Exercise sheet n°3 Complete fields

Exercice 1 – Let $(K, |\cdot|)$ be an ultrametric field. Show that $|\widehat{K}^*| = |K^*|$ and that the residue fields of K and \widehat{K} are isomorphic.

Exercice 2 – Let K be a field. We equip K with the trivial absolute value and consider K[[X]] as a K-vector space.

- 1) Let $\rho \in]0,1[$. Set $||f||_{\rho} = \rho^{v_X(f)}$ for all $f \in K[[X]]$. Recall why $||\cdot||_{\rho}$ is a norm on K[[X]].
- 2) Let $r, s \in \mathbb{R}$ be such that 0 < r < s < 1. Show that $\|\cdot\|_r$ and $\|\cdot\|_s$ are equivalent but there doesn't exist c > 0 such that $\|\cdot\|_s \le c\|\cdot\|_r$.

Exercice 3 – Consider $\mathbf{Q}[\sqrt{2}]$ as a \mathbf{Q} -vector space equipped with the norm $\|\cdot\|$ given by the usual absolute value. Set $\|x+y\sqrt{2}\|'=\max\{|x|_{\infty},|y|_{\infty}\}$ for all $x,y\in\mathbf{Q}$. Show that the norms $\|\cdot\|$ and $\|\cdot\|'$ are not equivalent.

Exercice 4 -

1) Let L/K be a finite separable field extension of degree n. Show that for any $x \in L$

$$N_{L/K}(x) = \prod_{i=1}^{n} \sigma_i(x),$$

where $\sigma_1, \ldots, \sigma_n$ are the K-embeddings of L in the algebraic closure \overline{K} of K. (Hint: first consider the case L = K[x].)

2) Let $K \subset L \subset M$ be a tower of finite separable extensions. Show that

$$N_{M/K}(x) = N_{L/K}(N_{M/L}(x)), \quad \forall x \in M.$$

(This formula holds without the assumption of the separability.)

Exercice 5 – Let $(K, |\cdot|)$ be a complete ultrametric valued field and let $f(X) = \sum_{k=0}^{n} a_k X^k$ be an irreducible monic polynomial. Show that $|a_k|^n \le |a_0|^{n-k}$ for all $0 \le k \le n$.

Exercice 6 — Let $(K, |\cdot|)$ be a complete ultrametric valued field and let f(X) be a monic polynomial. Prove that if f(X) is irreducible in $O_K[X]$, its image in $k_K[X]$ is the power of an irreducible polynomial.

Exercise 7 – (Another theorem of Ostrowski). Let $(K, |\cdot|)$ be a complete valued field such that |2| = 2. Assume that there exists $i \in K$ such that $i^2 = -1$.

1) Construct a morphism $(\mathbf{C}, |\cdot|_{\infty}) \to (K, |\cdot|)$ of valued fields. We identify \mathbf{C} with its image in K.

- 2) Fix $a \in K$ and consider the map $f : \mathbf{C} \to \mathbf{R}_+$ defined by f(z) = |z a|. Let $r = \inf_{z \in \mathbf{C}} f(z)$. Show that $f^{-1}(r)$ is closed, bounded and non-empty.
- 3) Prove that if r > 0 and $\gamma_0 \in f^{-1}(r)$, then $B(\gamma_0, r) \subset f^{-1}(r)$. (Hint : if $|\gamma \gamma_0|_{\infty} < r$, consider $(\gamma_0 a)^n (\gamma_0 \gamma)^n$.)
- 4) Conclude that $K = \mathbf{C}$.

Exercice 8 – Prove that a complete archimedean values field is isomorphic to $(\mathbf{R}, |\cdot|_{\infty}^{s})$ or $(\mathbf{C}, |\cdot|_{\infty}^{s})$ for some $s \in]0, 1]$.