
UNIVERSITÉ DE BORDEAUX
M2, p-adic Hodge Theory
2024-2025

Solutions to the final exam

Exercise 1.
Part I. Let A be a commutative unitary domain (a commutative ring with unity in which
the product of any two nonzero elements is nonzero). Let G denote the set of formal power

series of the form f(X) = X +
∞∑
k=2

akX
k, ak ∈ A. We equip G with the binary operation ◦

setting:

f◦g(X) = f(g(X)) = g(X)+
∞∑
k=2

akg(X)k, for all f(X) = X+
∞∑
k=2

akX
k, g(X) = X+

∞∑
k=2

bkX
k.

(This operation is often called composition or substitution). It is easy to see (and you can
admit) that (G, ◦) is a group with the identity element X. For any power series u(X) and
v(X) we will write u(X) ≡ v(X) (mod Xn) if the coefficients of u(X) and v(X) coincide
in all degrees ⩽ n− 1.

1) Let u(X), v(X) ∈ G. Show that if u(X) ≡ v(X) (mod Xn), (n ⩾ 1), then u(X) =
v ◦ w(X), where w(X) ≡ X (mod Xn).

Solution. Since (G, ◦) is a group, for any u(X), v(X) ∈ G, there exists a unique
w(X) ∈ G such that u(X) = v ◦w(X). We only need to show that w(X) ≡ X (mod Xn)
if u(X) ≡ v(X) (mod Xn).

Let u(X) = X +
∞∑
k=2

akX
k, v(X) = X +

∞∑
k=2

bkX
k, and w(X) = X +

∞∑
k=2

ckX
k. Note that

ak = bk for 2 ⩽ k ⩽ n − 1. Let m be the smallest integer ⩾ 2 such that cm ̸= 0, i.e.
w(X) = X + cmX

m + . . . . Then

v ◦ w(X) = w(X) +
∞∑
k=2

bkw(X)k = X + cmX
m + . . .+

∞∑
k=2

bk(X + cmX
m + . . .)k =

X + b2X
2 + . . .+ bm−1X

m−1 + (bm + cm)X
m + . . . .

Since v ◦ w(X) = u(X), this implies that m ⩾ n, i.e. w(X) ≡ X (mod Xn).

2) Let f(X) and g(X) be two elements of G such that f(X) ≡ X + amX
m (mod Xm+1)

and g(X) ≡ X+bnX
n (mod Xn+1) with some am, bn ∈ A. Compute f ◦g(X) and g◦f(X)

modulo Xn+m. Show that for the commutator [f, g] = f−1 ◦ g−1f ◦ g one has

[f, g] ≡ X + (m− n)ambnX
m+n−1 (mod Xm+n).

(Here f−1 and g−1 denote the inverse elements of f and g with respect to ◦.)

Solution. We have

f ◦ g(X) = g(X) + am(X + bnX
n + . . .)m + am+1(X + bnX

n + . . .)m+1

≡ X +
∞∑
k=2

bkX
k +

∞∑
k=2

akX
k +mambnX

m+n−1 (mod Xm+n)

and, analogously,

g ◦ f(X) ≡ X +
∞∑
k=2

bkX
k +

∞∑
k=2

akX
k + nambnX

m+n−1 (mod Xm+n).
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Set w(X) := [f, g] = X +
∞∑
k=2

ckX
k. Then f ◦ g(X) = (g ◦ f) ◦ w(X). Since f ◦ g(X) ≡

g ◦ f(X) ≡ mod Xn+m−1, from question 1) it follows that w(X) ≡ X mod Xn+m−1,
i.e. ck = 0 for 2 ⩽ k ⩽ n+m− 1. Comparing (n+m− 1)th coefficients of f ◦ g(X) and
(g ◦ f) ◦ w(X), we obtain that

mambn = nambn + cn+m−1,

and therefore cn+m−1 = (m−n)ambn.Hence w(X) ≡ X+(m−n)ambnXm+n−1 (mod Xm+n).

Part II. Let L/K be a finite Galois extension of local fields, and let G = Gal(L/K).
We denote by (Gi)i⩾−1 the ramification filtration on G. Let p denote the characteristic of
the residue field kK of K and πL be a uniformizer of L.

3) Show that for all σ ∈ Gi and τ ∈ Gj (i, j ⩾ 1) one has [σ, τ ] ∈ Gi+j. Show that

[σ, τ ](πL) ≡ πL + (i− j)abπi+j+1
L (mod πi+j+2

L ),

where a and b ∈ OK are such that σ(πL) ≡ πL+aπi+1
L (mod πi+2

L ) and τ(πL) ≡ πL+bπj+1
L

(mod πj+2
L ).

Solution. We can write σ(πL) = f(πL) and τ(πL) = g(πL) for some power series
f(X) = X + aX i+1 + . . . and g(X) = X + bXj+1 + . . . . Since σ and τ act trivially
on the coefficients of f(X) and g(X), we have

σ ◦ τ(πL) = σ(g(πL)) = g(σ(πL)) = g(f(πL)) = (g ◦ f)(πL),

and
[σ, τ ](πL) = (g ◦ f ◦ g−1 ◦ f−1)(πL) = [g−1, f−1](πL) = [f, g]−1(πL).

Using the congruence proved in question 2), we obtain that

[σ, τ ](πL) ≡ πL + (j − i)abπi+j+1
L (mod πi+j+2

L ).

(The sign in the formula should be corrected.)

4) Let c be the biggest integer such that Ga ̸= {e}. Show that if i ⩾ 1 is a break of
the ramification filtration in the lower numbering (i.e. if Gi ̸= Gi+1), then i ≡ a (mod p).

Solution. For any σ ∈ Gi \ Gi+1 and τ ∈ Ga we have σ(πL) ≡ πL + uπi+1
L (mod πi+2

L )
and τ(πL) ≡ πL + vπa+1

L (mod πa+2
L ), where u, v ̸≡ 0 (mod πL). Then (see question 3))

[σ, τ ](πL) ≡ πL + (a− i)uvπi+a+1
L (mod πi+a+2

L ).

Therefore [σ, τ ] ∈ Gi+a = {e}. Since e(πL) = πL, the above congruence shows that (a−i)uv
can not be a unit. Since u and v are units, we conclude that a− i ≡ 0 (mod p), i.e. i ≡ a
(mod p).

5) Show the following strengthening of the property proved in question 3): for all σ ∈ Gi

and τ ∈ Gj (i, j ⩾ 1) one has [σ, τ ] ∈ Gi+j+1.

Solution. We can assume that σ ∈ Gi \Gi+1 and τ ∈ Gj \Gj+1. We have

[σ, τ ](πL) ≡ πL + (j − i)uvπi+j+1
L (mod πi+j+2

L ),

where u and v are units. By question 4), i ≡ a (mod p) and j ≡ a (mod p). Hence p
divides j − i, and therefore (j − i)abπi+j+1

L ≡ 0 (mod πi+j+2
L ). This implies that [σ, τ ] ∈

Gi+j+1.

Exercise 2. In this exercise, Fp := Z/pZ is a finite field with p elements and Fp((t)) is
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the local field of Laurent power series with coefficients in Fp. We denote by vt the usual

discrete valuation on Fp((t)) given by vt

( ∑
i≫−∞

ait
i

)
= min{i | ai ̸= 0}. For each n ⩾ 1,

the ring Fp((t
1/pn)) of polynomials in t1/p

n
is a purely inseparable extension of Fp((t)) of

degree pn, and we set Fp((t
1/p∞)) :=

∞
∪
n⩾1

Fp((t
1/pn)). The discrete valuation vt extends to a

(non-discrete) valuation on Fp((t
1/p∞)) with values in Q∪ {+∞}, which we denote again

by vt, namely

vt

( ∑
i≫−∞

ait
i/pn

)
=

1

pn
min{i | ai ̸= 0}.

1) Show that Fp((t
1/p∞)) is not complete for the topology of the valuation vt.

Solution. Consider the sequence (Sn)n⩾1 defined by S1 = t, and Sn+1 = Sn + tnt1/p
n

for n ⩾ 1. It is clear that Sn ∈ Fp((t
1/pn)) ⊂ Fp((t

1/p∞)) and that (Sn)n⩾1 is a Cauchy

sequence. Assume that it converges to some S ∈ Fp((t
1/p∞)). Then S ∈ Fp((t

1/pN )) for
some N ⩾ 1, namely

S =
∑

i≫−∞

ait
i/pN .

The convergence implies that for any M ⩾ 1 there exists n0 such that for all n ⩾ n0

the series Sn ≡ S (mod tMFp[[t
1/p∞ ]]). This leads to a contradiction (take M > N and

compare these two series.)

2) Denote by F := ̂Fp((t1/p
∞)) the completion of Fp((t

1/p∞)). Let OF := ̂Fp[[t1/p
∞ ]]

be the ring of integers of F and (t) the principal ideal of OF generated by t. For any
a ⩾ 1, consider the projective limit

lim←−
φ

Fp[[t
1/p∞ ]]/(t)a = lim←−

(
Fp[[t

1/p∞ ]]/(t)a
φ←− Fp[[t

1/p∞ ]]/(t)a
φ←− . . .

)
where φ(x) = xp is the Frobenius map. Construct an isomorphism of rings

OF ≃ lim←−
φ

Fp[[t
1/p∞ ]]/(t)a.

Solution. We construct a morphism f : lim←−
φ

Fp[[t
1/p∞ ]]/(t)a → OF . Let α = (αn)n⩾0 ∈

lim←−
φ

Fp[[t
1/p∞ ]]/(t)a. Take any lifts α̂n ∈ Fp[[t

1/p∞ ]] and set

f(α) = lim
n→+∞

α̂pn

n .

Prove that this limit exists. One has:

φ(α̂n+1) = α̂p
n+1 ≡ α̂n (mod ta), ∀n ⩾ 0.

Raising the both sides to pnth powers and taking into account that the map x 7→ xp

is a morphism in characteristic p, we obtain that α̂pn+1

n+1 ≡ α̂pn

n (mod tap
n
). This proves

that (α̂pn

n )n⩾0 is a Cauchy sequence, and therefore it converges to some element of OF . If
α̃n ∈ Fp[[t

1/p∞ ]] is another system of lifts, then the congruence α̃n ≡ α̂n (mod ta) implies
that α̃pn

n ≡ α̂pn

n (mod tap
n
) and limn→+∞ α̃pn

n = limn→+∞ α̂pn

n . Therefore f(α) doesn’t
depend on the choice of the lifts.
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We construct the inverse map g : OF → lim←−
φ

Fp[[t
1/p∞ ]]/(t)a. For any β ∈ OF , set

g(β) = (βn)n⩾0, where

βn = φ−n(β) mod taOF ∈ OF/t
aOF = Fp[[t

1/p∞ ]]/(t)a.

From this definition, it follows easily that (βn)n⩾0 ∈ lim←−Fp[[t
1/p∞ ]]/(t)a → OF . Hence the

map g is well defined. From the definition, it’s easy to see that g is a morphism of rings
(why?). In addition, f ◦ g and g ◦ f are the identity maps (please check). To sum up, g
is an isomorphism.

In the remainder of this exercise, K := ∪
n⩾1

Qp[ζpn ], where (ζpn)n⩾1 is a system of primitive

pnth roots of unity (ζppn+1 = ζpn), and OK denotes the ring of integers of K.

3) Show that OK/pOK is isomorphic to the quotient of the ring Fp[X1, X2, . . . , Xn, . . .]

by the ideal I generated by Xp−1
1 +Xp−2

1 + · · ·+X1 + 1 and the polynomials Xp
n+1−Xn,

for all n ⩾ 1 :

I :=
〈
Xp−1

1 +Xp−2
1 + · · ·+X1 + 1, Xp

2 −X1, X
p
3 −X2, . . .

〉
.

Deduce from this description that the p-adic completion K̂ of K is a perfectoid field.

Solution. a) Since ζp is a root of the irreducible polynomial Xp−1
1 +Xp−2

1 + · · ·+X1+1,

we have Zp[ζp] ≃ Zp[X1]/(X
p−1
1 +Xp−2

1 + · · · +X1 + 1). Moreover, since ζppn = ζpn−1 , we
can write Zp[ζpn ] = Zp[ζpn−1 ][Xn]/(X

p
n − ζpn−1). Hence, by induction,

Zp[ζpn ] = Zp[X1, X2, . . . , Xn]/(X
p−1
1 +Xp−2

1 + · · ·+X1 + 1, Xp
2 −X1, . . . X

p
n −Xn−1).

Passing to the direct limit, we obtain that

OK = ∪
n⩾1

Zp[ζpn ]

= Zp[X1, X2, . . . , Xn, . . .]/(X
p−1
1 +Xp−2

1 + · · ·+X1 + 1, Xp
2 −X1, . . . X

p
n −Xn−1, . . .).

Therefore

OK/pOK = Fp[X1, X2, . . . , Xn, . . .]/(X
p−1
1 +Xp−2

1 +· · ·+X1+1, Xp
2−X1, . . . X

p
n−Xn−1, . . .).

b) We need to prove that the Frobenius map φ : OK/pOK → OK/pOK is surjec-
tive (other properties of a perfectoid field hold by trivial reasons). For any polynomial
f(X1, X2, ...), let f(X1, X2, ...), denote the class of f modulo I. Then φ(Xn+1) = Xn.
Since φ acts trivially on Fp, we have

φ
(
f(X2, X3, ...)

)
= f(X1, X2, ...).

Hence φ is surjective.

4) Show that the ring of integers O♭
K̂

of the tilt of K̂ is isomorphic to OF . (Hint: use

a change of variables and question 2)).

Solution. Set Yn = Xn − 1. Then

Xp−1
1 +Xp−2

1 + · · ·+X1 + 1 =
Xp

1 − 1

X1 − 1
=

(Y1 + 1)p − 1

Y1

≡ Y p−1
1 (mod p).

In addition, Y p
n ≡ Xp

n − 1 = Xn−1 − 1 = Yn−1 (mod p). Hence

OK/pOK = Fp[Y1, Y2, . . . , Yn, . . .]/(Y
p−1
1 , Y p

2 − Y1, . . . Y
p
n − Yn−1, . . .).

Setting t = Y1, we see that Yn = t1/p
n−1

and

OK/pOK = Fp[t
1/p∞ ]/(tp−1) = Fp[[t

1/p∞ ]]/(tp−1).
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Using question 2), one has:

O♭
K̂
= lim←−

φ

OK/pOK = lim←−
φ

Fp[[t
1/p∞ ]]/(tp−1) ≃ OF .

5*) Let m be a integer which is coprime with p, and let E denote the completion of
the field ∪

n⩾1
Fp((t

m/pn)). Then E is a perfectoid subfield of F . Show that if, in addition,

m is coprime with p − 1, then E is not the tilt of a perfectoid subfield of K̂ under the
isomorphism O♭

K̂
≃ OF of question 4).

Solution. Proof by contradiction. Assume that E = Ê♭ for some subfield Qp ⊂ E ⊂ K.
Then, by the tilting correspondence, [K : E] = [F : E ] = m. Since K is the union of the
extensions Qp[ζpn ] of degree (p − 1)pn−1 and m is coprime with p, the extension K/Qp

doesn’t have subextensions E such that [K : E] = m (why?). This gives the contradiction.

Exercise 3. Let K be a local field of characteristic 0 with residue field of characteristic
p. Let C denote the completion of the algebraic closure K of K, and mC♭ the maximal
ideal of O♭

C. For any x ∈ O♭
C, we denote by [x] the Teichmüller lift of x in the ring

Ainf := W (O♭
C). The goal of this exercise is to prove that for any u ∈ 1 +mC♭ , the series

log([u]) :=
∞∑
n=1

(−1)n−1 ([u]− 1)n

n

converges in the p-adic topology of B+
cris := Acris ⊗Zp Qp.

1) Let u ∈ 1 + mC♭ . Show that there exists n0 ⩾ 1 such that θ(([u] − 1)n0) ∈ pOC

(Here θ denotes the usual morphism θ : Ainf → OC of p-adic Hodge theory.) Deduce
that ([u] − 1)n0 can be written in the form ([u] − 1)n0 = px + ξy, where ξ is a generator
of ker(θ) and x, y ∈ Ainf .

Solution. One has [u] − 1 = [a0] + p[a1] + . . . , where a0 = u − 1 ∈ mC♭ . Therefore

a
(0)
0 ∈ mC and

θ([u]− 1) = θ([a0]) + pθ([a1]) + . . . = a
(0)
0 + pθ([a1]) + . . . .

Hence c := θ([u]−1) ∈ mC, i.e. vp(c) > 0. Let n0 be such that vp(c
n0) = n0vp(c) > vp(p) =

1. Then θ(([u]− 1)n0) ∈ pOC. Write θ(([u]− 1)n0) = pα, where α ∈ OC. Since the map θ
is surjective, there exists x ∈ Ainf such that θ(x) = α. Then θ(([u]− 1)n0 − px) = 0. Since
ker(θ) is principal, ([u]− 1)n0 − px = ξy for some y ∈ Ainf .

2) Show that ([u]−1)n0m

m!
∈ Acris for all m ⩾ 1.

Solution. We have ([u]− 1)n0m = (px+ ξy)m =
m∑
k=0

(
m
k

)
pm−kxm−kykξk. Hence

([u]− 1)n0m

m!
=

m∑
k=0

pm−kxm−k

(m− k)!
· y

kξk

k!
.

By the construction of Acris, for each k one has ykξk

k!
∈ Acris. Since

pm−k

(m−k)!
∈ Zp, each term

of the above sum belongs to Acris. Therefore
([u]−1)n0m

m!
∈ Acris.

3) Show that for any M there exists N such that ([u]−1)n

n
∈ pMAcris for all n ⩾ N.

(Hint: write n in the form n = n0m+ r.)
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Solution. Let n = n0m+ r with 0 ⩽ r ⩽ n0 − 1. Then

([u]− 1)n

n
= ([u]− 1)r · m!

n
· ([u]− 1)n0m

m!
.

Since ([u]−1)n0m

m!
∈ Acris, we only need to show that vp(m!/n) → +∞ when n → +∞.

Writing n in the form n = pkn′ with (n′, p) = 1, we see that vp(n) ⩽ logp(n) (base p
logarithm). On the other hand,

vp(m!) ⩾

[
m

p

]
⩾

m

p
− 1 ⩾

n/n0 − 1

p
− 1 =

n− n0

n0p
− 1.

Hence vp(m!)− vp(n) ⩾
n−n0

n0p
− logp(n)− 1→ +∞ when n→ +∞, and we are done.

4) Conclude.

Solution. From question 3) it follows that

log([u]) :=
∞∑
n=1

(−1)n−1 ([u]− 1)n

n

converges in the p-adic topology of Acris.


