wlX).
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14.1.5. The next proposition describes invariant differential forms on one-dimensional
formal groups. We will write F/{(X, Y) (respectively F’(X,Y)) for the formal deriv-
ative of F(X,Y) with respect to the first (respectively second) variable.

Proposition 14.1.6. The space of invariant differential forms on a one-dimensional
formal group F(X,Y) is the free A-module of rank one generated by

ax

U)F(X) = m

Proof. See, for example, [88l Section 1.1].
a) Since F(Y,X) = Y + X + (terms of degree > 2), the series F'{(0,X) is invertible
in A[[X]], and one has:

w(X): A[[X]].

= m €
Differentiating the identity
F(Z,F(X,Y))=F(F(Z,X),Y)
with respect ot Z, one has:
F{(Z,F(X,Y)) = F{(F(Z,X),Y)-F|(Z.X).
Setting Z = 0, we obtain that

FiXy) 1
F/(0,F(X,Y))  F[0,X)’

or equivalently, that
dF(X,Y) _ dX
F(0,F(X,Y))  F}(0,X)’

This shows that w(X) is invariant.
b) Conversely, assume that w(X) = f(X)dX is invariant. Then

FEX)FI(X,Y) = f(X).
Setting X = 0, we obtain that f(Y) = F i (0,Y)f(0). Therefore
w(X) = fO)wr(X),
and the proposition is proved. O

Remark 14.1.7. We can write wr in the form:

[Se]

wr(X) = [ZanX"]dX, where a, € A and ag = 1.
n=0
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14.1.8. Let K denote the field of fractions of A. We say that a power series A(X) €
K[[X]] is a logarithm of F, if

AX +£Y) = AX) + AY).

Proposition 14.1.9. Assume that char(K) = 0. Then the map

X
W A,(X) = f w
0
establishes an isomorphism between the one-dimensional K-vector space gener-

ated by wr and the K-vector space of logarithms of F.

Proof. a) Let w(X) = g(X)dX be a non-zero invariant differential form on F. Set

g(X) = X b, X". Since char(K) = 0, the series f(X) has the formal primitive
n=0

1,(X) = fxw = Zb"“X” e K[[X]].
0 =
The invariance of w reads
gFX,Y)F|(X,Y) = g(X),
and taking the primitives, we obtain:
ApX +rY) = 2,(X)+h(Y)

for some A(Y) € K[[Y]]. Putting X = 0 in the last formula, we have A(Y) = A,(Y),
and A,(X+r Y) = 1,(X) + 2,(Y). Therefore A, is a logarithm of F.

b) Conversely, let A(X) be a logarithm of F. Differentiating the identity A(Y +p¢
X) = A(Y) + A(X) with respect to Y and setting ¥ = 0, one has:

, A(0)
AX) = .
W=7 1(0,X)
Set w = A'(X)dX. Then w = A’ (0)wr, and the proposition is proved. O

Definition 14.1.10. Set

X
/lF(X)Zf WF.
0

Note that Ag(X) is the unique logarithm of F such that
Ap(X)=X (mod deg?2).

From Proposition [14.1.9)if follows that over a field of characteristic 0 all formal
goups are isomorphic to the additive formal group. Indeed, Ar is an isomorphism
F ~G@G,.

14.1.11. Example. For the multiplicative group we have

ax

(e X”
ws,(X) =T~ 5, (X)=log1+X)= Z(-Dn—l?

n=1
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14.1.12.  We consider formal groups over the ring of integers of a local field K of
characteristic 0 and residue caracteristic p.
For each n € Z, we denote by [n] the formal multiplication by n:

X+rp+Xp+r---+X, ifnz0,

n

[n] =
i([—n)), ifn<0.
This defines an injection
[ 1:Z — Endo, (F), n—o[nlX)=nX+---.

It can be easily checked that this map can be extended by continuity to an injective
map
[ 1:Z,— Endo,(F), a—[alX)=aX+---.

Proposition 14.1.13. Let F be a formal group over Ok. Then either
[p1I(X)=0 (mod m)

or there exists an integer h > 1 and a power series g(X) = c1 X +--- such that c; #0
(mod mg) and

(63) [pI(X) = g(X”")  (mod m).

Proof. The proof is not difficult. See, for example, [[76, Chapter I, § 3, Theorem 2].
O

Definition 14.1.14. If [p](X) = 0 (mod mg), we say that F has infinite height.
Otherwise, we say that F is p-divisible and call the height of F the unique h > 1

satisfying condition (63).

14.1.15. Now we can explain the connection between formal groups and p-adic
representations. Recall that we write C for the completion of K. We denote by O¢
the ring of integers of C and by mc the maximal ideal of Oc. Any formal group
law F(X,Y) over Ok defines a structure of Z,-module on mc of K:

a+rB:=F(a,B), a,femc,
Z,xmc—>meg, (a,a) [a(a).

We will denote by F(mc) the ideal mc equipped with this Z,-module structure.
The analogous notation will be used for Og-submodules of mc.

Proposition 14.1.16. Assume that F is a formal group of finite height h. Then:
i) The map [p] : F(mc) — F(mc) is surjecive.
ii) The kernel ker([p)) is a free F ,-module of rank h.
Proof. 1) Consider the equation
[P1X) =, @ € F(mc).

A version of the Weierstrass preparation theorem (see, for example, the proof of
[LOS, Theorem 4.2]) shows that this equation can be written in the form f(X) =
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h

g(@), where f(X) € Ok[X] is a polynomial of degree ph such that f(X) = X?
(mod mg), and g € Ok[[X]]. Therefore the roots of this equation are in mc.

ii) To prove that ker([p]) is a free Z/pZ-module of rank /s, we only need to show
that the roots of the equation [p](X) = 0 are all of multiplicity one. Differentiating
the identity

[PI(F(X,Y)) = F([pl(X), [p1(Y))
with respect to Y and setting ¥ = 0, we get:

[p]' () - F3(X,0) = F5([p](X),0).

Let [p](€) = 0. Since F;(X,0) is invertible in Og[[X]] and & € mc, we have F/(&,0) #
0 and [p]'(£) # 0. Therefore ¢ is a simple root. O

14.1.17. For n > 1, let T, denote the p”"-torsion subgroup of F(fmc). From
Proposition|14.1.16|it follows that as abelian group, it is not canonically isomorphic
to (Z/p"Z)" and sits in the exact sequence
0—Tfg, = F(mc) [i]—> F(me) — 0.

As in the case of abelian varieties, the Tate module of F is defined as the projec-

tive limit
T(F) = limT,
n

with respect to the multiplication-by-p maps. Since the series [p"](X) have coef-

ficients in Ok, the Galois group Gk acts on Ef,, and this action gives rise to a
Z,-adic representation:

pr: Gg— AutZP(T(F)) ~ GLh(Zp).

We will denote by V(F) = T(F)®z, Q,, the associated p-adic representation.

14.1.18. Examples. 1) F = @m One has [p"] = (1 +X)?" — 1. Therefore
Tz ,={¢-117" =1,

and the map

Hpr = T@m,n’ {ml-1
is an isomorphism of Gg-modules. In particular, T(@m) ~7Z,(1).

2) Let E/Ok be an elliptic curve having good reduction modulo mg. Writing the
group law on E in terms of a local parameter at 0, one obtains a formal power series
F(X,Y), which is a formal group law over Ok. One can prove that F is of height
1 if £ has ordinary reduction, and of height 2 if E has supersingular reduction.
We have a canonical injection of 7' (F) in the Tate module T,(E) of E, which is an
isomorphism in the supersingular case. See [146, Chapter 4] for further detail and
applications.
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14.1.19. The notion of a formal group can be generalized to higher dimensions.
Let X =(Xj,...,Xy)and Y = (Y4,...,Yy) be d-vectors of variables. A d-dimensional
formal group over Ok is a d-tuple F(X,Y) = (F1(X,Y),...,F4(X,Y)) with

Fi(X,Y) € Okl[X, Y], 1<i<d,

which satisfies the direct analogs of conditions i), iii) and iv) in the definition of
a one-dimensional formal group. We remark that contrary to the one-dimensional
case, there are non-commutative formal groups of dimension > 2. Non-commutative
formal groups appear in Lie theory. Below, without special mentioning, we con-
sider only commutative formal groups.

14.1.20. Propositions [[4.T.6|land[T14.1.9|generalize directly to the higher-dimensional
case. Namely, let I = (X1,...,Xy) C Og[[X]]. We set:

£:(0k) = I/

and call it the cotangent space of F over Ok. The module of invariant differential
forms on F is canonically isomorphic to 7.(Ok). Namely:

1) Foreacha;X;+---+ayX; mod I* e 1(Ok), there exists a unique invariant
differential form w such that

w0)=a1dX; +---+aqdXy.
This correspondence gives an isomorphism:
17(Ok) = {invariant differential forms on F}.

2) Each invariant differential form w is closed, i.e. there exists a unique
Ao(X) € K[X] such that 1,(0,...,0) =0 and
dA,(X) = w.

3) The map w — A, establishes an isomorphism between the K-vector space
Q}p generated by invariant differential forms on F' and the K-vector space
of logarithms of F.

The notion of the height of a formal group generalizes as follows:
Definition 14.1.21. A formal group F is p-divisible if the morphism
[pI" : OkIIX]] = OklIX]], J&X) = folplX)

makes Og|[[X]] into a free module of finite rank over itself.

If F is p-divisible, then the degree of the map [p]* is of the form ph for some
h > 1. This follows from the fact that any finite connected group over kg is of order
ph for some / (see, for example [64, Chapitre I, § 9]). We call h the height of F.
A formal group of dimension d defines a structure of Z,-module on m‘é, which
we will denote by F(mc). The definition of the Tate module 7'(F) and the p-adic
representation V(F') generalizes directly to p-divisible formal groups.

14.2. p-divisible groups.
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14.2.1. The category of formal groups is to small to develop a satisfactory theory.
In particular, it is not closed under taking duals. To remedy this problem, it is more
convenient to work in the category of p-divisible groups, introduced by Tate [[151]].

Definition. A p-divisible group of height h over Ok is a system 4 = (9,)neN Of
finite group schemes 4, of order p"™ equipped with injective maps i, : G — Gu11
such that the sequences

il p)l
0—>9, égrwl — Goi1, n

\%
—_

are exact.

From the theory of finite group schemes, it is known that each ¥, sits in an exact
sequence

(64) 059 -9, —9% -0,

where 4 is a connected and ¥ is an étale group scheme. We will say that & =
(%)neN is connected (respectively étale) if each ¥, is. The exact sequences (64)
give rise to an exact sequence of p-divisible groups

(65) 059" 59 g% 0,

where 4° and 4% are connected and étale respectively.

14.2.2. To each p-divisible group ¢, one can naturally associate its Tate module,
setting:
T(#%) = lim%,(Oc).
n
Then T'(¥) is a free Z,-module of rank & equipped with a natural action of Gg.
We denote by V(¥4) :=Q, ®z, T () the associated p-adic representation. From the
exact sequence (65)), one has an exact sequence of p-adic representations:

0— V(¥%°) > V(@) - V(@) - 0.

14.2.3. If F(X,Y) is a p-divisible formal group, then the kernels F[p"] of the
isogenies [p"] : F — F form a system F(p) = (F[p"]nen of finite group schemes
satisfying the above definition, and we have a functor F — F(p) from the category
of formal groups to the category of p-divisible groups.

Proposition 14.2.4 (Tate). The functor F — F(p) induces an equivalence between
the category of p-divisible formal groups and the category of connected p-divisible
groups.

Proof. See [151 Proposition 1] and the references in op. cit. O
14.2.5. If ¢ is a p-divisible group, we call the dimension of ¢ the dimension of

the formal group F corresponding to its connected component. We also define the
tangent space t»(Ok) of ¢ as the tangent space of F.
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14.2.6. The Cartier duality for finite group schemes allows to associate to ¢ a
dual p-divisible group ¢V . We have fundamental relations between the heights and
dimensions of ¢ and ¥":

ht(¥) = h(@"), dim(¥) +dim(¢") = h(¥4)

([151} Proposition 3]). Moreover, the duality induces a non-degenerate pairing on
Tate modules:

T(D)XT(G") > Z,(1).

14.2.77. Example. Let E/Ok be an elliptic curve having a good reduction modulo
mg. The kernel E[p"] of the multiplication-by-p" map is a finite group scheme of
order pZ”. The system (E[p"])nen is a p-divisible group of height 2. The connected
component of this p-divisible group corresponds to the formal group associated by

E in Example [I4.1.18] 2).
14.3. Classification of p-divisible groups.

14.3.1. In [64], Fontaine classified p-divisible groups over Ok up to isogeny in
terms of filtered ¢-modules. The idea of such classification goes back to Grothendieck
[83]], [84] and relies on the following principles:
1) One associates to any p-divisible group ¢ of dimension d and height / a
¢-module M(¥) together with a d-dimensional subspace L(¥) C M(¥)k.
2) The ¢-module M(¥) is the Dieudonné module associated to the reduction
& of 4 modulo mg by the theory of formal group schemes in characteristic
p (see, for example, [112]).
3) The subspace L(¥) C M(¥)k depends on the lift of @ in characteristic 0.
The filtration on M(¥) is defined as follows:

Fil’M(@)x = M(9)k, Fil'M(F)x = L(¥), Fil>M(9)k = {0}.
14.3.2.  'We give an interpretation of the module (M (%), L(¥¢)) for formal p-divisible
groups in terms of differential forms. This description is equivalent to Fontaine’s
general construction (see [64, Chapter V] for the proofs of the results stated be-

low). Let F be a formal p-divisible group of dimension d and height 4. Recall that
a differential form

d
w= ) aXi,.. X)X, a(Xy,....Xa) € KIIX,.... Xy]]
i=1

is closed if there exists a power series A, € K[[X1,...,X4]] such that 4,(0,...,0)=0
and dA,, = w. Note that if w is an invariant form, then A4, is the associated logarithm
of F. As before, we set X = (X1,...,Xy) and Y = (Y1,...,Yy) to simplify notation.

Definition. A closed differential form w is
i) of the second kind on F, if there exists r > 0 such that

X +7Y) = Ao(X) = Au(Y) € p7"OklIX. Y11

ii) exact, if there exists r = 0 such that 1, € p~" Og[[X]].
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It is easy to see that each exact form is of the second kind. Consider the quotient:

{differential forms of the second kind}

H(F) =
ar(F) { exact forms}
Then H CllR(F ) is a K-vector space of dimension £, which can be viewed as the first
de Rham cohomology group of F. Let Ky denote the maximal unramified subfield
of K, and let M(F) be the Ky-subspace of H éR(F ) generated by the forms with
coeflicients in Ky. Then M(F) depends only on the reduction of F modulo mg and
one has:
Hyg(F) = M(F)x.

Moreover, M(F) is equipped with the Frobenius operator ¢ which acts as the abso-
lute Frobenius on the coefficients of power series and such that ¢(X;) = Xf :

d d
go[Za,-(Xl, .. ,Xd)dX,-) = > af (XY, Xax!

i=1 i=1
Consider the K-vector space Q}p generated by invariant forms on F. Recall that
dimg QIL = d. Each invariant form is clearly of the second kind, and Q}D injects into
1 .
Hj (F). Set:
L(F) :=image of Q}r in HéR(F).
These data define a structure of filtered module on M(F).

14.3.3. Assume that the local field K is absolutely unramified. In that case, for-
mal groups over Ok were classified up isomorphism by Honda [88]], purely in terms
of their logarithms. In this section, we review Honda’s classification. To simplify
the exposition, we restrict our discussion to the one-dimensional case.

The ring of power series K[[X]] is equipped with the Frobenius operator ¢ :

‘P[Zaixi) =y @la)X™.
i=0

i=0
Assume that a,...,a;-1, ) € Ok satisfy the following conditions:
adl,...,qp-1 = 0 (mod p),
(66)
ay € Ug.
Set:
h .
()= ) i,
i=0
and consider the power series
@)\
AX) := (1 - T“’) (X) € K[[X]].

For formal p-divisible groups of dimension one, the result of Honda states as fol-
lows:



AN INTRODUCTION TO p-ADIC HODGE THEORY 105

Theorem 14.3.4 (Honda). i) Assume that ay,...,ay, satisfy conditions (66). Then
AX) = Ag(X) for some one-dimensional formal group G of height h.

ii) Let F be a one-dimensional formal group over Ok of height h. Then there
exists a unique system a, ...,y satisfying ((66) such that

(1 - @)JF(X) € Okl[IX]].

Let G be the formal group associated to ay,...,ay by parti). Then F = G.

The relation between this theorem and Fontaine’s classification is given by the
following:

Proposition 14.3.5. Assume that K is absolutely unramified. Let F be a one-
dimensional formal group over Ok of height h. Denote by br the image of wr in
M(F). Then the following holds true:

i) The elements bg,(bp),... ,goh_l(bp)form a basis of M(F) over K.

ii) Let ay,...,ay be the parameters associated to F by Honda’s theorem. Then

@19(br) +arp(br) + -+ ang"(br) = pbr.
iii) One has an isomorphism of filtered p-modules
M(F) = Klel/( (¢) - p),
which sends L(F) = K - bp to the one-dimensional K-vector space generated by 1.

Proof. See [64, Chapitre V]. O

Remark 14.3.6. In fact, Fontaine’s theory [64] gives more precise results that
those that we have stated. Namely, if the absolute ramification index of K is
< p—1, it allows to classify p-divisible groups up to isomorphism and not only
up to isogeny. Using new ideas, Breuil [30] classified p-divisible groups up to iso-
morphism without any restriction on ramification. See [97] and [33] for further
developments.

14.4. p-adic integration on formal groups.

14.4.1. 'We maintain assumptions and conventions of the previous section. Let F
be a formal p-divisible group of dimension d and height 2. We denote by T'(F) the
Tate module of F. Let & = (&,)n0 € T(F), where &, € TF,, for each n > 0. Recall

that we have the canonical map 6 : Aj,s — Oc. For each n, choose ’f\n € Aﬁlf such
that 6(£,) = &n.
Theorem 14.4.2 (Colmez, Fontaine). i) Let w be a differential form of second kind.

Then the sequence (p"Ay(&,))ns0 converges in B:ris x = K®k, B:ris' Its limit does
not depend on the choice of’f\n and therefore defines the “p-adic integral”:
(67) f w:=— lim p"A,(&).

¢ n—+oo

If w has coefficients in Ky, then fg‘” eB*t

cris”®

ii) If w is exact, then ffw =0.
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iii) The p-adic integration ({67) is compatible with the actions of the Galois group
and the Frobenius ¢. Namely, one has:

o= [}
[l oo

iv) The p-adic integration induces a non-degenerated pairing
M(F)XT(F) = Bris,
which is compatible with the Frobenius operator and the Galois action, and a non-
degenerated pairing
Hi(F)XT(F) — By,
which is compatible with the Galois action and filtration.
Proof. See [64, Chapitre V, §1], [66, Théoreme 6.2] and 138, Proposition 3.1]. We

remark that the delicate part here is the non-degeneracy of the constructed pairings.
The proof of other points is straightforward. O

14.4.3. Example. Consider the case of the multiplicative formal group @m Recall
that T (@m) ~7,(1) is generated by any compatible system (£,),>0 such that &, =
{p —1 and ¢, # 1. The space Hcllk(@m) is generated over K by w = %, and the
formal primitive of w is log(1 + X). Take én =[&]'/P" = 1. One has:

fw: — lim p”log[s]l/p" =—f.
13

n—+oo

This formula can be seen as the p-adic analog of the following computation. Let C
denote the unit circle on the complex plane parametrized by ¢>™*, x € [0, 1]. Then

d
f = nlog)
c <

Corollary 14.4.4. The representation V(F) is crystalline, and there exist canonical
isomorphisms:

2ni

en
= 2mi.
0

%
Dcris

(V(F)) = M(F),  Di(V(F)) = Hi(F).

Corollary 14.4.5 (Tate). The representation V(F) is Hodge—Tate and there exists
a canonical isomorphism

(68) V(F)®q, C = (tp(K)®k C)® (tr(K) ®k C(1)).
Proof. This follows from the previous corollary and the isomorphisms
((K)=Qp,  Hyp(F)/Qp = tpv(K)

(the second isomorphism is provided by duality). O
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Remark 14.4.6. 1) Corollary holds for all p-divisible groups (see (66,
Théoréme 6.2]). Conversely, Breuil [30] proved that each crystalline represen-
tation with Hodge—Tate weights 0 and 1 arises from a p-divisible group.

2) The Hodge—Tate decomposition was first proved by Tate [151]] for all
p-divisible groups. Some constructions of this paper will be revewed in Section|[16]
The case of abelian variety with bad reduction follows from the semi-stable re-
duction theorem (Raynaud). A completely different proof was found by Fontaine
[67]).

3) The construction of p-adic integration in Theorem generalizes to the
case of abelian varieties [38]], [39].

15. FORMAL COMPLEX MULTIPLICATION

15.1. Lubin-Tate theory.

15.1.1. In this section, we discuss the theory of complex multiplication in formal
groups. We start with a brief overview of Lubin—Tate theory [111]. Let K is a local
field of arbitrary characteristic. Set g = |kx| = pf . Fix an uniformizer 7 of K.

Theorem 15.1.2. i) Let f(X) € Og[[X]] be a power series satisfying the following
conditions:

f(X)=nX (mod deg2),

(69) fX)=X9 (mod mg).

Then the following holds true:

i) There exists a unique formal group F ¢(X,Y) over Ok such that f(X) € Endg, (F).
Moreover, for each a € Ok, there exists a unique endomorphism [a](X) € Endo, (F)
such that [a](X) = aX (mod deg?).

ii) Let g(X) be another power series satisfying conditions (69) with the same
uniformizer n. Then Fg and F ¢ are isomorphic over Ok. In the isomorphism class
of Fy, there exists a formal group Fyy with the logarithm

¢ X
ALT(X)=X+£+X—2+
Toon

iii) Let 1" be another uniformizer of Ok, and let g(X) be a power series satisfying

conditions with i’ in the place of n. Then Fy and F4 are isomorphic over the

ring O%.

Proof. All these statements can be proved by successive approximation in the rings
of formal power series. We refer the reader to [111]] or to [140] for detailed proofs.
O

Definition. Fy is called the Lubin—Tate formal group associated to f.

15.1.3.  Let F; be the Lubin-Tate formal group associated to f(X) =7X +X9. The
group of points F r(mc) is an Og-module with the action of Ok given by

(a,@) - [a](@), a€ Ok, acFy(me).
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In particular, [7](X) = f(X), and for any n > 1, one has:
[7"1(X) = fofo-of(X).
| ——

n

The polynomial
(70) (77" = n+ [0

is Eisenstein of degree ¢"'(¢—1). Let T, denote the group of n"-torsion points
of Fy. An easy induction together with the previous remark show that 7', is an
abelian group of order ¢". The endomorphism ring Endo, (Fy) ~ Ok acts on Ty,
through the quotient Ok /7" Ok, and Ty, is free of rank one over Og/n"Ok. The
generators of Ty, are the roots of the polynomial . Let Ky, be the field gener-
ated over K by Ts,. Then
K fn = K(my),

where 7, is any generator of 7' ,. In particular, [Ky, : K] =(g— l)q”‘l, and 7, is a
uniformizer of Ky,,.

15.1.4.  Let g be another power series satisfying (69) with the same 7. Then F ~
Fg, Ty, ~Tgp, and Ky, = Kg ,. Since the field generated by 7"*-torsion points of a
Lubin-Tate formal group depends only on the choice of the uniformizer &, we will
write Ky, in the place of Ky, Set:

o0
K= UKy,
n=1

From the explicit form of Eisenstein polynomials (70), it follows that 7 is a univer-
sal norm in K /K.
The following theorem gives an explicit approach to local class field theory:

Theorem 15.1.5 (Lubin-Tate). i) One has:
Kab — Kur . K
= .

ii) Let 0 : K* — Gal(K*®/K) denote the reciprocity map. For any u € Uk, the

automorphism Ok (u) acts on the torsion points of Fy by the formula:
Ok (w)(@) = [u™"1(&), VE, [7'1€) =0, neN.

Proof. See [111] or [140]. O
Remark 15.1.6. 1) The torsion points of a one dimensional formal group are the
roots of its logarithm (see Proposition |16.1.2| below). Therefore K* is generated
over K" by the roots of the power series Ay7(X). This can be seen as a solution

of Hilbert 12th problem for local fields. Theorem is the local analog of the
theory of complex multiplication.

2) Let K = Q. The multiplicative formal group @m is the Lubin—Tate group
associated to the series f(X) = (X+ 1)? — 1. In that case, Theorem[I5.1.5] says that

Q¥ = QQ,,@,,) and that

6o, =% . VueUq,.
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This can be proved without using the theory of formal groups.

3) Let rr, be a generator of the group of n"-torsion points of Fy. Since n, is a
uniformizer of Ky », and Theorem describes the action of Gal(K*®/K) on m,,
this allows to compute the ramification filtration on Gal(K®/K). One has:

0k (UY)) = Gal(K*®/K)”, Vv >0.
See [140] for a detailed proof.
15.2. Hodge-Tate decomposition for Lubin-Tate formal groups.

15.2.1. In this section, we assume that K has characteristic 0. We fix a uni-
formizer m and write F for an unspecified Lubin—Tate formal group associated
to . Since p = nu with e = e(K/Q)), and u € Uk, we see that F is a p-divisible
group of height h = ef = [K : Q,]. Its Tate module 7' (F) can be written as the pro-
jective limit of n"*-torsion subgroups with respect to the multiplication-by-m map.
Since T(F) is an Og-module of rank one, the action of Gx on T(F) is given by a
character
xr : Gg — Ug.

The theory of Lubin—Tate (Theorem says that y;! o 8 coincides with the
projection of K* onto Uk under the decomposition K* =~ Uk X (r).

15.2.2. Let E be a finite extension of K containing all conjugates 7K of K over
Q,. By local class field theory, one has a commutative diagram

B~ Gal(E™/E)

wl

K* - Gal(K*/K).

Therefore Gg acts on T'(F) via the character pg = yr o Ng/k. Consider the vector
space V(F) =T (F)®o, K as a Gg-module. By the previous remark, V(F) = K(pg),
and one has:
V(F)®e,C~ (P C(ropp).
teHom(K,E)
Compare this decomposition with the Hodge—Tate decomposition:

V(F)®q, C = 1}, (C) @ 1r(C)(1),

These decompositions are compatible with the K-module structures on the both
sides . Since K acts on tr(E) via the embedding K <— E, one has:

C(), ifr=id,

71 C N
7 (TopE) {C, if 7 #id.

Proposition 15.2.3. For any continuous character v : Gg — Uk, the following
conditions are equivalent:

a) ¥ concides with [T t'lo pZ’E on some open subgroup of Ig;
teHom(K,E)

b) C(roy) = C(xy) for all T € Hom(K, E).
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Proof. See [[143, Section A5]. Recall that for two continuous characters | and ¢
we write 1 ~ iy if C(¢1) and C(¢,) are isomorphic as continuous Galois modules.
From (71)), one has:

00! opsk ~XE, IfT=0,

o0 ! opskx ~1id, ifT#0.
Set:

Wi = l_l 1o P
TeHom(K,E)
Then the previous formula gives:
Toy ~ X, Y7 € Hom(E, K).

Now the proposition follows from Proposition 4.3.6] O
15.3. Formal complex multiplication for p-divisible groups.

15.3.1. Using Proposition [15.2.3] we can prove a general result about formal
complex multiplication for p-divisible groups.

Definition. Let & be a p-divisible group over Og of dimension d and height h.
We say that 4 has a formal complex multiplication by a p-adic field K C E if
[K : Q,] = h and there exists an injective ring map

K — Endop,(¥) ®z, Q,.

If ¢ has a complex multiplication by K, the p-adic representation V(¥) is a K-
vector space of dimension 1, and Gg acts on V(¥) via a character Y : Gg — Uk.
On the other hand, the tangent space f¢(E) is a (E, K)-module, and the multiplica-
tion by E in t¢(E) gives rise to a map

d
dety : E* — Autg(t(E)) — K*.
Recall that 0 : E* — Gal(E®/E) denotes the reciprocity map.

Theorem 15.3.2. Let 4 be a p-divisible group having a formal complex multipli-
cation by K. Assume that E contains all conjugates of K. Then one has:

Vg (Opw) =dety@)™!,  uel,
for some open subgroup U of Ug.

Proof. Compairing the decomposition
V#)eq,C= P Croyy)
teHom(K,E)

and the Hodge—Tate decomposition of V(¥), we see that there exists a subset S C
Hom(K, E) such that t»(E) ~ EBT(K ) as a K-module and that

TesS
Toygy ~xg iftes,
ToYy ~ 1 ifres.
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Proposition implies that ¥ concides on an open subgroup of /g with the
character

! oprg.
TeHom(K,E)
Now the theorem follows from the theory of Lubin—Tate together with the formula
dety(u) = [ |77 0 Nijeiao ().
TeS
o

15.3.3. Remark. Theorem [15.3.2]is mentioned in [144)]. We remark that it im-
plies the main theorem of complex multiplication of abelian varieties in the global
setting.

16. THE EXPONENTIAL MAP
16.1. The group of points of a formal group.
16.1.1. In this section, we study the group of points of a formal group in more
detail. Let F be a formal p-divisible group. We denote by T, the group of torsion

points of F. Note that Tr = GOTF’"’ and that there is a canonical isomorphism
n=
Treo = V(F)/T(F).

Proposition 16.1.2. i) For any invariant differential form w on F, the logarithm
A (X) converges on mc.
ii) The map
logy : F(mc) — 1p(C),
logp(@)(w) = A,(@), VweQL

is an homomorphism.
iii) One has an exact sequence

1
(72) 0= Treo — F(ine) — t5(C) — 0.
Moreover; logy is a local isomorphism.

Proof. 1) The space of invariant differential forms on F is generated by the forms
W1, ...,wq such that w;(0) =dX;. Let A,..., A4 denote the logarithms of these forms.
Since w; have coefficients in Ok, the series A; can be written as

A0 =Xi+ DT a X] X,

where

(73) n-dp,,. n; € Ok, n=ny+---+ny.

.....

This implies that the series A; converge on m‘é. Moreover, any logarithm can be
written as a linear combination of A;. Therefore for any w, the series A, converges
on m‘é. This proves that the map log is well defined.
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i) Since A,(X +rY) = 1,(X) + 1,(Y), we have

logp(a+Fp) = logp(a) +1ogg(B).
i) Fix ¢ € Ok such that
vi(c) > VK(p).

p—1
Then from it follows that

AKX =X+ )L Y by XX,
n=2 \nj+--+ng=n
where b, n, € Okx. Applying the p-adic version of the inverse function theorem
to the function A(X) = (4y,...,4,) (see, for example, [129, Chapter 1, Proposi-
tion 5.9]), we see that it establishes an analytic homeomorphism between F(cmc)
and (cmc)?. This shows that log. is a local analytic homeomorphism.

We show the exactness of the short exact sequence. Assume that @ € Tr . Then
there exists n such that [p"](a@) = 0, and therefore for each invariant differential form
w one has p"A,(a) = A,([p"1(@)) = 0. This shows that A,,(«@) = 0 for all w; hence
a € ker(logy). Conversely, assume that « € ker(logy). Take n such that [p"](a) €
F(cmc). Then logg([p"](e)) = p"logr(a) = 0. Since log, is an isomorphism on
F(cmc), this shows that @ € Tr,. Thus ker(logy) = Tr.. Finally, since logy is a
local isomorphism and F(mc) is p-divisible, log is surjective. O

Corollary 16.1.3. For each c such that vg(c) > VK—(P;), the local inverse of logp
p —

induces an isomorphism
expy : tr(cme) = F(emg).

Tensoring this local isomorphism with Q,, we obtain an isomorphism (which we
denote again by expyp):

(74) expg @ tr(C) = F(mc) ®z, Q).

Definition. We call log and expy the logarithmic map and the exponential map
respectively.

16.1.4. Example. For the multiplicative formal group, the exact sequence
reads:

(1) IOg
(75) 0— ppo > U — C—-0,
where U 8) = (1+mc)* is the multiplicative group of principal units of C.

16.1.5. Following Tate [[151], we give a description of the group of points F(mc)
in terms of the Tate module of the dual p-divisible group F". Let F(p) = (F[p"Dus1
be the p-divisible group associated to F. Then F[p"](Oc) = TFr,. Recall the injec-
tive maps i, : F[p"] - F [p"“]. It’s easy to see that for any s, one has:

F(me/p®) =lim F[p"1(Oc/p*).

In
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Therefore F(mc) can be defined in terms of the p-divisible group F(p) :

F(mc) =lim F(me/p*) = lim lim F[p"1(Oc/p*).

s sy

16.1.6. By Cartier duality, for any Ok-algebra R, we have a canonical isomor-
phism

F[p"1(R) =~ Homg(F"[p"],Gyp).
Taking R = O¢/p’ and passing to the limits on the both sides, we obtain a morphism
(76) F(mc) - Hom(T(FY),Ug).
Theorem 16.1.7 (Tate). i) We have a commutative diagram with exact rows

0 —— V(F)/T(F) F(me) ——2 t£(C)

S

0 — V(F)/T(F) — Hom (T(F"),Uy’) — Hom(T(F"),C) — 0,

0

where the morphisms are defined as follows:
- the upper row is the short exact sequence ([72));
- the bottom row is induced by the short exact sequence and the isomorphism
V(F)/T(F) = Hom(T(F"),Q,/Zy(1));
- the middle vertical map is (70).

ii) The maps f and g are injective.

iii) The map g agrees with the Hodge—Tate decomposition of V(F). Namely, the
diagram

tr(C(1)) —— Hom(T'(F"),C(1))

=~ duality
Hodge—Tate

T(F) ®q, C

commutes.
iv) The middle vertical row of the diagram induces an isomorphism

F(m) = Homg, (T(F*),US).

Proof. 1) The commutativity of the diagram and the exactness of rows is clear from
construction.

We omit the proof of ii-iv), which are the key assertions of the proposition. We
remark that assertions ii) and iv) are proved in [151}, Proposition 11 and Theorem 3]
without any referring to p-adic integration on formal groups. They imply immedi-
ately the Hodge—Tate decomposition for V(F). Assertion iii) says, roughly speak-
ing, that the Hodge—Tate decomposition arising from p-adic integration agrees with
Tate’s one. See [64, Chapter V, §1].

O
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Corollary 16.1.8. The map f can be identified with the canonical injection
F(mc) = T(F)®z, UL (-1)
which gives rise to an isomorphism
Flng) = (T(F) &z, UV(-1)".
Proof. This follows from Theorem and the Cartier duality. O
16.2. The universal covering.

16.2.1. In this section, we introduce the notion of the universal covering of a
formal group, and relate it to the p-adic representation V(F).

Definition. We call the universal covering of F(mc) the projective limit
CF(mc) = lim F(mc)
[p]
taken with respect to the multiplication-by-p map [p] : F(mc) — F(mg).

We have an exact sequence

(77) 0= T(F) = CF(in¢) =% F(ime) — 0,
where pr,, denotes the projection map

pro(é:) = 507 v§ = (fo,é:l LR ')a [P](é:n) = é:n—l .
Combining this exact sequence with (72)), we obtain an exact sequence

OgF ©PIy

1
(78) 0—- V(F)—> CF(mg) —— tg(C) — 0.
16.2.2. Let F; denote the reduction of F modulo mg, and let § = m¢/mg. Set:
CFi(S) = lim Fi(S).
[pl
Proposition 16.2.3. The canonical map F(mc) — F(S) induces an isomorphism
CF(mg) = CFi(S).
In particular, CF(mc) depends only on the reduction of F.
Proof. a) The map F(mc) — Fi(S) is clearly an epimorphism. Let y = (y,)n>0 €
CFi(S). Let y, € F(mc) be any lift of y,. It is easy to see that for each n, the
sequence [p"](Vum) converges to some x, € F(mc) and that [p](x,+1) = x,,. This
proves the surjectivity.

b) The injectivity follows from the fact that for any non-zero x = (x,),>0 €
CF(mc), there exists N such that vg(x,) <1 forn > N. O

16.2.4. From Corollary if follows that there exists a canonical isomor-
phism

(79) CF(me) = T(F)®z, CUY(-1).
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16.2.5. Example. Consider the universal covering of Gin. One has:
Gu(me) =UY, UL :=(1+me)",

and
CGu(me)=CU,  CU = lim U,

xPe—x
The universal covering of the reduction of G, is

CGpi(S) = lim (1+8)" = (1 +me)",

XPe—x

and the isomorphism CG,,(m¢) = CG,, +(S) is induced by the isomorphism @
for E=C:

: b
lim O¢ = Og.

xXPe—x
The short exact sequence reads:
(80) 0-Z,(1) > cUY - UL - 0.

16.3. Application to Galois cohomology.

16.3.1. In this section, we consider the sequence

81) 0 Q,(1) > (B, ¥ 5 C -0,

cris

where the first map is the canonical identification of Q,(1) with the submodule Q¢
of (B}, )#=P. The fundamental exact sequence [54] shows that the sequence is
also exact. Consider the diagram:

(82) 0 Z,(1) cuy Uy 0
l= Llog[-] llog
0 — Q,(1) —= (B, ¥ ——~C 0,

Here we use the isomorphism CU, 8 J 14 me» to define the middle vertical arrow

as follows:
x> log([x]) = nz;(—l)"*‘ L=

We omit the proof of convergence of this series in B . .

Proposition 16.3.2. The diagram commutes, and the middle vertical map is
an isomorphism.

Proof. a) The proof of commutativity is straightforward.
b) The map log|[ -] is surjective because the right vertical map log is surjective,
and C Ug) is a Q,-vector space. Since log[x] = 0 implies that [x] is a root of unity,

and CU, 8 ) is torsion free, log|[ -] is injective. O
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16.3.3. The exact sequence induces a long exact sequence of continuous
Galois cohomology:

0 — H(G,Q,(1)) = H(G, (B:.)*") — HYGx,C) 2 H'(Gx.Q,(1))

— H'(Gk.(BX. )¥) — H'(Gx.C) 2> H* (G, Q,(1).

cris

We use Proposition [16.3.2{to compute the connecting homomorphisms dg and 9.

16.3.4. Recall that u,» denotes the group of p"th roots of unity. For each n, the
Kummer exact sequence

0— pp K p—n>f* -0
gives rise to the connecting map
Sn - K* = H' Gk, K )= H (Gg. ).
Passing to the projective limit on n, we obtain a map
§: K* — H'(Gk,Zy(1)).

The following proposition gives an interpretation of the Kummer map in terms of
the fundamental exact sequence:

Proposition 16.3.5. i) The diagram

)
U —2= H'(G,Z,(1))

]

K —— H'(Gk,Q,(1))
is commutative.

ii) The diagram
0
H'(Gk,C) —— H*(Gk,Q,(1))

2T jinvk
—Tr[(

K Q,

is commutative. Here the left vertical isomorphism is a — alogyk (see Theo-
rem{d.3.2), and the right vertical map is the canonical isomorphism of local class
field theory (140, Theorem 3].

Proof. 1) The commutative diagram (82) gives a commutative square:

HY(Gk,UY) —= H'(Gk,Z,y(1))

l |

H(Gk.C) —— H'(Gx.Q,(1).
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Here H'(Gy, U(Cl)) = U;{l), and H(Gk,C)=K by Ax—Sen-Tate theorem. The ex-
plicit description of the connecting map shows that in this diagram, the upper row
coincides with 6. This proves the first assertion.

i1) Assertion ii) is proved in [12, Proposition 1.7.2]. O

16.4. The Bloch—Kato exponential map.

16.4.1. 'We maintain previous notation and conventions. Our first goal is to extend
the definition of the Kummer map to the case of general p-divisible formal groups.
Let mz denote the maximal ideal of the ring of integers of K.
For all n > 1, we have an exact sequence
("]
0> Tg, — F(mg) — F(mg) — 0,

which can be seen as the analog of the Kummer exact sequence for formal groups.
It induces a long exact sequence of Galois cohomology:

0 — HY(G. Tr) — HGr. Fng)) — H(Gy. F(nz) — HY(Gy.Tr) = ...
Since H)(K, F (mg)) = F(mg), this exact sequence gives an injection
OFn : F(mg)/p"F(mg) —» H' (Gk.Try).
Passing to the projective limit, we obtain a map
S F(ng) — H' (K, T(F)),

which is referred to as the Kummer map for F. This map plays an important role in
the Iwasawa theory of elliptic curves (see, for example, [81]] for an introduction to
this topic).

16.4.2. Bloch and Kato [28] found a remarkable description of df in terms of
p-adic periods, which also allows to construct an analog of the Kummer map for a
wide class of p-adic representations.

Definition. Let V be a de Rham representation of Gg. The quotient
tv(K) = Dgr(V)/Fil’'Dgr (V)
is called the tangent space of V.

Using the isomorphisms gr;(Bqr) = C(i), one can prove by devissage that the
tautological exact sequence

0 — Fil’Bgr — Bar — Bgr /Fil’Bgr — 0
induces an isomorphism
tv(K) = H(Gk,V ®q, Bar /Fil"Bar).
Consider the fundamental exact sequence (54):

0— Q, — B*>' — B /Fil’Bgr — 0.

cris
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Tensoring this sequence with V and taking Galois cohomology, we obtain a long
exact sequence

0 = HO(Gk, V) > Deris(V)?=! 5 1y(K) —5 H' (G V).
Definition. The connecting homomorphism
expy : ty(K) — H'(Gg,V)
is called the exponential map of Bloch and Kato.

16.4.3. 'We come back to representations arising from p-divisible formal groups.
Since the Hodge—Tate weights of V(F) are 0 and 1, we have

tvir(K) = H'(Gg, V ®q, C(-1).
The Hodge—Tate decomposition of V(F') provides us with a canonical isomorphism
(83) tr(K) = tyr)(K).

In Proposition[T6.1.2] we constructed the logarithmic map log, : F(mg) — tr(K).
Taking the composition, we obtain a map F(mg) — ty(r)(K).

Theorem 16.4.4 (Bloch—Kato). The diagram

F(mg) ¥ H'\G.T(F))

l EXPv(r) l

tv(r)(K) ————— H'(Gk, V(F)),

where the left vertical map is the composition of the exponential map expy with the
isomorphism (83)), is commutative.

Proof. This is [28, Example 3.10.1]. We first prove the following lemma, which
gives an interpretation of the Kummer map in terms of universal coverings.

Lemma 16.4.5. i) One has a commutative diagram with exact rows and injective
vertical maps:

0 T(F) CF(mc) F(mc) 0
0 T(F) T(F)®z, CUY (1) — T(F)®z, UL (-1) — 0.

ii) This diagram gives rise to a commutative diagram

F(mg) . H'\Gx.T(F))

: J:

H°(Gk.T(F)®g, Ug)(~1)) —= H'(Gk. T(F)).
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Proof. 1) The first statement follows from the exactness of the sequence and

Corollary|(16.1.8

ii) Directly from construction, it follows that the upper connecting map is df.
Taking into account the isomorphism from Corollary[16.1.8] we obtain the lemma.
O

16.4.6. Proof of the theorem. Consider the diagram

0 Z, CUP(-1) ———= U (-1) ——0

Llogm jlog

00— Qp — (B, ) "(-1) C=D 0,
= et st
0 Q, BY! B /Fil’Bgr — 0.

The upper part of the diagram is diagram twisted by )(;(1. Therefore the two
upper squares commute. It is easy to check that the two lower squares commute
too. Tensoring the diagram with 7' (F) and taking Galois cohomology, we obtain a
commutative diagram

H'(Gk, T(F)®z, U (1)) — H'(G, T(F))

L CXPy(r)

tyry(K)
Combining this diagram with Lemma|16.4.5] we obtain the theorem. O

H'(Gk, V(F)).

16.5. Hilbert symbols for formal groups.

16.5.1. To illustrate the theory developed in previous sections, we sketch its ap-
plication to an explicit description of Hilbert symbols on formal groups. Fix n > 1.
Let L/K be a finite extension containing the coordinates of all points of 7. Recall
that 6y : L* — G;b denotes the reciprocity map.

Definition. The Hilbert symbol on F is the pairing
(84) (s )Fn 2 L"XF(my) = Tpy
defined by the formula
(@.B)pn = X" —px,
where x € F(mg) is any solution of the equation [p"](x) = §.
It is easy to see that this pairing is well defined, i.e. that (a,)F, does not depend

on the choice of x. If ' = G,,, and L contains the group y,» of p"th roots of unity,
it reduces to the classical Hilbert symbol:

(w2 LYXLY — ppn,
@B =("NB)"" 1 B
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16.5.2. By local class field theory, there exists a canonical isomorphism
H*Gp.pp) = Z/p"Z
(see, for example, [142]], Chapter VI). Since T, is a trivial Gz-module, one has:
H*Gpoptpr ®Trp) = Trp.

Consider the cup product

U
H' (Gr,pup) x H(GL, TEn) = HXG L ptpp ® Trp) = T

Composing this pairing with the Kummer maps 6r, : F(m;) - H Gy, Tr,) and
o, L" > HI(GL,upn), we obtain a pairing

L*x F(np) — TFJ,.

From the cohomological description of the reciprocity map (see for example, [142],
Chapter VI), it follows that this pairing coincides with the Hilbert symbol (84).

16.5.3. Fix an uniformizer nr;, of L. Let f(X) € Og[X] denote the minimal poly-
nomial of 7y over K. Writing Op as Ok[X]/(f(X)) and taking into account that
D1k = (f'(m1)), we obtain an explicit description of the module of differentials
Q4, /7, (see (142l Chapter IIL§7)):

1
Qo,/z, = (01/D1sq,)dme

d
(recall that D/q, denotes the different of L/Q)). For any a € Oy, we write d_a for

L
an element a € Oy, such that da = a-dn;. Note that a is well defined modulo © L/Q,-
d
Set dlog(a) = o' L.
d?TL

16.5.4. Fix a base (§;)1<i<n of TF,, over Z/p"Z and a basis (w;)i<j<n of HéR(F)
in such a way that (w)1<j<q is a basis of Q}D. Set:

d d. d

ﬂ@(&)% ﬂ;l<§z>d—i A;)I@},)%

Or,=p"| Au,ED dn A4, (&2) dn, Ay, (En) an |
/la)dH (fl) Awd+1 (fZ) toe /l(ud+] (fh)
Q@) @) A @)

where we adopt the notation:
d

’ d i d/le(é:i) dé:;k) .
/le(fi)é ::Zd—xk d_JTL, 1f§i:(§l§1)’,..,§l(d)).
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Let X = (X;j)1<i,j<n denote the inverse matrix of @y ,. The theory of p-adic in-
tegration together with Bloch—Kato’s interpretation of the Kummer map allow to
give the following explicit formula for this pairing:

2
Theorem 16.5.5. For all « € L* and B € F(my) such that v,(B) > , one has:
p—

(@B)rn = ZZ[TrL/Q,, (xijdlog(@)A0,(®)] ).

i=1 j=1

Corollary 16.5.6. Applying this formula to the multiplicative formal group we
obtain the explicit formula of Sen [137] for the classical Hilbert symbol:

dlog(a)
leg(Z; p”)

For Lubin—Tate formal groups, this formula impoves the explicit reciprocity law of
Wiles [158]).

(@Ba=00P" where [a,B], = }%TrL/QP( og(ﬁ)).

Comments on the proof. a) This formula was proved in [12] assuming that v,(5) >
c for some constant ¢ independent of n. In [[77], it was noticed that one can take
2
c==.
p-1

b) Let 7, € Ajys be any lift of 77 under the map 6 : Ajyr — Oc. Note that 7, -7, €
Fil'Bgr. Take u = (u))iz0 € T(F), where [p](u;i+1) = u;. Let w be a differential form
of the second kind. From the definition of the p-adic integration in Theorem|14.4.2}

it follows that the p-adic period fu w can be approximated as follows:

fwz P (un) (7rL 71) (mod Fi’Bgr), ifweQl,
u -p /lw(un) (mod Fil'Bgr), otherwise

(see [[12, Section 2.4] for precise statements). Therefore the matrix @, , can be
seen as “the matrix of p-adic periods of F modulo p"”.
¢) The Hodge—Tate decomposition gives an isomorphism

tr(L) =~ H(GL.T(F)®z, C(-1)),

which can be described in terms of the matrix of p-adic periods. We consider an
integral mod p”" version of this isomorphism. Namely, set:

me = {xeCvi( ) > VKEPI)}
and m) = m’C Nmy. Since TF,, is a trivial G -module, we have a map
n o tr(my) = HYGL, Tra®z, me(=1) = H(GL,m((=1))®z, Trn,

which has an explicit description in terms of the matrix @y .
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¢) The plan of the proof is the following. Using a mod p" version expy,, of the
Bloch—Kato exponential map, we construct a commutative diagram

* ’ Op Vit 1 ’ n
L sap(n]) —2 " B Gl ") @7, Tra

l (6p” ’eXpFJl) l (Tmid)

)

HI(GL,,up”) X HI(GLa TF,n) HZ(GL’,up”) ® TF,n — TF,n-

From the cohomological interpretation of the Hilbert symbol and Theorem [16.4.4]
it follows that the Hilbert symbol (@, 8)F,, can be computed as the image of (@,log)
under the map 6,» Uexpg,. We compute it using the above diagram, as the image
of (a,logy) under the composition (7,,id) o (6,» Un,). From construction, 7, is the
integral mod p" version of the connecting map 0, : H (G1,C) - H*(GL,Q »(1))
associated to the exact sequence

0-Q,(1) > B )P —>C—0.

cris
Therefore it can be computed in terms of the trace map using Proposition [16.3.

The computation of the cup product 6, U, is more subtle, and we refer the reader
to [12] for further details. O

Remark 16.5.7. 1) Explicit formulas of other types are proved in [3|| and [150].
They generalize the explicit reciprocity law of Vostokov [156] and also use infor-
mation about the matrix of p-adic periods.

2) The exponential map of Bloch—Kato is closely related to special values of L-
functions and Iwasawa theory [28l [123]]. For further reading, see (13} 14,16} 40,
116l 117, [124].

17. THE WEAK ADMISSIBILITY: THE CASE OF DIMENSION ONE

17.1. Formal groups of dimension one.

17.1.1. In this section, we assume that K is a finite totally ramified extension
of Ky = Q‘;. Assume that M is an irreducible filtered ¢-module over K of rank A
satisfying the following conditions:

1) M =M, /h-

2) Fil’Mg = Mk, Fil>Mg = {0}, and dimg Fil' Mg = 1.
The first condition means that M ~ Ky[¢]/ (tph — p), and by the theory of Dieudonné—
Manin, M is the unique irreducible ¢-module with un(M) = 1/h. Since tg(M) =
1/h, we see that M is weakly admissible.

17.1.2. Let Frr denote the Lubin—Tate formal group with the logarithm
hy\~1 h 2h
xP"  xp
ALT(X)=(1—£) X) =X+ —F—+.
14 p p

Extending scalars, we consider Fir as a formal group over K. The filtered ¢-
module M(Frr) has the following description. The class by of the canonical
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differential wyt = dArr in M(Fy 1) satisfies the relation

¢"(brr) = phrr,

and the vectors bLT,go(bLT),...,cph‘l(bLT) form a basis of M(Fyr) over Ky. The
filtration on M(Fr1)k is given by

Fil' M(FLr)x = K - by.

In particular, M(Ft) and M are isomorphic as ¢-modules. Let v, denote the valu-
ation normalized as v,(p) = 1.

Theorem 17.1.3 (Laffaille). Assume that M is a filtered ¢-module satisfying the
conditions 1-2) above. The following holds true:
i) There exists b € M such that:
a) b is a generator of M as a ¢-module, and " (b) = pb;
b) There exist co = 1,c1,...,cp—1 € K such that
(85) vp(c;)) = —i/h forall 1<i<h-1,
and
=l
£:= ) ci¢'(b) € Fil' Mg.
i=0
ii) For all ¢y = 1,cy,...,cp—1 € K satisfying condition (83)), the series
h=1 .
AX) = eidin(x™")
i=0
is the logarithm of some formal p-divisible group over Ok of height h.
iii) M is admissible. More precisely, there exists a formal group F of dimension
one over Ok such that M(F) ~ M as filtered p-modules.

Proof. This theorem is proved in [102].

i) By the discussion preceding the theorem, there exists a generator b’ of M
such that ¢"(b') = pb” and b’,@(b’),...,¢" '(b’) is a Ky-basis of M. Then for any
non-zero £ € Fil'M x one has:

h=1
(86) = Zc;goi(b’), for some c; € K.
i=0

Note that ¢/ # 0 for some i. Replacing, if necessary, b’ by ¢'(b") and dividing £ by
¢;, we can assume that in (86), ¢ = 1. Let j be such that

vp(c;)+j/h<vp(c;)+i/h, Vi=0,....,h—1.
If vp(c;.) +j/h >0, then v,(c?) > —i/h for all i, and we can take
ci=cl, =1
Otherwise c;. # 0. In that case, set:

b=¢'(t'), =0/,
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Then

h-1
0= cig' ),
i=0

where the coefficients c; are given by
. clf+j/c;, ifO<i<h-—j
cl'.+j_h/pc}, ifh—j<i<h-1.
For0<i<h-j—1, one has:
vp(ci) +i/h = vp(c;ﬂ-) —vp(c;-) +i/h= (VP(Ct,'+j) +(@+))/h)- (vp(c}) + j/h) > 0.

For h—j<i<h-1, one has:

vp(ci) +i/h= vp(c;”_h) - vp(c;) —1+i/h
= (Vp(C;+j_h) +(i+j—h)/h)- (Vp(c;) +j/h) > 0.
This shows that cg,cy,...,c;-1 satisfy (85).

ii) By [86l §15.2], a power series of the form }; a,X"" with ap = 1 is the loga-
n=0
rithm of a formal group if and only if the sums

Ay = pay,

— p
Ay 1= pay —a1A7,

are in Og. The verification of these conditions for the series A(X) is quite technical
and is omitted here. See [[102), proof of Proposition 2.4].

iii) Let M be a filtered ¢-module satisfying conditions 1-2). By part i), there ex-
ists a generator b of M such that conditions a-b) hold for some cy,...,c;-1. By part
h=1 .

ii), the formal power series A(X) = c,-/lLT(X”'h) is the logarithm of some formal
i=0

group F of height 4. Then M(F) ~ M as filtered ¢-modules. By Theorem [14.4.2]

one has M(F)~D*. (V(F)). Hence M is admissible. O

cris
Remark 17.1.4. This theorem implies the surjectivity of the Gross—Hopkins period
map [82). See also [103]] for the case of Drinfeld spaces.

17.2. Geometric interpretation of (B:ﬁs)"”h:l’.

17.2.1. 'We maintain previous notation and consider the Lubin—Tate formal group
Frr of height 4 with the logarithm Apr(X). Note that Frr is defined over Z,,. Let
Frrx denote the reduction of Frr modulo p. We have the following interpretation
of the universal covering of Frr, which generalizes Example|16.2.
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Proposition 17.2.2. There is a canonical isomorphism

CFrr(me) = Frre(me).
Proof. Since [p](X) = X? (mod p), the multiplication by p in Frry is given by goh.
Set § =mg/(p). Then

CFLri(S) = Im Frrp(S) = Frrp(lim§) = Frop(me).
(,Dh h

Now the proposition follows from Proposition[16.2.3] O

12

17.2.3.  Since Ajpe/(p) = O%, we have a well defined composition

~ ~ Pr
k: Frreme) — Frri(Aine/(p)) — CFrr(Ainr) 5 Frr(Aing).
Here CFir(Ainf) := {iLn[ ]F Lr(Ainf), and pr,, denotes the projection on the ground
p
level.

Theorem 17.2.4 (Fargues—Fontaine). The map
Log(x) := Arr(k(x))

. . . h_
establishes an isomorphism Fyr(mey) = (B:ris)"" =P,

Sketch of the proof. The proof of the convergence of the series Arr(y) in B:ris for
vy € Frr(Ajnf) is routine, and we omit it. Since , Frr(Aj,y) does not contain torsion
points of Fir, the map Log is injective.

The series Fi1(X,Y) has coefficients in Z,. Hence the formal group law com-
mutes with ¢, and one has:

¢" A (k(x)) = Ar(@" k() = A k(" (0))).
On the other hand, ¢"(x) = [p](x) in F: LTx(Me), and therefore

Ar (k" () = ([P (K(x) = pALr(K(x)).
This proves that Log(x) € (B:ris)“’h:p .
The proof of the surjectivity is more subtle and we refer the reader to [60, Chap-

ter 4], where this map is studied in all detail and in a more general setting. O

17.2.5. Example. If & = 1, then Frr is isomorphic to @m Therefore Frr (o) =
(1+me)*, and the map « can be identified with the map log| - ] introduced in Propo-

sition [16.3.2
17.2.6. The next theorem furnishes further information about the structure of
B;)7 .
Theorem 17.2.7 (Fargues—Fontaine). For any family of elements
@0, 1,Q2,...,a5-1 € C,

not all zero, consider the map:

h-1
FiBL)TTSC )= ) b ().
i=1
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Then f is surjective, and ker(f) is a Q-vector space of dimension h.

Proof. See [60, Théoreme 8.1.2]. Without loss of generality, we can assume that
vp(@;) > 0 and ag = 1. The arguments used in the proof of Theorem apply
and show that there exists a formal group F over Oc such that

h=1
Ap = ZGiSDi(/lLT)-
i=0
Consider the diagram
AFopry
0 V(F) CF(mc) ——C ——0,
zT /
(Bl )¢

Cris

where the first line is the exact sequence (78) for F, and the vertical isomorphism
is provided by Theorem Since dimq, V(F) = h, the theorem is proved. O

We refer the reader to [41] for the interpretation of this result in terms of the
theory of Banach Spaces, and to [60] and [55] for applications to the theory of
Fargues—Fontaine.
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