Exercise sheet no2

Absolute values, valuations

Exercice 1 – Let K be a field.

- 1) Prove that if K is finite, then the only absolute value on K is the trivial one.
- 2) Does the converse of the above statement hold?

Exercice 2 -

- 1) Let $(K, |\cdot|)$ be a valued field. Show that $|\cdot|^s$ is an absolute value on K for all $s \in]0; 1]$.
- 2) Find all s > 0 such that $|\cdot|_{\infty}^{s}$ is an absolute value on **Q**.

Exercice 3 -

- 1) Let $(K, |\cdot|)$ be a valued field. Show that if $|\cdot|$ is ultrametric on a subfield of K, then it is ultrametric on K.
- 2) Prove that every absolute value on a field of positive characteristic is ultrametric.

Exercice 4 – Let $(K, |\cdot|)$ be a valued field. Show that $|\cdot|$ is ultrametric if and only if $B(0,1) \cap B(1,1) = \emptyset$.

Exercice 5 – Let $(K, |\cdot|)$ be an ultrametric field.

- 1) Show that for each $r \in]0,1]$ the open ball B(1,r) is a subgroup of K^* .
- 2) Prove that each open ball in K is closed.
- 3) Deduce that K is totally disconnected (the only connected subsets are singletons.)

Exercice 6 — Let K be a field and v be a non-trivial valuation on K. Prove that the following properties are equivalent:

- (a) O_v is a principal ideal domain;
- (b) O_v is noetherian;
- (c) the ideal \mathfrak{m}_v is principal;
- (d) $v(K^*)$ is a discrete subgroup of **R**.

Exercice 7 – (Ostrowski theorem for rational functions.) Let k be a finite field, and let k(t) denote the field of fractions of the polynomial ring k[t]. For each irreducible polynomial $P \in k[t]$, we denote by v_P the discrete valuation on k(t) attached to P, namely

$$v_P(f) = k$$
, if $f(t) = \frac{r(t)}{s(t)} P(t)^k$, where $r(t)$ and $s(t)$ are coprime with $P(t)$.

1) For each f(t) = a(t)/b(t) with $a(t), b(t) \in k[t], b(t) \neq 0$, define:

$$v_{\infty}(f) = \deg(b) - \deg(a).$$

(Recall that $deg(0) = -\infty$.) Check that $v_{\infty}(f)$ does not depend on the choice of a(t) and b(t) and that the above formula defines a discrete valuation on k(t).

Let now $|\cdot|$ be a nontrivial absolute value on K.

2) Assume that |t| > 1 and set c = 1/|t|. Show that

$$|a(t)| = c^{-\deg(f)}, \quad \forall a(t) \in k[t],$$

and deduce that $|f(t)| = c^{v_{\infty}(f)}$ for all $f \in k(t)$.

- 3) Assume that $|t| \leq 1$.
 - a) Show that there exists a nonzero polynomial $g \in k[t]$ such that |g| < 1.
 - b) Let $P \in k[t]$ denote a unitary polynomial of smallest degree such that $|P| \leq 1$. Prove that P is irreducible.
 - c) Show that for any nonzero polynomial $h \in k[t]$, coprime with P, one has |h| = 1.
 - d) Show that for any $f(t) \in k[t]$, one has $|f(t)| = c^{v_P(f(t))}$, where c = |P|. Deduce that the above formula holds for all $f(t) \in k(t)$.

Exercice 8 – (Weak approximation theorem of Artin-Whaples.) Let K be a field equipped with pairwise inequivalent nontrivial absolute values $|\cdot|_1, \ldots, |\cdot|_m, m \ge 2$.

- 1) Show that there exists $a \in K$ such that $|a|_1 > 1$ and $|a|_2 < 1$.
- 2) Prove by induction on m that there exists $a \in K$ such that $|a|_1 > 1$ and $|a|_i < 1$ for all $2 \le i \le m$. (Hint: assume that $|b|_1 > 1$ and $|b|_i < 1$ for all $2 \le i \le m 1$ and take c such that $|c|_1 > 1$ and $|c|_n < 1$. Consider the sequences $a_k = cb^k$ and $\frac{b^k}{b^k+1}c$.)
- 3) Prove that given any $\alpha_i \in K$ $(1 \le i \le m)$ and $\varepsilon > 0$, there exists $\beta \in K$ such that simultaneously

$$|\beta - \alpha_i|_i < \varepsilon$$
, for all $1 \le i \le m$.

4) Compare the above result with the Chinese Remainder Theorem.