UNIVERSITÉ DE BORDEAUX M2, *p*-adic Hodge Theory 2024-2025

Solutions to the final exam

Exercise 1.

Part I. Let A be a commutative unitary domain (a commutative ring with unity in which the product of any two nonzero elements is nonzero). Let \mathcal{G} denote the set of formal power series of the form $f(X) = X + \sum_{k=2}^{\infty} a_k X^k$, $a_k \in A$. We equip \mathcal{G} with the binary operation \circ setting:

$$f \circ g(X) = f(g(X)) = g(X) + \sum_{k=2}^{\infty} a_k g(X)^k, \text{ for all } f(X) = X + \sum_{k=2}^{\infty} a_k X^k, \ g(X) = X + \sum_{k=2}^{\infty} b_k X^k.$$

(This operation is often called composition or substitution). It is easy to see (and you can admit) that (\mathcal{G}, \circ) is a group with the identity element X. For any power series u(X) and v(X) we will write $u(X) \equiv v(X) \pmod{X^n}$ if the coefficients of u(X) and v(X) coincide in all degrees $\leq n - 1$.

1) Let $u(X), v(X) \in \mathcal{G}$. Show that if $u(X) \equiv v(X) \pmod{X^n}$, $(n \ge 1)$, then $u(X) = v \circ w(X)$, where $w(X) \equiv X \pmod{X^n}$.

Solution. Since (\mathcal{G}, \circ) is a group, for any $u(X), v(X) \in \mathcal{G}$, there exists a unique $w(X) \in \mathcal{G}$ such that $u(X) = v \circ w(X)$. We only need to show that $w(X) \equiv X \pmod{X^n}$ if $u(X) \equiv v(X) \pmod{X^n}$.

Let $u(X) = X + \sum_{k=2}^{\infty} a_k X^k$, $v(X) = X + \sum_{k=2}^{\infty} b_k X^k$, and $w(X) = X + \sum_{k=2}^{\infty} c_k X^k$. Note that $a_k = b_k$ for $2 \leq k \leq n-1$. Let m be the smallest integer ≥ 2 such that $c_m \neq 0$, i.e. $w(X) = X + c_m X^m + \dots$ Then

$$v \circ w(X) = w(X) + \sum_{k=2}^{\infty} b_k w(X)^k = X + c_m X^m + \dots + \sum_{k=2}^{\infty} b_k (X + c_m X^m + \dots)^k = X + b_2 X^2 + \dots + b_{m-1} X^{m-1} + (b_m + c_m) X^m + \dots$$

Since $v \circ w(X) = u(X)$, this implies that $m \ge n$, i.e. $w(X) \equiv X \pmod{X^n}$.

2) Let f(X) and g(X) be two elements of \mathcal{G} such that $f(X) \equiv X + a_m X^m \pmod{X^{m+1}}$ and $g(X) \equiv X + b_n X^n \pmod{X^{n+1}}$ with some $a_m, b_n \in A$. Compute $f \circ g(X)$ and $g \circ f(X)$ modulo X^{n+m} . Show that for the commutator $[f, g] = f^{-1} \circ g^{-1} f \circ g$ one has

$$[f,g] \equiv X + (m-n)a_m b_n X^{m+n-1} \pmod{X^{m+n}}.$$

(Here f^{-1} and g^{-1} denote the inverse elements of f and g with respect to \circ .)

Solution. We have

$$f \circ g(X) = g(X) + a_m (X + b_n X^n + \ldots)^m + a_{m+1} (X + b_n X^n + \ldots)^{m+1}$$
$$\equiv X + \sum_{k=2}^{\infty} b_k X^k + \sum_{k=2}^{\infty} a_k X^k + m a_m b_n X^{m+n-1} \pmod{X^{m+n}}$$

and, analogously,

$$g \circ f(X) \equiv X + \sum_{k=2}^{\infty} b_k X^k + \sum_{k=2}^{\infty} a_k X^k + n a_m b_n X^{m+n-1} \pmod{X^{m+n}}.$$

Set $w(X) := [f,g] = X + \sum_{k=2}^{\infty} c_k X^k$. Then $f \circ g(X) = (g \circ f) \circ w(X)$. Since $f \circ g(X) \equiv g \circ f(X) \equiv \mod X^{n+m-1}$, from question 1) it follows that $w(X) \equiv X \mod X^{n+m-1}$, i.e. $c_k = 0$ for $2 \leq k \leq n+m-1$. Comparing (n+m-1)th coefficients of $f \circ g(X)$ and $(g \circ f) \circ w(X)$, we obtain that

$$ma_m b_n = na_m b_n + c_{n+m-1}$$

and therefore $c_{n+m-1} = (m-n)a_m b_n$. Hence $w(X) \equiv X + (m-n)a_m b_n X^{m+n-1} \pmod{X^{m+n}}$.

Part II. Let L/K be a finite Galois extension of local fields, and let G = Gal(L/K). We denote by $(G_i)_{i \ge -1}$ the ramification filtration on G. Let p denote the characteristic of the residue field k_K of K and π_L be a uniformizer of L.

3) Show that for all $\sigma \in G_i$ and $\tau \in G_j$ $(i, j \ge 1)$ one has $[\sigma, \tau] \in G_{i+j}$. Show that

$$[\sigma,\tau](\pi_L) \equiv \pi_L + (i-j)ab\pi_L^{i+j+1} \pmod{\pi_L^{i+j+2}},$$

where a and $b \in O_K$ are such that $\sigma(\pi_L) \equiv \pi_L + a \pi_L^{i+1} \pmod{\pi_L^{i+2}}$ and $\tau(\pi_L) \equiv \pi_L + b \pi_L^{j+1} \pmod{\pi_L^{j+2}}$.

Solution. We can write $\sigma(\pi_L) = f(\pi_L)$ and $\tau(\pi_L) = g(\pi_L)$ for some power series $f(X) = X + aX^{i+1} + \ldots$ and $g(X) = X + bX^{j+1} + \ldots$ Since σ and τ act trivially on the coefficients of f(X) and g(X), we have

$$\sigma \circ \tau(\pi_L) = \sigma(g(\pi_L)) = g(\sigma(\pi_L)) = g(f(\pi_L)) = (g \circ f)(\pi_L),$$

and

$$[\sigma,\tau](\pi_L) = (g \circ f \circ g^{-1} \circ f^{-1})(\pi_L) = [g^{-1}, f^{-1}](\pi_L) = [f,g]^{-1}(\pi_L).$$

Using the congruence proved in question 2), we obtain that

$$[\sigma,\tau](\pi_L) \equiv \pi_L + (j-i)ab\pi_L^{i+j+1} \pmod{\pi_L^{i+j+2}}.$$

(The sign in the formula should be corrected.)

4) Let c be the biggest integer such that $G_a \neq \{e\}$. Show that if $i \ge 1$ is a break of the ramification filtration in the lower numbering (i.e. if $G_i \ne G_{i+1}$), then $i \equiv a \pmod{p}$.

Solution. For any $\sigma \in G_i \setminus G_{i+1}$ and $\tau \in G_a$ we have $\sigma(\pi_L) \equiv \pi_L + u\pi_L^{i+1} \pmod{\pi_L^{i+2}}$ and $\tau(\pi_L) \equiv \pi_L + v\pi_L^{a+1} \pmod{\pi_L^{a+2}}$, where $u, v \not\equiv 0 \pmod{\pi_L}$. Then (see question 3)) $[\sigma, \tau](\pi_L) \equiv \pi_L + (a-i)uv\pi_L^{i+a+1} \pmod{\pi_L^{i+a+2}}$.

Therefore $[\sigma, \tau] \in G_{i+a} = \{e\}$. Since $e(\pi_L) = \pi_L$, the above congruence shows that (a-i)uv can not be a unit. Since u and v are units, we conclude that $a - i \equiv 0 \pmod{p}$, i.e. $i \equiv a \pmod{p}$.

5) Show the following strengthening of the property proved in question 3): for all $\sigma \in G_i$ and $\tau \in G_j$ $(i, j \ge 1)$ one has $[\sigma, \tau] \in G_{i+j+1}$.

Solution. We can assume that $\sigma \in G_i \setminus G_{i+1}$ and $\tau \in G_j \setminus G_{j+1}$. We have $[\sigma, \tau](\pi_L) \equiv \pi_L + (j-i)uv\pi_L^{i+j+1} \pmod{\pi_L^{i+j+2}},$

where u and v are units. By question 4), $i \equiv a \pmod{p}$ and $j \equiv a \pmod{p}$. Hence p divides j - i, and therefore $(j - i)ab\pi_L^{i+j+1} \equiv 0 \pmod{\pi_L^{i+j+2}}$. This implies that $[\sigma, \tau] \in G_{i+j+1}$.

Exercise 2. In this exercise, $\mathbf{F}_p := \mathbf{Z}/p\mathbf{Z}$ is a finite field with p elements and $\mathbf{F}_p((t))$ is

the local field of Laurent power series with coefficients in \mathbf{F}_p . We denote by v_t the usual discrete valuation on $\mathbf{F}_p((t))$ given by $v_t \left(\sum_{i\gg-\infty} a_i t^i\right) = \min\{i \mid a_i \neq 0\}$. For each $n \ge 1$, the ring $\mathbf{F}_p((t^{1/p^n}))$ of polynomials in t^{1/p^n} is a purely inseparable extension of $\mathbf{F}_p((t))$ of degree p^n , and we set $\mathbf{F}_p((t^{1/p^\infty})) := \bigcup_{n\ge 1}^{\infty} \mathbf{F}_p((t^{1/p^n}))$. The discrete valuation v_t extends to a (non-discrete) valuation on $\mathbf{F}_p((t^{1/p^\infty}))$ with values in $\mathbf{Q} \cup \{+\infty\}$, which we denote again by v_t , namely

$$v_t\left(\sum_{i\gg-\infty}a_it^{i/p^n}\right) = \frac{1}{p^n}\min\{i \mid a_i\neq 0\}.$$

1) Show that $\mathbf{F}_p((t^{1/p^{\infty}}))$ is not complete for the topology of the valuation v_t .

Solution. Consider the sequence $(S_n)_{n \ge 1}$ defined by $S_1 = t$, and $S_{n+1} = S_n + t^n t^{1/p^n}$ for $n \ge 1$. It is clear that $S_n \in \mathbf{F}_p((t^{1/p^n})) \subset \mathbf{F}_p((t^{1/p^\infty}))$ and that $(S_n)_{n \ge 1}$ is a Cauchy sequence. Assume that it converges to some $S \in \mathbf{F}_p((t^{1/p^\infty}))$. Then $S \in \mathbf{F}_p((t^{1/p^N}))$ for some $N \ge 1$, namely

$$S = \sum_{i \gg -\infty} a_i t^{i/p^N}.$$

The convergence implies that for any $M \ge 1$ there exists n_0 such that for all $n \ge n_0$ the series $S_n \equiv S \pmod{t^M \mathbf{F}_p[[t^{1/p^{\infty}}]]}$. This leads to a contradiction (take M > N and compare these two series.)

2) Denote by $\mathcal{F} := \mathbf{F}_p((t^{1/p^{\infty}}))$ the completion of $\mathbf{F}_p((t^{1/p^{\infty}}))$. Let $O_{\mathcal{F}} := \mathbf{F}_p[[t^{1/p^{\infty}}]]$ be the ring of integers of \mathcal{F} and (t) the principal ideal of $O_{\mathcal{F}}$ generated by t. For any $a \ge 1$, consider the projective limit

$$\lim_{\varphi} \mathbf{F}_p[[t^{1/p^{\infty}}]]/(t)^a = \lim_{\varphi} \left(\mathbf{F}_p[[t^{1/p^{\infty}}]]/(t)^a \stackrel{\varphi}{\leftarrow} \mathbf{F}_p[[t^{1/p^{\infty}}]]/(t)^a \stackrel{\varphi}{\leftarrow} \dots \right)$$

where $\varphi(x) = x^p$ is the Frobenius map. Construct an isomorphism of rings

$$O_{\mathcal{F}} \simeq \varprojlim_{\varphi} \mathbf{F}_p[[t^{1/p^{\infty}}]]/(t)^a.$$

Solution. We construct a morphism $f : \varprojlim_{\varphi} \mathbf{F}_p[[t^{1/p^{\infty}}]]/(t)^a \to O_{\mathcal{F}}$. Let $\alpha = (\alpha_n)_{n \ge 0} \in \underset{\varphi}{\lim} \mathbf{F}_p[[t^{1/p^{\infty}}]]/(t)^a$. Take any lifts $\widehat{\alpha}_n \in \mathbf{F}_p[[t^{1/p^{\infty}}]]$ and set

$$f(\alpha) = \lim_{n \to +\infty} \widehat{\alpha}_n^{p^n}.$$

Prove that this limit exists. One has:

$$\varphi(\widehat{\alpha}_{n+1}) = \widehat{\alpha}_{n+1}^p \equiv \widehat{\alpha}_n \pmod{t^a}, \qquad \forall n \ge 0.$$

Raising the both sides to p^n th powers and taking into account that the map $x \mapsto x^p$ is a morphism in characteristic p, we obtain that $\widehat{\alpha}_{n+1}^{p^{n+1}} \equiv \widehat{\alpha}_n^{p^n} \pmod{t^{ap^n}}$. This proves that $(\widehat{\alpha}_n^{p^n})_{n\geq 0}$ is a Cauchy sequence, and therefore it converges to some element of $O_{\mathcal{F}}$. If $\widetilde{\alpha}_n \in \mathbf{F}_p[[t^{1/p^{\infty}}]]$ is another system of lifts, then the congruence $\widetilde{\alpha}_n \equiv \widehat{\alpha}_n \pmod{t^a}$ implies that $\widetilde{\alpha}_n^{p^n} \equiv \widehat{\alpha}_n^{p^n} \pmod{t^{ap^n}}$ and $\lim_{n\to+\infty} \widetilde{\alpha}_n^{p^n} = \lim_{n\to+\infty} \widehat{\alpha}_n^{p^n}$. Therefore $f(\alpha)$ doesn't depend on the choice of the lifts. We construct the inverse map $g : O_{\mathcal{F}} \to \varprojlim_{\varphi} \mathbf{F}_p[[t^{1/p^{\infty}}]]/(t)^a$. For any $\beta \in O_{\mathcal{F}}$, set

 $g(\beta) = (\beta_n)_{n \ge 0}$, where

$$\beta_n = \varphi^{-n}(\beta) \mod t^a O_{\mathcal{F}} \in O_{\mathcal{F}}/t^a O_{\mathcal{F}} = \mathbf{F}_p[[t^{1/p^{\infty}}]]/(t)^a.$$

From this definition, it follows easily that $(\beta_n)_{n \ge 0} \in \lim_{p \ge 0} \mathbf{F}_p[[t^{1/p^{\infty}}]]/(t)^a \to O_{\mathcal{F}}$. Hence the map g is well defined. From the definition, it's easy to see that g is a morphism of rings (why?). In addition, $f \circ g$ and $g \circ f$ are the identity maps (please check). To sum up, g is an isomorphism.

In the remainder of this exercise, $K := \bigcup_{n \ge 1} \mathbf{Q}_p[\zeta_{p^n}]$, where $(\zeta_{p^n})_{n \ge 1}$ is a system of primitive p^n th roots of unity $(\zeta_{p^{n+1}}^p = \zeta_{p^n})$, and O_K denotes the ring of integers of K.

3) Show that O_K/pO_K is isomorphic to the quotient of the ring $\mathbf{F}_p[X_1, X_2, \ldots, X_n, \ldots]$ by the ideal I generated by $X_1^{p-1} + X_1^{p-2} + \cdots + X_1 + 1$ and the polynomials $X_{n+1}^p - X_n$, for all $n \ge 1$:

$$I := \left\langle X_1^{p-1} + X_1^{p-2} + \dots + X_1 + 1, X_2^p - X_1, X_3^p - X_2, \dots \right\rangle$$

Deduce from this description that the p-adic completion \widehat{K} of K is a perfectoid field.

Solution. a) Since ζ_p is a root of the irreducible polynomial $X_1^{p-1} + X_1^{p-2} + \cdots + X_1 + 1$, we have $\mathbf{Z}_p[\zeta_p] \simeq \mathbf{Z}_p[X_1]/(X_1^{p-1} + X_1^{p-2} + \cdots + X_1 + 1)$. Moreover, since $\zeta_{p^n}^p = \zeta_{p^{n-1}}$, we can write $\mathbf{Z}_p[\zeta_{p^n}] = \mathbf{Z}_p[\zeta_{p^{n-1}}][X_n]/(X_n^p - \zeta_{p^{n-1}})$. Hence, by induction,

$$\mathbf{Z}_{p}[\zeta_{p^{n}}] = \mathbf{Z}_{p}[X_{1}, X_{2}, \dots, X_{n}]/(X_{1}^{p-1} + X_{1}^{p-2} + \dots + X_{1} + 1, X_{2}^{p} - X_{1}, \dots, X_{n}^{p} - X_{n-1}).$$

Passing to the direct limit, we obtain that

$$O_K = \bigcup_{n \ge 1} \mathbf{Z}_p[\zeta_{p^n}]$$

= $\mathbf{Z}_p[X_1, X_2, \dots, X_n, \dots] / (X_1^{p-1} + X_1^{p-2} + \dots + X_1 + 1, X_2^p - X_1, \dots, X_n^p - X_{n-1}, \dots).$

Therefore

$$O_K/pO_K = \mathbf{F}_p[X_1, X_2, \dots, X_n, \dots]/(X_1^{p-1} + X_1^{p-2} + \dots + X_1 + 1, X_2^p - X_1, \dots, X_n^p - X_{n-1}, \dots).$$

b) We need to prove that the Frobenius map $\varphi : O_K/pO_K \to O_K/pO_K$ is surjective (other properties of a perfectoid field hold by trivial reasons). For any polynomial $f(X_1, X_2, ...)$, let $\overline{f}(X_1, X_2, ...)$, denote the class of f modulo I. Then $\varphi(\overline{X}_{n+1}) = \overline{X}_n$. Since φ acts trivially on \mathbf{F}_p , we have

$$\varphi\left(\overline{f}(X_2, X_3, \ldots)\right) = \overline{f}(X_1, X_2, \ldots).$$

Hence φ is surjective.

4) Show that the ring of integers $O_{\widehat{K}}^{\flat}$ of the tilt of \widehat{K} is isomorphic to $O_{\mathcal{F}}$. (Hint: use a change of variables and question 2)).

Solution. Set $Y_n = X_n - 1$. Then

$$X_1^{p-1} + X_1^{p-2} + \dots + X_1 + 1 = \frac{X_1^p - 1}{X_1 - 1} = \frac{(Y_1 + 1)^p - 1}{Y_1} \equiv Y_1^{p-1} \pmod{p}.$$

In addition, $Y_n^p \equiv X_n^p - 1 = X_{n-1} - 1 = Y_{n-1} \pmod{p}$. Hence

$$O_K/pO_K = \mathbf{F}_p[Y_1, Y_2, \dots, Y_n, \dots]/(Y_1^{p-1}, Y_2^p - Y_1, \dots, Y_n^p - Y_{n-1}, \dots).$$

Setting $t = Y_1$, we see that $Y_n = t^{1/p^{n-1}}$ and

$$O_K/pO_K = \mathbf{F}_p[t^{1/p^{\infty}}]/(t^{p-1}) = \mathbf{F}_p[[t^{1/p^{\infty}}]]/(t^{p-1}).$$

Using question 2), one has:

$$O_{\widehat{K}}^{\flat} = \varprojlim_{\varphi} O_K / p O_K = \varprojlim_{\varphi} \mathbf{F}_p[[t^{1/p^{\infty}}]] / (t^{p-1}) \simeq O_{\mathcal{F}}.$$

5^{*}) Let *m* be a integer which is coprime with *p*, and let \mathcal{E} denote the completion of the field $\bigcup_{n \ge 1} \mathbf{F}_p((t^{m/p^n}))$. Then \mathcal{E} is a perfectoid subfield of \mathcal{F} . Show that if, in addition,

m is coprime with p-1, then \mathcal{E} is not the tilt of a perfectoid subfield of \widehat{K} under the isomorphism $O_{\widehat{K}}^{\flat} \simeq O_{\mathcal{F}}$ of question 4).

Solution. Proof by contradiction. Assume that $\mathcal{E} = \widehat{E}^{\flat}$ for some subfield $\mathbf{Q}_p \subset E \subset K$. Then, by the tilting correspondence, $[K : E] = [\mathcal{F} : \mathcal{E}] = m$. Since K is the union of the extensions $\mathbf{Q}_p[\zeta_{p^n}]$ of degree $(p-1)p^{n-1}$ and m is coprime with p, the extension K/\mathbf{Q}_p doesn't have subextensions E such that [K : E] = m (why?). This gives the contradiction.

Exercise 3. Let K be a local field of characteristic 0 with residue field of characteristic p. Let C denote the completion of the algebraic closure \overline{K} of K, and $\mathfrak{m}_{\mathbf{C}^{\flat}}$ the maximal ideal of $O^{\flat}_{\mathbf{C}}$. For any $x \in O^{\flat}_{\mathbf{C}}$, we denote by [x] the Teichmüller lift of x in the ring $\mathbf{A}_{\inf} := W(O^{\flat}_{\mathbf{C}})$. The goal of this exercise is to prove that for any $u \in 1 + \mathfrak{m}_{\mathbf{C}^{\flat}}$, the series

$$\log([u]) := \sum_{n=1}^{\infty} (-1)^{n-1} \frac{([u]-1)^n}{n}$$

converges in the *p*-adic topology of $\mathbf{B}^+_{\operatorname{cris}} := \mathbf{A}_{\operatorname{cris}} \otimes_{\mathbf{Z}_p} \mathbf{Q}_p$.

1) Let $u \in 1 + \mathfrak{m}_{\mathbf{C}^{\flat}}$. Show that there exists $n_0 \ge 1$ such that $\theta(([u] - 1)^{n_0}) \in pO_{\mathbf{C}}$ (Here θ denotes the usual morphism θ : $\mathbf{A}_{inf} \to O_{\mathbf{C}}$ of *p*-adic Hodge theory.) Deduce that $([u] - 1)^{n_0}$ can be written in the form $([u] - 1)^{n_0} = px + \xi y$, where ξ is a generator of ker (θ) and $x, y \in \mathbf{A}_{inf}$.

Solution. One has $[u] - 1 = [a_0] + p[a_1] + \dots$, where $a_0 = u - 1 \in \mathfrak{m}_{\mathbf{C}^\flat}$. Therefore $a_0^{(0)} \in \mathfrak{m}_{\mathbf{C}}$ and

$$\theta([u] - 1) = \theta([a_0]) + p\theta([a_1]) + \ldots = a_0^{(0)} + p\theta([a_1]) + \ldots$$

Hence $c := \theta([u]-1) \in \mathfrak{m}_{\mathbf{C}}$, i.e. $v_p(c) > 0$. Let n_0 be such that $v_p(c^{n_0}) = n_0 v_p(c) > v_p(p) = 1$. Then $\theta(([u]-1)^{n_0}) \in pO_{\mathbf{C}}$. Write $\theta(([u]-1)^{n_0}) = p\alpha$, where $\alpha \in O_{\mathbf{C}}$. Since the map θ is surjective, there exists $x \in \mathbf{A}_{inf}$ such that $\theta(x) = \alpha$. Then $\theta(([u]-1)^{n_0} - px) = 0$. Since $\ker(\theta)$ is principal, $([u]-1)^{n_0} - px = \xi y$ for some $y \in \mathbf{A}_{inf}$.

2) Show that $\frac{([u]-1)^{n_0m}}{m!} \in \mathbf{A}_{cris}$ for all $m \ge 1$.

Solution. We have $([u] - 1)^{n_0 m} = (px + \xi y)^m = \sum_{k=0}^m {m \choose k} p^{m-k} x^{m-k} y^k \xi^k$. Hence $\frac{([u] - 1)^{n_0 m}}{m!} = \sum_{k=0}^m \frac{p^{m-k} x^{m-k}}{(m-k)!} \cdot \frac{y^k \xi^k}{k!}.$

By the construction of \mathbf{A}_{cris} , for each k one has $\frac{y^k \xi^k}{k!} \in \mathbf{A}_{cris}$. Since $\frac{p^{m-k}}{(m-k)!} \in \mathbf{Z}_p$, each term of the above sum belongs to \mathbf{A}_{cris} . Therefore $\frac{([u]-1)^{n_0m}}{m!} \in \mathbf{A}_{cris}$.

3) Show that for any M there exists N such that $\frac{([u]-1)^n}{n} \in p^M \mathbf{A}_{cris}$ for all $n \ge N$. (Hint: write n in the form $n = n_0 m + r$.) **Solution.** Let $n = n_0 m + r$ with $0 \leq r \leq n_0 - 1$. Then

$$\frac{([u]-1)^n}{n} = ([u]-1)^r \cdot \frac{m!}{n} \cdot \frac{([u]-1)^{n_0m}}{m!}$$

Since $\frac{([u]-1)^{n_0m}}{m!} \in \mathbf{A}_{cris}$, we only need to show that $v_p(m!/n) \to +\infty$ when $n \to +\infty$. Writing *n* in the form $n = p^k n'$ with (n', p) = 1, we see that $v_p(n) \leq \log_p(n)$ (base *p* logarithm). On the other hand,

$$v_p(m!) \ge \left[\frac{m}{p}\right] \ge \frac{m}{p} - 1 \ge \frac{n/n_0 - 1}{p} - 1 = \frac{n - n_0}{n_0 p} - 1.$$

Hence $v_p(m!) - v_p(n) \ge \frac{n-n_0}{n_0p} - \log_p(n) - 1 \to +\infty$ when $n \to +\infty$, and we are done.

4) Conclude.

Solution. From question 3) it follows that

$$\log([u]) := \sum_{n=1}^{\infty} (-1)^{n-1} \frac{([u]-1)^n}{n}$$

converges in the *p*-adic topology of A_{cris} .