UNIVERSITÉ DE BORDEAUX

Théorie de Galois et représentations des groupes finis

Devoir surveillé, le 25 octobre 2024

Durée 1h30. Documents non autorisés

Exercice 1. Soient, dans \mathbf{C} , $\alpha = \sqrt{2}$ et $\beta = \sqrt[3]{3}$.

- 1) Montrer que $[\mathbf{Q}[\beta] : \mathbf{Q}] = 3$ et que $\alpha \notin \mathbf{Q}[\beta]$. On pose $L = \mathbf{Q}[\alpha, \beta]$. En déduire que $[L : \mathbf{Q}] = 6$.
- 2) Soient $f(X) = X^2 2$ et $g(X) = X^3 3$. Comparer $\mathbf{Q}[\alpha]$ (respectivement $\mathbf{Q}[\beta]$) au corps de décomposition \mathbf{Q}_f de f(X) (respectivement au corps de décomposition \mathbf{Q}_g de g(X)). Donner le degré $[\mathbf{Q}_g : \mathbf{Q}]$.
- 3) Décrire $\operatorname{Hom}_{\mathbf{Q}}(\mathbf{Q}[\alpha], \mathbf{C})$, puis $\operatorname{Hom}_{\mathbf{Q}}(\mathbf{Q}[\beta], \mathbf{C})$.
- 4) Soit $\sigma \in \operatorname{Hom}_{\mathbf{Q}}(L, \mathbf{C})$. Expliquer pourquoi σ est complètement déterminé par le couple $(\sigma(\alpha), \sigma(\beta))$.
- 5) Donner le cardinal de $\operatorname{Hom}_{\mathbf{Q}}(L, \mathbf{C})$. Décrire les éléments de $\operatorname{Hom}_{\mathbf{Q}}(L, \mathbf{C})$ en termes de leur action sur α et β .
- 6) Soit $\gamma = \alpha + \beta$. Donner les images de γ dans ${\bf C}$ par les éléments de ${\rm Hom}_{\bf Q}(L,{\bf C})$.
- 7) En déduire que $\mathbf{Q}[\gamma] = \mathbf{Q}[\alpha, \beta]$.

Exercice 2. Soient K un corps de caractéristique positive p.

Première partie. Soit L/K une extension finie.

1) Soit $\alpha \in L$ un élément séparable sur K. Rappeler pourquoi α est séparable sur tout corps F tel que $K \subset F \subset L$.

Tournez la page s.v.p.

2) Soient $\alpha, \beta \in L$ deux éléments séparables. Montrer que $\alpha \pm \beta$, $\alpha\beta$ et α/β (si $\beta \neq 0$) sont séparables sur K. En déduire que l'ensemble

$$L_s := \{ \alpha \in L \mid \alpha \text{ est séparable sur } K \}$$

est un sous-corps de L contenant K.

3) Soient $x \in L$. Montrer que x est séparable sur L_s si et seulement si $x \in L_s$.

Deuxième partie. On fixe une clôture algébrique \overline{K} de K.

- 4) Soit $f(X) \in K[X]$ un polynôme de la forme $f(X) = X^{p^n} a$ et soit $\alpha \in \overline{K}$ une racine de f(X). Donner la factorisation de f(X) sur le corps $K[\alpha]$ et décrire les K-morphismes $K[\alpha] \to \overline{K}$. En déduire que si $\alpha \notin K$, alors α n'est pas séparable sur K.
- 5) Soit $P(X) \in K[X]$ le polynôme minimal d'un élément $\beta \in \overline{K}$. Soit n le plus grand entier tel que $P(X) = Q(X^{p^n})$ pour un certain polynôme $Q(X) \in K[X]$. Montrer que $\gamma := \beta^{p^n}$ est séparable sur K et que Q(X) est le polynôme minimal de γ sur K. En utilisant la question 4), montrer qu'aucun élément $\delta \in K[\beta] \setminus K[\gamma]$ n'est séparable sur $K[\gamma]$.

Troisième partie

6) On reprend les notations et les conventions de la première partie. Montrer qu'il existe $\gamma_1, \ldots, \gamma_m \in L_s$ tels que

$$L = L_s[\beta_1, \dots \beta_m], \qquad \beta_i^{p^{n_i}} = \gamma_i \quad \text{pour certains } n_i.$$

FIN